
Complexity of Axiom Pinpointing
in the DL-Lite Family

Rafael Peñaloza1 and Barış Sertkaya2

1 Theoretical Computer Science TU Dresden, Germany
penaloza@tcs.inf.tu-dresden.de

2 SAP Research Center Dresden, Germany
baris.sertkaya@sap.com

1 Introduction

In real world applications where ontologies are employed, often the knowledge
engineer not only wants to know whether her ontology has a certain (unwanted)
consequence or not, but also wants to know why it has this consequence. Even
for ontologies of moderate size, finding explanations for a given consequence is
not an easy task without getting support from an automated tool. The task
of finding explanations for a given consequence, i.e., minimal subsets of the
original ontology that have the given consequence is called axiom pinpointing in
the literature.

Existing work on axiom pinpointing in DLs can be classified under two main
categories, namely the glass-box approach, and the black-box approach. The
idea underlying the glass-box approach is to extend the existing reasoning algo-
rithms such that while doing reasoning, at the same time they can keep track
of the axioms used, and detect which of the axioms in the TBox are responsible
for a given consequence. In [24] a pinpointing extension of the tableau-based
satisfiability algorithm for the DL ALC has been introduced. Later in [19], this
approach has been further extended to DLs that are more expressive than ALC.
In [17] a pinpointing algorithm for ALC with general concept inclusions (GCIs)
has been presented by following the approach in [2]. In order to overcome the
problem of developing a pinpointing extension for every particular tableau-based
algorithm, a general pinpointing extension for tableau algorithms has been de-
veloped in [3, 6]. Similarly, an automata-based general approach for obtaining
glass-box pinpointing algorithms has been introduced in [4, 5].

In contrast to the glass-box approach, the idea underlying the black-box ap-
proach is to make use of the existing highly optimized reasoning algorithms
wihout having to modify them. The most näıve black-box approach would of
course be to generate every subset of the original TBox, and ask a DL reasoner
whether this subset has the given consequence or not, which obviously is very
inefficient. In [16] more efficient approaches based on Reiter’s hitting set tree
algorithm [23] have been presented. The experimental resuts in [16] demonstrate
that this approach behaves quite well in practice on realistic TBoxes written in
expressive DLs. A similar approach has successfully been used in [14] for explain-
ing inconsistencies in OWL ontologies. The main advantages of the black-box



approach are that one can use existing DL reasoners, and that it is independent
of the DL reasoner being used. In [13] the black-box approach has been used
for computing more fine grained explanations, i.e., not just the set of relevant
axioms in the TBox but parts of these axioms that actually lead to the given
consequence.

Although various methods and aspects of axiom pinpointing have been con-
sidered in the literature, its computational complexity has not been investigated
in detail yet. Obviously, axiom pinpointing is at least as hard as standard rea-
soning. Nevertheless, especially for tractable DLs it makes sense to investigate
whether explanations for a consequence can efficiently be enumerated or not.
In [7] it has been shown that a given consequence can have exponentially many
explanations (there called MinAs, which stands for minimal axiom sets), and
checking the existence of a MinA within a cardinality bound is np-hard even for
a fragment of EL that only allows for conjunction on both sides of a GCI. In [20–
22] we have investigated the complexity of axiom pinpointing in the propositional
Horn fragment, and in the tractable DL EL. We have given a polynomial delay
algorithm for enumerating MinAs in the propositional Horn setting that works
even if the MinAs are required to be enumerated in reverse lexicographic order.
We have also shown that for the dual-Horn setting, where the axioms have at
most one negative literal, this problem is at least as hard as the hypergraph
transversal enumeration problem, whose exact complexity is a prominent open
problem [12]. Moreover, we have shown that for EL TBoxes MinAs cannot be
enumerated in output-polynomial time unless p = np.

In the present work we investigate the complexity of axiom pinpointing in
the other family of tractable DLs, namely the DL-Lite family, which has been
very popular due to its success in efficiently accessing large data and answering
complex queries on this data [10, 1]. For this family various aspects of finding
explanations have already been considered in [9, 8]. There the main focus is on the
problem of explaining query answering and ABox reasoning, which are the most
standard types of reasoning problems in the DL-Lite family. In particular the
authors investigate in detail the problem of determining why a value is returned
as an answer to a conjunctive query posed to a DL-Lite ABox, why a conjunctive
query is unsatifiable, and why a particular value is not returned as answer to
a conjunctive query. Complementary to the work in [9, 8] here we consider the
problem of explaining TBox reasoning. We investigate in detail the complexity of
enumerating MinAs in a DL-Lite TBox for a given consequence of this TBox. We
show that for DL−LiteHcore, DL−LiteHkrom and DL−LiteNhorn TBoxes MinAs are
efficiently enumerable with polynomial delay, but for DL−Litebool they cannot
be enumerated in output-polynomial time unless p = np.

2 Preliminaries

We briefly introduce the syntax of the DL-Lite family following the notation
in [1]. DL-Lite concepts and roles are constructed as follows:

r := p | p−, B := ⊥ | A | ≥ q r, C := B | ¬C | C1 u C2,



where A is a concept name, p is a role name, and q is a natural number. Concepts
of the form B are called basic, and those of form C are called general concepts.

A DL−LiteNbool TBox is a set of axioms of the form C1 v C2, where C1, C2 are
general concepts. A TBox is called core, denoted as DL−LiteNcore, if its axioms
are of the form B1 v B2, or B1 v ¬B2 , where B1, B2 are basic concepts. Krom
TBoxes generalize core ones by allowing also axioms of the form ¬B1 v B2.
These TBoxes are denoted asDL−LiteNkrom. Finally, a Horn TBoxDL−LiteNhorn
is composed only of axioms of the form

d
k Bk v B. We can drop the superscript

N from the knowledge bases by allowing only number restrictions of the form
≥ 1 r for constructing basic concepts. We will sometimes use the expression ∃r
to represent ≥ 1 r. To any of the previously defined TBoxes, we can add role
inclusion axioms of the form r1 v r2. This will be denoted using the superscript
H in the name; e.g. DL−LiteHNbool . Since we are not dealing with individuals in the
present work, role inclusion axioms do not add any expressivity to DL−LiteHα
TBoxes for α ∈ {core, horn, krom}. Indeed, a basic concept B will only make
use of a role r if B is an existential restriction ∃r. As we are only interested in
concept subsumption, we can represent the role inclusion axiom r1 v r2 by the
concept inclusion ∃r1 v ∃r2. Thus, the complexity results we present here for
for DL−Liteα TBoxes also hold for DL−LiteHα TBoxes.3 For sake of simplicity,
in the present work we do not consider inverse roles.

Finally we recall basic notions from complexity of enumeration algorithms.
For analyzing the performance of algorithms where the size of the output can
be exponential in the size of the input, we consider other measures of efficiency.
We say that an algorithm runs with polynomial delay [15] if the time until the
first output is generated, and thereafter the time between any two consecutive
outputs is bounded by a polynomial in the size of the input. We say that it runs
in output polynomial time [15] if it outputs all solutions in time polynomial in
the size of the input and the output.

3 Complexity of Enumerating all MinAs

The main problem we consider in the present work is, given a DL-Lite TBox and
a consequence of it, compute all MinAs for this consequence in the given TBox.
We start with defining a MinA.

Definition 1. Let T be a DL-Lite TBox and ϕ a DL-Lite axiom that follows
from it, i.e., T |= ϕ. We call a set M⊆ T a minimal axiom set or MinA for ϕ
in T if M |= ϕ and it is minimal w.r.t. set inclusion.

We define our problem without mentioning a particular DL-Lite fragment but
investigate its computational complexity for different fragments in the coming
sections separately. In the following, the only consequences we consider are sub-
sumption relations that can be expressed by axioms in the corresponding DL-Lite
fragment.

3 Notice that this may not be true if number restrictions are allowed; that is, the
complexity results for DL−LiteNα may not transfer to DL−LiteHN

α .



Problem: mina-enum
Input: A DL-Lite TBox T and a DL-Lite axiom ϕ such that T |= ϕ.
Output: The set of all MinAs for ϕ in T .

3.1 Enumerating MinAs in DL−Litecore and DL−Litekrom TBoxes

We start with a basic observation. In the simplest setting where we can consider
mina-enum, T is a DL−Litecore TBox whose concept inclusion axioms are all
of the form A1 v A2 for atomic concepts A1, A2. Note that in his setting T
becomes just a directed graph, and a MinA for An v Am is just a simple path
between the nodes An and Am.4 That is, mina-enum boils down to enumerating
the simple paths between two vertices in a given directed graph. This problem
is well-known, and can be solved with polynomial delay, even if the simple paths
are required to be output in the increasing order of their lengths [25]. This
observation has already been briefly mentioned in the works [9, 8], which mainly
concentrate on explaining query answering.

In DL−Litecore TBoxes, additionally we need to deal with unqualified exis-
tential restriction, and also with inclusion axioms that have negated basic con-
cepts in the right hand side. Since unqualified existential restrictions cannot
interact and give rise to additional MinAs in a DL−Litecore TBox, we can treat
them as atomic concepts. We need to deal with the axioms with a negated basic
concept in the right hand side separately since they can lead to additional MinAs
due to contraposition. We demonstrate this with an example.

Example 1. Consider the DL−Litecore TBox T = {A v ¬∃r1, ∃r2 v ∃r1, D v
∃r2, D v ∃r1, A v D} and the axiom ϕ : A v ¬D which follows from T . We can
treat ∃r1 and ∃r2 just like atomic concepts since without role inclusion axioms
they cannot interact and lead to additional MinAs. That is we have the MinAs
M1 = {A v ¬∃r1, ∃r2 v ∃r1, D v ∃r2}, and M2 = {A v ¬∃r1, D v ∃r1}.

Note that A is actually unsatisfiable, i.e., it is subsumed by any other concept.
This might also be the reason why ϕ follows from T . This means that we also
need to find out the reasons why A is unsatisfiable. The only MinA for A v ¬A
in T is M = {A v ¬∃r1, D v ∃r1, A v D}. However, it contains M2, which is a
MinA for ϕ, thus M is not a minimal axiom set, i.e., a MinA for ϕ. It means that
when we are looking for MinAs for an axiom B1 v B2 s.t. B1 is unsatisfiable,
we also need to find MinAs for B1 v ¬B1 that do not contain any of the MinAs
for the original axiom.

Our algorithm that takes all these cases into account is described in detail in
Algorithm 1 where t(ϕ) stands for the tail (i.e. the left hand side), and h(ϕ)
stands for the head (i.e. the right hand side) of axiom ϕ.

Theorem 1. Algorithm 1 solves mina-enum for DL−Litekrom TBoxes with
polynomial delay.

4 A simple path is a path with no repeated vertices.



Algorithm 1 Enumerating all MinAs for DL−Litekrom TBoxes

Procedure: all-MinAs(T ,ϕ) (T a DL−Litekrom TBox, ϕ an axiom s.t. T |= ϕ)

1: all-MinAs-aux(T , ϕ)
2: if T |= t(ϕ) v ¬t(ϕ) then
3: T ′ := {ψ ∈ T | h(ψ) 6= h(ϕ) and t(ψ) 6= ¬h(ϕ)}
4: all-MinAs-aux(T ′, t(ϕ) v ¬t(ϕ)) (MinAs for unsatisfiability of t(ϕ))
5: end if

Procedure: all-MinAs-aux(T ,ϕ) (T a DL−Litekrom TBox, ϕ an axiom, T |= ϕ)

1: if t(ϕ) = h(ϕ) then return ∅
2: end if
3: for all ψ ∈ T do
4: if t(ϕ) = t(ψ) and T \ {ψ} |= h(ψ) v h(ϕ) then
5: print{ψ} ∪ all-MinAs(T \ {ψ}, h(ψ) v h(ϕ))
6: end if
7: if t(ϕ) = ¬h(ψ) and T \ {ψ} |= ¬t(ψ) v h(ϕ) then
8: print{ψ} ∪ all-MinAs(T \ {ψ},¬t(ψ) v h(ϕ))
9: end if

10: end for

Proof. It is not difficult to see that the algorithm terminates. Termination of
the procedure all-MinAs depends on the termination of the procedure all-
MinAs-aux. all-MinAs-aux terminates since the base case of the recursion is
well established, and there are finitely many ψ in T .

The algorithm is sound. all-MinAs-aux outputs an axiom ψ, only if using
it ϕ can be derived. Moreover, as soon as the head and the tail of ϕ become
equal, it terminates in line 1. That is it does not allow ‘cycles’, or redundant
axioms in the output. Hence, the outputs of all-MinAs-aux are indeed MinAs
for ϕ in T . all-MinAs additionally checks if the tail of ϕ is unsatisfiable, and
if this is the case also outputs the MinAs for t(ϕ) v ¬t(ϕ) that do not contain
any of the previously output MinAs.

The algorithm is complete. all-MinAs-aux iterates over the axioms in T
and searches for the MinAs for ϕ in a depth-first manner. If T |= t(ϕ) v ¬t(ϕ),
then all-MinAs additionally searches for MinAs for t(ϕ) v ¬t(ϕ), in the same
manner. These are all MinAs for ϕ in T .

Note that in lines 4 and 7 of the procedure all-MinAs-aux the algo-
rithm checks whether the selected axiom ψ will lead to a MinA. Clearly, for
DL−Litecore and DL−Litekrom this check is polynomial. Moreover, this check
avoids the algorithm picking a ‘wrong’ axiom that will result in an exponential
number of recursive calls that do not lead to a MinA. That is, it guarantees
that the algorithm outputs the next MinA, or stops, after at most a polynomial
number of steps, i.e., it is polynomial delay. 2

3.2 MinAs in DL−LiteNhorn TBoxes

Next we show that for DL−LiteNhorn TBoxes, MinAs can be enumerated with
polynomial delay as well. Furthermore, we show that this is true even if the



MinAs are required to be output in a given reverse lexicographic order. To do
this, we construct, for every DL−LiteNhorn TBox T a propositional Horn TBox
GT as follows: for every basic concept B create a propositional variable vB ; for
every axiom

dn
i=1Bi v B add the Horn clause

∧n
i=1 vBi

→ vB ; and for each
pair of number restrictions ≥ q1r,≥ q2r with q1 > q2 appearing in T , add the
Horn clause v≥q1r → v≥q2r. We will call the latter ones implicit axioms. It is not
difficult to see that T |=

dn
i=1Ai v C iff GT |=

∧n
i=1 vAi

→ vC . Furthermore,
MinA M in GT gives rise to a MinA in T consisting of all axioms representing
non implicit axioms in M. However, different MinAs in GT can give rise to
the same MinA in T . For instance let T = {A v ≥ 2r,A v ≥ 3r,≥ 1r v B}.
Clearly GT constructed from T as described has three MinAs for vA → vB ,
but there are only two MinAs for A v B in T . The reason is that the implicit
subsumption ≥ 3r v ≥ 1r is represented twice in GT : one through the direct
edge, and another with a path travelling along v≥2r. We solve this problem by
using immediate MinAs.

Definition 2. Let T be a DL−LiteNhorn TBox. A MinA M in GT is called
immediate if for every implicit axiom τ ∈ GT ,M |= τ implies τ ∈M.

Note that there is a one-to-one correspondence between MinAs for
dn
i=1Ai v C

in T and immediate MinAs for
∧n
i=1 vAi → vC in GT . Thus, if we can enumerate

all immediate MinAs in GT in output polynomial time, we will be able to enu-
merate also all MinAs in T within the same complexity bound. We now show
how all immediate paths can be computed. For this, we first need to introduce
the notion of a valid ordering on the axioms in a TBox.

Definition 3. Let T be a propositional Horn TBox, and φ =
∧n
i=1 ai → b be

an axiom in T . We denote the left-handside (lhs) of φ with T(φ), and its right-
handside (rhs) with h(φ), i.e., T(φ) := {a1, . . . , an} and h(φ) := b. With h−1(b)
we denote the set of axioms in T whose rhs are b. Let M = {t1, . . . , tm} be a
MinA for

∧
a∈A a → c. We call an ordering t1 < . . . < tm a valid ordering on

M if for every 1 ≤ i ≤ m, T(ti) ⊆ A ∪ {h(t1), . . . , h(ti−1)} holds.5

It is easy to see that for every immediate MinA there is always at least one such
valid ordering. In the following, we use this fact to construct a set of sub-TBoxes
that contain all and only the remaining immediate MinAs, following the ideas
in [18].

Definition 4. Let M be an immediate MinA in GT with |M| = m, and < be
a valid ordering on M. For each 1 ≤ i ≤ m we obtain a TBox Ti from GT
as follows: if ti is an implicit axiom, then Ti = ∅; otherwise, (i) for each j
s.t. i < j ≤ m remove all axioms in h−1(h(tj)) except for tj, i.e., remove all
axioms with the same rhs as tj except for tj itself, (ii) remove ti, and (iii) add
all implicit axioms.

The näıve method for computing one MinA can be easily adapted to the
computation of an immediate MinA in polynomial time by simply considering

5 That is, each variable on the lhs of ti is in A, or it is the rhs of a previous axiom.



Algorithm 2 Enumerating all MinAs for DL−LiteNhorn TBoxes

Procedure all-MinAs(T ,φ) (T a DL−LiteNhorn TBox, φ an axiom s.t. T |= φ)

1: if T 6|= φ then return
2: else
3: M := an immediate MinA in GT
4: I := {t | t is an implicit axiom}
5: output M\ I
6: for 1 ≤ i ≤ |M| do
7: compute Ti from M as in Definition 4
8: all-MinAs(Ti \ I,φ)
9: end for

10: end if

first all non-implicit axioms for removal, and ordering the implicit ones as follows:
if t1 := (≥ q1r) v (≥ q2r), and t2 := (≥ q′1r) v (≥ q′2r) are two implicit
axioms and q1 − q2 < q′1 − q′2, then t1 appears before t2.

Lemma 1. Let M be an immediate MinA for φ in T , and let T1, . . . , Tm be
constructed from T and M as in Definition 4. Then, for every immediate MinA
N for φ in T that is different from M, there exists exactly one i, where 1 ≤
i ≤ m, such that N is a MinA for φ in Ti.

Proof. Let t1 < . . . < tm be a valid ordering on M, and N an immediate MinA
for φ in T such thatN 6=M. Then,M\N 6= ∅. Let tk be the largest non-implicit
axiom in M\N w.r.t. the ordering <. We show that N ⊆ Tk and N 6⊆ Ti for
all i 6= k, 1 ≤ i ≤ m.

Assume there is an axiom t ∈ N s.t. t 6∈ Tk. Since Tk contains all implicit
axioms, t should be one of the non-implicit axioms removed from T either in
step (i) or in step (ii) of Definition 4. It cannot be step (ii) because tk 6∈ N
since tk ∈M\N . Thus, it should be step (i). This implies that there exists a j,
k < j ≤ m, such that tj satisfies h(t) = h(tj). Recall that we chose k to be the
largest axiom in M\N w.r.t. the valid ordering < on M. Then this tj should
be in N . But then N contains two axioms with the rhs h(t), which contradicts
with the fact that N is a MinA, and thus it is minimal. Hence, N ⊆ Tk.

Now take an i s.t. i 6= k. If i > k, then ti ∈ N but ti /∈ Ti, and hence N 6⊆ Ti.
If i < k, then there is an axiom t ∈ N such that h(t) = h(tk) since otherwiseM
and N would not be MinAs. By construction, t /∈ Ti, hence N 6⊆ Ti. ut

Lemma 1 gives an idea of how to compute the remaining MinAs from a given
one in the DL−LiteNhorn setting. Algorithm 2 describes how we can use this
lemma to enumerate all MinAs in a DL−LiteNhorn TBox T by enumerating all
immediate MinAs in GT .

Theorem 2. Algorithm 2 solves mina-enum for DL−LiteNhorn TBoxes with
polynomial delay.



Proof. The algorithm terminates since T is finite. It is sound since its outputs
are MinAs for φ in T . Completeness follows from Lemma 1.

In each recursive call of the algorithm there is one consequence check (line 1),
and one MinA computation (line 3). The consequence check can be done in
polynomial time [1]. One MinA is computed in polynomial time by iterating over
the axioms in T and removing the redundant ones. Thus the algorithm spends
at most polynomial time between each output, i.e., it is polynomial delay. 2

We now modify Algorithm 2 and show that it can also enumerate MinAs in
reverse lexicographic order with polynomial delay. The lexicographic order we
use is defined as follows:

Definition 5. Let the elements of a set S be linearly ordered. This order induces
a linear strict order on P(S), which is called the lexicographic order. We say
that a set R ⊆ S is lexicographically smaller than a set T ⊆ S where R 6= T if
the first element at which they disagree is in R.

The modified algorithm keeps a set of TBoxes in a priority queue Q. These
TBoxes are the “candidates” from which the MinAs are going to be computed.
Each TBox can contain zero or more MinAs. They are inserted into Q by the
algorithm at a cost of O(|T | · log(M)) per insertion, where T is the original
TBox and M is the total number of TBoxes inserted. Note that M can be expo-
nentially bigger than |T | since there can be exponentially many MinAs. That is
the algorithm uses potentially exponential space. The other operation that the
algorithm performs on Q is to find and delete the maximum element of Q. The
maximum element of Q is the TBox in Q that contains the lexicographically
largest MinA among the MinAs contained in all other TBoxes in Q. This opera-
tion can also be performed within O(|T | · log(M)) time bound. Note that given
a T , the lexicographically largest MinA in T can be computed by starting with
the axiom that is the smallest one w.r.t. the linear oder on T , iterating over
the axioms and removing an axiom if the resulting TBox still has the required
consequence. Obviously this operation is in O(|T |). This is why the time bounds
for insertion and deletion depend also on |T | and not only on M .

Theorem 3. Algorithm 3 enumerates all MinAs for a DL−LiteNhorn TBox in
reverse lexicographic order with polynomial delay.

Proof. The algorithm terminates since T is finite. Soundness is shown as fol-
lows: Q contains initially only the original TBox T . Thus the first output is
lexicographically the last MinA in T . By Lemma 1 the MinA that comes just
before the last one is contained in exactly one of the Tis that are computed and
inserted into Q in lines 8 and 9. In line 3 J is assigned the TBox that contains
this MinA. Thus the next output will be the MinA that comes just before the
lexicographically last one. It is not difficult to see that in this way the MinAs
will be enumerated in reverse lexicographic order. By Lemma 1 it is guaranteed
that the algorithm enumerates all MinAs.

In one iteration, the algorithm performs one find operation and one delete
operation onQ, each of which takes time O(n·log(M)), and a MinA computation



Algorithm 3 Enumerating all MinAs in reverse lexicographical order

Procedure all-MinAs-rev-ord(T ,φ) (T a DL−LiteNhorn TBox, φ an ax., T |= φ)

1: Q := {T }
2: while Q 6= ∅ do
3: J := maximum element of Q
4: remove J from Q
5: M := the lexicographical largest MinA in J
6: output M
7: for 1 ≤ i ≤ |M| do
8: compute Ti from M as in Definition 4
9: insert Ti into Q if Ti |= φ

10: end for
11: end while

that takes O(n) time, where n = |T |. In addition it performs at most n Ti
computations, and at most n insertions into Q. Each Ti requires O(n2) time to
be constructed, and each insertion into Q takes O(n · log(M)) time. The total
delay is thus O(2 · (n · log(M)) + n+ n · (n2 + n · log(M))) = O(n3). ut

3.3 MinAs in DL−Litebool TBoxes

The axioms that we have used so far allowed for only basic concepts and their
negations, and we were able to show that in this restricted setting, MinAs are
enumerable with polynomial delay. However, we have not yet explored the com-
plexity of these problems if general concepts are allowed. As shown in [1], de-
ciding whether an axiom follows from a DL−Litebool TBox is already np-hard.
Since computing a MinA is at least as hard as doing a consequence check, we can-
not expect to find a single MinA in polynomial time. This in particular implies
that MinAs cannot be enumerated with polynomial delay in the DL−Litebool
setting. What we can ask next is whether all MinAs are computable in output
polynomial time. In order to answer this, we investigate the decision version of
this problem:

Problem: all-minas
Input: A DL-Lite TBox T and an axiom ϕ such that T |= ϕ, and a set of TBoxes
T ⊆P(T ).
Question: Is T precisely the set of all MinAs for ϕ in T ?

Because if this problem is not solvable in polynomial time, then all MinAs cannot
be computed in output-polynomial time. Due to lack of space, we cannot include
the proof of this claim here. The proof is based on a general argument and can
be found in [21] (Proposition 6). Next we show that all-minas is conp-hard for
DL−Litebool TBoxes.

Lemma 2. all-minas is conp-hard for DL−Litebool TBoxes. This already holds
if the axioms in T are of the form A v C where A is a concept name and C a
general concept.



Proof. We present a reduction from the following conp-hard problem [11, 7].

Problem: all-mv
Input: A monotone Boolean formula φ and a set V of minimal valuations satis-
fying φ.
Question: Is V precisely the set of all minimal valuations satisfying φ?

Let φ,V be an instance of all-mv. We introduce a concept name Ap for each
propositional variable p appearing in φ and two additional concept names A0, A1.
From φ we construct the general concep Cφ by changing each conjunction ∧ to
u, each disjunction ∨ to t and each propositional variable p to ¬Bp.6 Using
these we construct the TBox T := {A1 v ¬Cφ} ∪ {Bp v ¬A0 | p ∈ var(φ)} and
the set of MinAs T := {{A1 v Cφ} ∪ {Bp v ¬A0 | p ∈ V} | V ∈ V }. It is
easy to see that T and T indeed form an instance of all-minas for the axiom
A0 v ¬A1. Furthermore, T is the set of all MinAs for A0 v ¬A1 iff V is the set
of all minimal valuations satisfying φ. ut

The following is an immediate consequence of Lemma 2.

Corollary 1. For DL−Litebool TBoxes all MinAs cannot be computed in output-
polynomial time unless p = np.

4 Concluding Remarks and Future Work

We have investigated the complexity of axiom pinpointing in the DL-Lite family.
We have shown that for DL−LiteHcore, DL−LiteHkrom and DL−LiteNhorn TBoxes
MinAs are efficiently enumerable with polynomial delay, but for DL−Litebool
they cannot be enumerated in output-polynomial time unless p = np. For sim-
plicity we did not consider inverse roles here, although we believe our results
will hold in presence of inverse roles. As future work we are going to investigate
whether this is the case.

Finding explanations for query answering and ABox reasoning has already
been considered in [9, 8]. However, these works investigate computing only one
explanation. As future work we are going to work on the problem of computing
all MinAs for explaining the reasoning problems considered there.

Acknowledgements We are grateful to the anonymous reviewers for pointing
out some problems, which allowed us to clarify difficult ideas and improve the
overall quality of this paper.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. Journal of Artificial Intelligence Research, 36:1–69, 2009.

6 We use the abbreviation X t Y for ¬(¬X u ¬Y ).



2. F. Baader and B. Hollunder. Embedding defaults into terminological representation
systems. Journal of Automated Reasoning, 14:149–180, 1995.

3. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. In Proc. of
TABLEAUX 2007, volume 4548 of LNCS, pages 11–27. Springer-Verlag, 2007.

4. F. Baader and R. Peñaloza. Automata-based axiom pinpointing. In Proc. of the 4th
Int. Joint Conf. on Automated Reasoning, (IJCAR 2008), volume 5195 of LNCS,
pages 226–241. Springer-Verlag, 2008.

5. F. Baader and R. Peñaloza. Automata-based axiom pinpointing. Journal of Au-
tomated Reasoning, 2009. To appear.

6. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 2010. To appear.

7. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description
logic EL+. In Proc. of the 30th German Conf. on Artificial Intelligence (KI2007),
volume 4667 of LNAI, pages 52–67. Springer-Verlag, 2007.

8. A. Borgida, D. Calvanese, and M. Rodriguez-Muro. Explanation in DL-Lite. In
Proc. of the 2008 Int. Workshop on Description Logics (DL 2008), volume 353 of
CEUR-WS, 2008.

9. A. Borgida, D. Calvanese, and M. Rodriguez-Muro. Explanation in the DL-
Lite family of Description Logics. In Proc. of the 7th Int. Conf. on Ontologies,
DataBases, and Applications of Semantics (ODBASE 2008), volume 5332 of LNCS,
pages 1440–1457. Springer-Verlag, 2008.

10. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable Description Logics for ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

11. T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. Technical Report CD-TR 91/16, TU Vienna, 1991.

12. T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone dual-
ization: A brief survey. Discrete Applied Mathematics, 156(11):2035–2049, 2008.

13. M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in OWL.
In Proc. of the 7th Int. Semantic Web Conf., (ISWC 2008), volume 5318 of LNCS,
pages 323–338. Springer-Verlag, 2008.

14. M. Horridge, B. Parsia, and U. Sattler. Explaining inconsistencies in OWL ontolo-
gies. In Proc. of the Third Int. Conf. on Scalable Uncertainty Management, (SUM
2009), volume 5785 of LNCS, pages 124–137. Springer-Verlag, 2009.

15. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maxi-
mal independent sets. Information Processing Letters, 27(3):119–123, 1988.

16. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In Proc. of the 6th Int. Semantic Web Conf., 2nd Asian
Semantic Web Conf., (ISWC 2007 + ASWC 2007), volume 4825 of LNCS, pages
267–280. Springer-Verlag, 2007.

17. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable ter-
minologies for the description logic ALC. In Proc. of the 21st Natonal Conf. on
Artificial Intelligence (AAAI 2006), pages 269–274. AAAI Press/The MIT Press,
2006.

18. L. A. Nielsen, K. A. Andersen, and D. Pretolani. Finding the K shortest hyper-
paths. Computers and Operations Research, 32(6):1477-1497, 2005.

19. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In Proc. of the
14th international conference on World Wide Web (WWW 2005), pages 633–640.
ACM, 2005.

20. R. Peñaloza and B. Sertkaya. Axiom pinpointing is hard. In Proc. of the 2009 Int.
Workshop on Description Logics (DL2009), volume 477 of CEUR-WS, 2009.



21. R. Peñaloza and B. Sertkaya. On the complexity of axiom pinpointing in Descrip-
tion Logics. LTCS-Report LTCS-09-04, Chair for Automata Theory, Institute for
Theoretical Computer Science, Dresden University of Technology, Germany, 2009.
See http://lat.inf.tu-dresden.de/research/reports.html.

22. R. Peñaloza and B. Sertkaya. On the complexity of axiom pinpointing in the EL
Family of Description Logics. In Proc. of the Twelfth Int. Conf. on Principles and
Knowledge Representation and Reasoning (KR-10). Morgan Kaufmann, 2010. To
appear.

23. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

24. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In Proc. of the Eighteenth Int. Joint Conf. on
Artificial Intelligence (IJCAI’03), pages 355–362. Morgan Kaufmann, 2003.

25. J. Y. Yen. Finding K shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.


