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1 Introduction

In Description Logics the inferencemost specific concept(msc) constructs a concept de-
scription that generalizes an individual into a concept description. For the Description
Logic EL the msc needs not exist [1], if computed with respect to general EL-TBoxes.
However, it is still possible to find a concept description that is the msc up to a fixed
role-depth. In this paper we present a practical approach for computing the role-depth
bounded msc, based on the polynomial-time completion algorithm for EL. We extend
this method to a simple probabilistic variant ofEL that can express subjective probabil-
ities and that was recently introduced in [6]. The probabilistic DL that we use, called
Prob-EL01

c , allows only a fairly limited use of uncertainty. More precisely, it is only pos-
sible to express that a conceptmayhold (P>0C), or that it holdsalmost surely(P=1C).
Despite its limited expressivity, this logic is interesting due to its nice algorithmic prop-
erties; as shown in [6], subsumption can be decided in polynomial time and instance
checking can be performed in polynomial time as well.

Many practical applications that need to represent probabilistic information, such as
medical applications or context-aware applications, needto characterize that observa-
tions only hold with certain probability. Furthermore, these applications face the prob-
lem that information from different sources does not coincide or that different diagnoses
yield differing results. These applications need to “integrate” differing observations for
the same state of affairs. A way to determine what the different information sources
agree upon is to represent this information as ABox individuals and to find a common
generalization of these individuals. A description of sucha generalization of a group
of ABox individuals can be obtained by applying the so-called bottom-up approachfor
constructing knowledge bases [4]. In this approach a set of individuals is generalized
into a single concept description by first generating the mscof each concept and then
apply the least common subsumer (lcs) to the set of obtained concept descriptions to
extract their commonalities.

The second step, i.e., a computation procedure for the approximative lcs has been
investigated forEL and Prob-EL01

c in [8]. In this paper we present a similar procedure
for the msc. We devise a practical algorithm for computing the msc up to a certain
role-depth forEL and Prob-EL01

c . The so-calledk-msc obtained by the algorithm is
still a generalization of the input, but not necessarily theleast one – in this sense it
is only an approximation of the msc. Moreover, our algorithms are based upon the
completion algorithms forEL and Prob-EL01

c and thus can be easily implemented on
top of reasoners of these DLs. Due to space limitations the proofs can be found in [7].



2 EL and Prob-EL

We introduce the DLEL and its probabilistic variant Prob-EL01

c . LetNI , NC andNR be
disjoint sets ofindividual-, concept-androle names, respectively.Prob-EL01

c -concept
descriptionsare built using the syntax rule

C ::= ⊤ | A | C ⊓ D | ∃r.C | P>0C | P=1C,

whereA ∈ NC , andr ∈ NR. EL-concept descriptions are Prob-EL01

c -concept descrip-
tion that do not contain the constructorsP>0 or P=1.

A knowledge baseK = (T ,A) consists of a TBoxT and an ABoxA. An EL- (Prob-
EL01

c -)TBox is a finite set ofconcept inclusions(CIs) of the formC ⊑ D, whereC, D
areEL- (Prob-EL01

c -)concept descriptions. AnEL-ABox is a set of assertions of the
form C(a), r(a, b), whereC is anEL-concept description,r ∈ NR, anda, b ∈ NI . A
Prob-EL01

c -ABox is a set of assertions of the formC(a), r(a, b), P>0r(a, b), P=1r(a, b),
whereC is a Prob-EL01

c -concept description,r ∈ NR, anda, b ∈ NI .
The semantics ofEL is defined by means of interpretationsI = (∆I , ·I) consisting

of a non-emptydomain∆I and aninterpretation function·I that assigns binary rela-
tions on∆I to role names, subsets of∆I to concepts and elements of∆I to individual
names. For a more detailed description of this semantics, see [3].

An interpretationI satisfiesa concept inclusionC ⊑ D, denoted asI |= C ⊑ D if
CI ⊆ DI ; it satisfiesan assertionC(a) (r(a, b)), denoted asI |= C(a) (I |= r(a, b))
if aI ∈ CI ((aI , bI) ∈ rI ). It is amodelof a knowledge baseK = (T ,A) if it satisfies
all CIs inT and all assertions inA.

The semantics of Prob-EL01

c generalizes the semantics ofEL. A probabilistic inter-
pretationis of the form

I = (∆I , W, (Iw)w∈W , µ),

where∆I is the (non-empty)domain, W is a set ofworlds, µ is a discrete probability
distribution onW , and for each worldw ∈ W , Iw is a classicalEL interpretation with
domain∆I , whereaIw = aI

w′ for all a ∈ NI , w, w′ ∈ W . The probability that a given
element of the domaind ∈ ∆I belongs to the interpretation of a concept nameA is

pId (A) := µ({w ∈ W | d ∈ AIw}).

The functionsIw andpId are extended to complex concepts in the usual way for the
classicalEL constructors, where the extension to the new constructorsP∗ is defined as

(P>0C)Iw := {d ∈ ∆I | pId (C) > 0}, (P=1C)Iw := {d ∈ ∆I | pId (C) = 1}.

A probabilistic interpretationI satisfiesa concept inclusionC ⊑ D, denoted asI |=
C ⊑ D if for every w ∈ W it holds thatCIw ⊆ DIw . It is a modelof a TBoxT if
it satisfies all concept inclusions inT . Let C, D be two Prob-EL01

c concepts andT a
TBox. We say thatC is subsumedby D w.r.t. T (C ⊑T D) if for every modelI of
T it holds thatI |= C ⊑ D. The probabilistic interpretationI satisfiesthe assertion
P>0r(a, b) if µ({w ∈ W | Iw |= r(a, b)}) > 0, and analogously forP=1r(a, b). I
satisfiesthe ABoxA if there is aw ∈ W such thatIw |= A.



Finally, an individuala ∈ NI is an instanceof a concept descriptionC w.r.t. K
(K |= C(a)) if I |= C(a) for all modelsI of K. TheABox realization problemis to
compute for each individuala in A the set of named concepts fromK that havea as an
instance and that are least (w.r.t.⊑). In this paper we are interested in computing most
specific concepts.

Definition 1 (most specific concept).LetL be a DL,K = (T , A) be aL-KB. Themost
specific concept(msc) of an individuala fromA is theL-concept descriptionC s. t.

1. K |= C(a), and
2. for eachL-concept descriptionD holds:K |= D(a) impliesC ⊑T D.

The msc depends on the DL in use. For the DLs with conjunction as concept constructor
the msc is, if it exists, unique up to equivalence. Thus it is justified to speak ofthemsc.

3 Completion-based Instance Checking Algorithms

Now we briefly sketch the completion algorithms for instancechecking inEL [2] and
Prob-EL01

c [6].

3.1 Completion Algorithms for EL

Assume we want to test for anEL-KB K = (T ,A) whetherK |= D(a) holds. The
completion algorithm first augments the knowledge base by introducing a concept name
for the complex concept descriptionD from the instance check, i.e., it setsK = (T ∪
{Aq ≡ D},A), whereAq is a new concept name not appearing inK. The instance
checking algorithm forEL works on normalized knowledge bases. The normalization
is done in two steps: first the ABox is transformed into a simple ABox. An ABox is a
simple ABox, if it only contains concept names in concept assertions. AnEL-ABox A
can be transformed into a simple ABox by first replacing each complex assertionC(A)
in A by A(a) with a fresh nameA and, second, introduceA ≡ C in the TBox.

After this step the TBox is normalized. For a concept description C let CN(C)
denote the set of all concept names andRN(C) denote the set of all role names that
appear inC. Thesignature of a concept descriptionC (denotedsig(C)) is CN(C) ∪
RN(C). Similarly, the set of concept (role) names that appear in a TBox are denoted
by CN(T ) (RN(T )). Thesignature of a TBoxT (denotedsig(T )) is CN(T ) ∪ RN(T ).
The signature of an ABoxA (denotedsig(A)) is the set of concept (role / individual)
namesCN(A) (RN(A)/IN(A) resp.) that appear inA. The signature of a KBK = (T ,
A) (denotedsig(K)) is sig(T ) ∪ sig(A).

Now, anEL-TBox T is in normal formif all concept axioms have one of the fol-
lowing forms, whereC1, C2 ∈ sig(T ) andD ∈ sig(T ) ∪ {⊥}:

C1 ⊑ D, C1 ⊓ C2 ⊑ D, C1 ⊑ ∃r.C2 or ∃r.C1 ⊑ D.

Any EL-TBox can be transformed into normal form by introducing newconcept names
and by applying the normalization rules displayed in Figure1 exhaustively. These rules
replace the GCI on the left-hand side of the rules with the setof GCIs on the right-hand



NF1 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A, C ⊓ A ⊑ E }

NF2 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A,∃r.A ⊑ D }

NF3 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A,A ⊑ D̂ }

NF4 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A, A ⊑ Ĉ }

NF5 B ⊑ C ⊓ D −→ { B ⊑ C, B ⊑ D }

whereĈ, D̂ 6∈ BCT andA is a new concept name.

Fig. 1.EL normalization rules (from [2])

side. Clearly, for a KBK = (T ,A) the signature ofA may be changed only during the
first of the two normalization steps and the signature ofT may be extended during both
of them. The normalization of the KB can be done in linear time.

The completion algorithm for instance checking is based on the one for classifying
EL-TBoxes introduced in [2]. The completion algorithm constructs a representation of
the minimal model ofK. Let K =(T , A) be a normalizedEL-KB, i.e., with a simple
ABox A and a TBoxT in normal form. The completion algorithm works on four kinds
of completion sets: S(a), S(a, r), S(C) andS(C, r) for eacha ∈ IN(A), C ∈ CN(K)
andr ∈ RN(K). The completion sets contain concept names fromCN(K). Intuitively,
the completion rules make implicit subsumption and instance relationships explicit in
the following sense:

– D ∈ S(C) implies thatC ⊑T D,
– D ∈ S(C, r) implies thatC ⊑T ∃r.D.
– D ∈ S(a) implies thata is an instance ofD w.r.t.K,
– D ∈ S(a, r) implies thata is an instance of∃r.D w.r.t.K.

SK denotes the set of all completion sets of a normalizedK. The completion sets are
initialized for eacha ∈ IN(A) and eachC ∈ CN(K) as follows:

– S(C) := {C,⊤} for eachC ∈ CN(K),
– S(C, r) := ∅ for eachr ∈ RN(K),
– S(a) := {C ∈ CN(A) | C(a) appears inA} ∪ {⊤}, and
– S(a, r) := {b ∈ IN(A) | r(a, b) appears inA} for eachr ∈ RN(K).

Then these sets are extended by applying the completion rules shown in Figure 2 until
no more rule applies. In these rulesX andY can refer to concept or individual names,
while C, C1, C2 andD are concept names andr is a role name. After the completion
has terminated, the following relations hold between an individuala, a roler and named
conceptsA andB:

– subsumption relation betweenA andB fromK holds iff B ∈ S(A)
– instance relation betweena andB fromK holds iff B ∈ S(a),

which has been shown in [2]. To decide the initial query:K |= D(a), one has to test
now, whetherAq appears inS(a). In fact, instance queries for all individuals and all
named concepts from the KB can be answered now; the completion algorithm does
not only perform one instance check, but complete ABox realization. The completion
algorithm runs in polynomial time in size of the knowledge base.



CR1 If C ∈ S(X), C ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR2 If C1, C2 ∈ S(X), C1 ⊓ C2 ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR3 If C ∈ S(X), C ⊑ ∃r.D ∈ T , andD 6∈ S(X, r)
thenS(X, r) := S(X, r) ∪ {D}

CR4 If Y ∈ S(X, r), C ∈ S(Y ), ∃r.C ⊑ D ∈ T , and
D 6∈ S(X) thenS(X) := S(X) ∪ {D}

Fig. 2.EL completion rules

3.2 Completion Algorithms for Prob-EL

To describe the completion algorithm for Prob-EL, we need the notion of basic con-
cepts. The setBCT of Prob-EL01

c basic conceptsfor a KB K is the smallest set that
contains (1)⊤, (2) all concept names used inK, and (3) all concepts of the formP∗A,
whereA is a concept name inK. A Prob-EL01

c -TBox T is in normal form if all its
axioms are of one of the following forms

C ⊑ D, C1 ⊓ C2 ⊑ D, C ⊑ ∃r.A, ∃r.A ⊑ D,

whereC, C1, C2, D ∈ BCT andA is a concept name. The normalization rules in Fig-
ure 1 can also be used to transform a Prob-EL01

c -TBox into this extended notion of nor-
mal form. We further assume that for all assertionsC(a) in the ABoxA, C is a concept
name. We denote asPT

0
, PT

1
andRT

0
the set of all concepts of the formP>0A, P=1A,

andP>0r(a, b) respectively, occurring in a normalized knowledge baseK.
The completion algorithm for Prob-EL01

c follows the same idea as the algorithm
for EL, but uses several completion sets to deal with the information of what needs
to be satisfied in the different worlds of a model. We define theset of worldsV :=
{0, ε, 1} ∪ PT

0
∪ RT

0
, where the probability distributionµ assigns a probability of0

to the world0, and the uniform probability1/(|V | − 1) to all other worlds. For each
individual namea, concept nameA, role namer and worldv, we store the completion
setsS0(A, v), Sε(A, v), S0(A, r, v), Sε(A, r, v), S(a, v), andS(a, r, v).

The algorithm initializes the sets as follows for everyA ∈ BCT , r ∈ RN(K), and
a ∈ IN(A):

– S0(A, 0) = {⊤, A} andS0(A, v) = {⊤} for all v ∈ V \ {0},
– Sε(A, ε) = {⊤, A} andSε(A, v) = {⊤} for all v ∈ V \ {ε},
– S(a, 0) = {⊤} ∪ {A | A(a) ∈ A}, S(a, v) = {⊤} for all v 6= 0,
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V , S(a, r, v) = ∅ for v 6= 0,
– S(a, r, 0) = {b ∈ IN(A) | r(a, b) ∈ A}.

These sets are then extended by exhaustively applying the rules shown in Figure 3,
whereX ranges overBCT ∪ IN(A), S∗(X, v) stands forS(X, v) if X is an individual
and forS0(X, v), Sε(X, v) if X ∈ BCT , andγ : V → {0, ε} is defined byγ(0) = 0,
andγ(v) = ε for all v ∈ V \ {0}.



PR1 If C′ ∈ S∗(X, v), C′ ⊑ D ∈ T , andD 6∈ S∗(X, v)
thenS∗(X, v) := S∗(X, v) ∪ {D}

PR2 If C1, C2 ∈ S∗(X, v), C1 ⊓ C2 ⊑ D ∈ T , andD 6∈ S∗(X, v)
thenS∗(X, v) := S∗(X, v) ∪ {D}

PR3 If C′ ∈ S∗(X, v), C′ ⊑ ∃r.D ∈ T , andD /∈ S∗(X, r, v)
thenS∗(X, r, v) := S∗(X, r, v) ∪ {D}

PR4 If D ∈ S∗(X, r, v), D′ ∈ Sγ(v)(D, γ(v)), ∃r.D′ ⊑ E ∈ T ,
andE /∈ S∗(X, v) thenS∗(X, v) := S∗(X, v) ∪ {E}

PR5 If P>0A ∈ S∗(X, v), andA /∈ S∗(X, P>0A)
thenS∗(X, P>0A) := S∗(X, P>0A) ∪ {A}

PR6 If P=1A ∈ S∗(X, v), v 6= 0, andA /∈ S∗(X, v)
thenS∗(X, v) := S∗(X, v) ∪ {A}

PR7 If A ∈ S∗(X, v), v 6= 0, P>0A ∈ PT
0 , andP>0A /∈ S∗(X, v′)

thenS∗(X, v′) := S∗(X, v′) ∪ {P>0A}

PR8 If A ∈ S∗(X, 1), P=1A ∈ PT
1 , andP=1A /∈ S∗(X, v)

thenS∗(X, v) := S∗(X, v) ∪ {P=1A}

PR9 If r(a, b) ∈ A, C ∈ S(b, 0),∃r.C ⊑ D ∈ T ,
andD 6∈ S(a, 0) thenS(a, 0) := S(a, 0) ∪ {D}

PR10 If P>0r(a, b) ∈ A, C ∈ S(b, P>0r(a, b)),∃r.C ⊑ D ∈ T ,
andD 6∈ S(a, P>0r(a, b))
thenS(a, P>0r(a, b)) := S(a,P>0r(a, b)) ∪ {D}

PR11 If P=1r(a, b) ∈ A, C ∈ S(b, v) with v 6= 0, ∃r.C ⊑ D ∈ T
andD 6∈ S(a, v) thenS(a, v) := S(a, v) ∪ {D}

Fig. 3.Prob-EL01
c completion rules

This algorithm terminates in polynomial time. After termination, the completion
sets store all the information necessary to decide subsumption of concept names, as
well as checking whether an individual is an instance of a given concept name [6]. For
the former decision, it holds that for every pairA, B of concept names:B ∈ S0(A, 0)
iff A ⊑K B. In the case of instance checking, we have thatK |= A(a) iff A ∈ S(a, 0).

4 Computing thek-MSC using Completion

The msc was first investigated forEL-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [5]. It was shown that the msc does not need to exists for
cyclic ABoxes. Consider the ABoxA = {r(a, a), C(a)}. The msc ofa is then

C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ · · ·

and cannot be expressed by a finite concept description. For cyclic TBoxes it has been
shown in [1] that the msc does not need to exists even if the ABox is acyclic.



To avoid infinite nestings in presence of cyclic ABoxes it wasproposed in [5] to
limit the role-depth of the concept description to be computed. This limitation yields an
approximation of the msc, which is still a concept description with the input individual
as an instance, but it does not need to be the least one (w.r.t.⊑) with this property. We
follow this idea to compute approximative msc also in presence of general TBoxes.

Therole-depthof a concept descriptionC (denotedrd(C)) is the maximal number
of nested quantifiers ofC. Now we can define the msc with limited role-depth forEL.

Definition 2 (role-depth boundedEL-msc).LetK =(T ,A) be anEL-KB anda an in-
dividual inA andk ∈ IN. Then theEL-concept descriptionC is therole-depth bounded
EL-most specific conceptof a w.r.t.K and role-depthk (writtenk-mscK(a)) iff

1. rd(C) ≤ k,
2. K |= C(a), and
3. for all EL-concept descriptionsE with rd(E) ≤ k holds: K |= E(a) implies

C ⊑T E.

Please note that in case the exact msc has a role-depth less thank the role-depth bounded
msc is the exact msc.

4.1 Computing thek-msc in EL by completion

The computation of the msc relies on a characterization of the instance relation. While
in earlier works this was given by homomorphism [5] or simulations [1] between graph
representations of the knowledge base and the concept in question, we use the comple-
tion algorithm as such a characterization. Furthermore, weconstruct the msc by travers-
ing the completion sets to “collect” the msc. More precisely, the set of completion sets
encodes a graph structure, where the setsS(X) are the nodes and the setsS(X, r) en-
code the edges. Traversing this graph structure, one can construct anEL-concept. To
obtain a finite concept in the presence of cyclic ABoxes or TBoxes one has to limit the
role-depth of the concept to be obtained.

Definition 3 (traversal concept).LetK be anEL-KB,K′′ be its normalized form,SK

the completion set obtained fromK andk ∈ IN. Then thetraversal concept of a named
conceptA (denotedk-CSK

(A)) with sig(A) ⊆ sig(K′′) is the concept obtained from
executing the procedure calltraversal-concept-c(A, SK, k) shown in Algorithm 1.

Thetraversal concept of an individuala (denotedk-CSK
(a)) with a ⊆ sig(K) is the

concept description obtained from executing the procedurecall traversal-concept-i(a,
SK, k) shown in Algorithm 1.

The idea is that the traversal concept of an individual yields its msc. However, the
traversal concept contains names fromsig(K′′) \ sig(K), i.e., concept names that were
introduced during normalization – we call this kind of concept namesnormalization
namesin the following. The returned msc should be formulated w.r.t. the signature of
the original KB, thus the normalization names need to be removed or replaced.



Algorithm 1 Computation of a role-depth boundedEL-msc.

Procedurek-msc (a,K, k)
Input: a: individual fromK; K =(T , A) anEL-KB; k ∈ IN
Output: role-depth boundedEL-msc ofa w.r.t.K andk.

1: (T ′, A′) := simplify-ABox(T , A)
2: K′′ := (normalize(T ′), A′)
3: SK := apply-completion-rules(K)
4: return Remove-normalization-names ( traversal-concept-i(a, SK, k))

Proceduretraversal-concept-i (a, S, k)
Input: a: individual name fromK; S: set of completion sets;k ∈ IN
Output: role-depth traversal concept (w.r.t.K) andk.

1: if k = 0 then return
d

A ∈ S(a) A

2: else return
d

A ∈ S(a) A ⊓d
r∈RN(K′′)

d

A ∈ CN(K′′)∩S(a,r)

∃r. traversal-concept-c (A,S, k − 1) ⊓

d
r∈RN(K′′)

d

b ∈ IN(K′′)∩S(a,r)

∃r. traversal-concept-i (b, S, k − 1)

3: end if

Proceduretraversal-concept-c (A, S, k)
Input: A: concept name fromK′′; S: set of completion sets;k ∈ IN
Output: role-depth bounded traversal concept.

1: if k = 0 then return
d

B∈S(A) B

2: else return
d

B∈S(A)

B ⊓
d

r∈RN(K′′)

d
B∈S(A,r)

∃r.traversal-concept-c (B,S, k − 1)

3: end if

Lemma 1. LetK be anEL-KB,K′′ its normalized version,SK be the set of completion
sets obtained forK, k ∈ IN a natural number anda ∈ IN(K). Furthermore letC = k-
CSK

(a) andĈ be obtained fromC by removing the normalization names. Then

K′′ |= C(a) iff K |= Ĉ(a).

This lemma guarantees that removing the normalization names from the traversal con-
cept preserves the instance relationships. Intuitively, this lemma holds since the con-
struction of the traversal concept conjoins exhaustively all named subsumers and all
subsuming existential restrictions to a normalization name up to the role-depth bound.
Thus removing the normalization name does not change the extension of the conjunc-
tion. The proof can be found in [7]. We are now ready to devise acomputation algorithm
for the role-depth bounded msc: procedurek-msc as displayed in Algorithm 1.

The procedurek-msc has an individuala from a knowledge baseK, the knowledge
baseK itself and numberk for the role depth-bound as parameter. It first performs the
two normalization steps onK, then applies the completion rules from Figure 2 to the
normalized KBK′′ and stores the set of completion sets inSK. Afterwards it computes
the traversal-concept ofa from SK w.r.t. role-depth boundk. In a post-processing step
it appliesRemove-normalization-names to the traversal concept.



Obviously, the concept description returned from the procedurek-msc has a role-
depth less or equal tok. Thus the first condition of Definition 2 is fulfilled. We prove
next that the concept description obtained fromk-msc fulfills the second condition from
Definition 2.

Lemma 2. Let K = (T ,A) be anEL-KB anda an individual inA and k ∈ IN. If
C = k-msc(a,K, k), thenK |= C(a).

The claim can be shown by induction onk. Each name inC is from a completion set of
(1) an individual or (2) a concept, which is connected via existential restrictions to an
individual. The full proof can be found in [7].

Lemma 3. Let K = (T ,A) be anEL-KB anda an individual inA and k ∈ IN. If
C = k-msc(a,K, k), then for allEL-concept descriptionsE with rd(E) ≤ k holds:
K |= E(a) impliesC ⊑T E.

Again, the full proof can be found in [7]. The two lemmas yieldthe correctness of the
overall procedure.

Theorem 1. LetK = (T ,A) be anEL-KB anda an individual inA andk ∈ IN.
Thenk-msc(a,K, k) ≡ k-mscK(a).

Thek-msc can grow exponential in the size of the knowledge base.

4.2 Most specific concept in Prob-EL
01

c

In order to compute the msc, we simply accumulate all concepts to which the individual
a belongs, given the information in the completion sets. Thisprocess needs to be done
recursively in order to account for both, the successors ofa explicitly encoded in the
ABox, and the nesting of existential restrictions masked bynormalization names. In the
following we use the abbreviationS>0(a, r) :=

⋃
v∈V \{0} S(a, r, v). We then define

traversal-concept-i(a, S, k) as
l

B∈S(a,0)

B ⊓
l

r∈RN(K′′)

`

l

r(a,b)∈K′′

∃r.traversal-concept-i(b, S, k − 1) ⊓

l

B∈CN(K′′)∩S(a,r,0)

∃r.traversal-concept-c(B, S, k − 1) ⊓

l

B∈CN(K′′)∩S(a,r,1)

P=1(∃r.traversal-concept-c(B, S, k − 1)) ⊓

l

B∈CN(K′′)∩S>0(a,r)

P>0(∃r.traversal-concept-c(B, S, k − 1))
´

,

wheretraversal-concept-c(B, S, k + 1) is
l

C∈S0(B,0)

B ⊓
l

r∈RN

`

l

C∈S0(B,r,0)

∃r.traversal-concept-c(C, S, k) ⊓

l

C∈S0(B,r,1)

P=1(∃r.traversal-concept-c(C, S, k)) ⊓

l

C∈S>0

0
(B,r)

P>0(∃r.traversal-concept-c(C, S, k))
´



and traversal-concept-c(B, S, 0) =
d

C∈S0(B,0) B. Once the traversal concept has been
computed, it is possible to remove all normalization names preserving the instance re-
lation, which gives us the msc in the original signature ofK. The proof can be found
in [7].

Theorem 2. Let K a Prob-EL01

c -knowledge base,a ∈ IN(A), and k ∈ IN; then
Remove-normalization-names(traversal-concept-i(a, S, k)) ≡ k-mscK(a).

5 Conclusions

In this paper we have presented a practical method for computing the role-depth bounded
msc ofEL concepts w.r.t. a general TBox. Our approach is based on the completion sets
that are computed during realization of a KB. Thus, any of theavailable implementa-
tions of theEL completion algorithm can be easily extended to an implementation of
the (approximative) msc computation algorithm. We also showed that the same idea can
be adapted for the computation of the msc in the probabilistic DL Prob-EL01

c .
Together with the completion-based computation of role-depth limited (least) com-

mon subsumers given in [8] these results complete the bottom-up approach for general
EL- and Prob-EL01

c -KBs. This approach yields a practical method to compute common-
alities for differing observations regarding individuals. To the best of our knowledge this
has not been investigated for DLs that can express uncertainty.
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