
Using Sums-of-Products for Non-standard

Reasoning

Rafael Peñaloza

Theoretical Computer Science
TU Dresden, Germany

penaloza@tcs.inf.tu-dresden.de

Abstract. An important portion of the current research in Descrip-
tion Logics is devoted to the expansion of the reasoning services and
the developement of algorithms that can adequatedly perform so-called
non-standard reasoning. Applications of non-standard reasoning services
cover a wide selection of areas such as access control, agent negotiation,
or uncertainty reasoning, to name just a few. In this paper we show that
some of these non-standard inferences can be seen as the computation of
a sum of products, where “sum” and “product” are the two operators of a
bimonoid. We then show how the main ideas of automata-based axiom-
pinpointing, combined with weighted model counting, yield a generic
method for computing sums-of-products over arbitrary bimonoids.

1 Introduction

Description Logics (DL) [1] is a family of logic-based knowledge representation
formalisms, which are employed in various application domains, like natural lan-
guage processing, configuration, databases, and bio-medical ontologies. One of its
most notable successes so far is the adoption of the DL-based language OWL [2]
as the standard ontology language for the semantic web. For years, the main
interest in the area revolved around the tradeoff between expressivity and the
complexity of reasoning. Highly optimized DL reasoning systems have been de-
veloped [3–8], which can perform standard reasoning (i. e. deciding satisfiability,
or subsumption between concepts) within short time bounds, even for realistic
applications, where representation requires a very large number of axioms. Al-
though these systems are still being optimized and improved, researchers are
slowly turning their attention to the definition and solution of new reasoning
problems. Some of these problems, like axiom-pinpointing [9, 10], refer to the
extraction of more information from an unmodified knowledge base; in the case
of axiom pinpointing, the goal is to detect the reason why a consequence follows.
Other problems are defined by extending the expressivity of the knowledge base,
not by adding new constructors, but rather by giving extended semantics to the
axioms. As an example, consider the blend of uncertainty reasoning and DL [11,
12], where axioms are apended with a degree of uncertainty.

In this paper we show that some of these new inference problems can be seen
as instances of the more general SumProd problem, which consists on comput-
ing sums of products of values attached to axioms, based on the sub-ontologies

2 R. Peñaloza

Syntax Semantics

C [D CI XDI

C \D CI YDI C ∆IzCIDr.C tx P ∆I | Dy P ∆I : px, yq P rI ^ y P CIu�r.C tx P ∆I | �y P ∆I : px, yq P rI ñ y P CIu
A

.� C AI � CI

C � D CI � DI

Table 1. Syntax and semantics of ALC.

from which a consequence follows. In the following section we introduce some
basic notions of DL and general inference relations. We then define the SumProd
problem and four of its instances that have been recently studied independently.
Finally, we use the ideas of automata-based axiom pinpointing to show a re-
duction from the SumProd problem to weighted model counting, for which very
efficient implementations exist [13]. Due to lack of space, we leave some of the
proofs out of this paper.

2 Description Logics and Inference Relations

The common feature of all description logics is the use of concepts, that in-
tuitively describe properties of the individuals of the domain, and roles that
express relations between pairs of individuals. Complex concept terms are in-
ductively defined with the help of a set of constructors, starting from a set NC

of concept names and a set NR of role names. What distinguishes one DL from
another is the set of constructors used to build concept terms. The most basic
constructors are the Boolean ones: conjunction [, disjunction \, and negation , and the existential- (D) and value-restrictions (�), whose syntax is shown in
the first column of Table 1. The DL that uses only this constructors is called
ALC [14].

We consider two kinds of axioms: concept definitions of the form A
.� C,

with A P NC and C a concept term, and general concept inclusions (GCIs)
C � D, where C,D are concept terms. An acyclic TBox is a finite set of concept
definitions such that every concept name occurs at most once as a left-hand side,
and there is no cyclic dependency between the definitions. A general TBox is an
acyclic TBox extended with a finite set of GCIs. We will refer in general to a
TBox whenever it is not relevant whether it is an acyclic or a general TBox.

The semantics of ALC is defined in terms of interpretations I � p∆I , �Iq,
where the domain ∆I is a non-empty set of individuals, and the interpretation
function �I maps each concept name A P NC to a subset AI of ∆I and each role
name r P NR to a binary relation rI on ∆I . The mapping �I can be extended to
arbitrary concept terms as shown in the second column of Table 1. An interpre-
tation I is a model of a TBox T (denoted I |ù T) if, for every axiom in T the
conditions on the semantics column of Table 1 are satisfied.

Using Sums-of-Products for Non-standard Reasoning 3

One of the main decision problems in DL is concept subsumption:1

Definition 1. Let C,D be two concepts and T a TBox. We say that C is sub-
sumed by D w.r.t. T (denoted as C �T D) if, for every model I of T , it holds
that CI � DI . We say that C is satisfiable w.r.t. T (T |ù C) if C �T K, whereK represents any contradictory concept.

Following [15, 16], we will introduce the SumProd problem not for a specific
logic and inference problem, but rather in a more general setting. The type of
inference problems that we will consider is deciding whether a so-called inference
relation holds. To obtain an intuitive understanding of the following definition,
just assume that consequences are ALC concept terms, admissible sets of axioms
are ALC TBoxes, and the inference relation is unsatisfiablility.

Definition 2. Let I and T be (possibly infinite) sets of consequences and ax-
ioms, respectively, and let PadmispTq � PfinpTq be a set of finite subsets of T

such that T PPadmispTq implies T 1 PPadmispTq for all T 1 � T .
A relation $ between PadmispTq and I is an inference relation if for every

T P PadmispTq, α P T, T $ α implies T 1 $ α for all T 1 P PadmispTq with
T 1 � T .

The reason why we have introduced the set PadmispTq of admissible subsets
of T (rather than taking all finite subsets of T) is to allow us to impose additional
restrictions on the sets of axioms that must be considered. For instance, acyclic
TBoxes are not arbitrary finite sets of concept definitions: in addition, we require
that there is no cyclic dependency between axioms, and that every concept name
appears at most once as a left-hand side. Clearly, these restrictions satisfy our
requirement for admissible sets of axioms. For the rest of this work, we will often
call an admissible set of axioms an ontology.

The problem of unsatisfiability of ALC concepts w.r.t. TBoxes is an inference
relation. More formally, let I be all ALC concepts, T all GCIs and concept
definitions, and PadmispTq all TBoxes. The following is an inference relation:$� tpT , Cq | C is unsatisfiable w.r.t. T u.
3 The SumProd Problem

For the SumProd problem we consider that every axiom in an ontology is anno-
tated with a value. These values can be extended to sets of axioms by computing
the product of the values of axioms in the set. The SumProd problem consists
then on computing the sum of the values of all subontologies from which a con-
sequence follows. The specific instances of this problem are characterised by the
choice of operators for the sum and the product. To stay as general as possible,
we simply assume that there is a bimonoid pM,`,b,0,1q, where ` is the “sum”,
with neutral element 0, and b is the “product”, whose neutral element is 1.

1 For the rest of this paper, we will often refer to concept terms simply as concepts.

4 R. Peñaloza

Definition 3. Let pM,`,b,0,1q be a bimonoid, T an ontology, α a conse-
quence with T $ α, and labM : T Ñ M . The SumProd problem is the task of
computing

SPpT , α, labM q :� à
S�T ,S$αâtPS labM ptq.

We now present some instances of this problem that have received some
attention from research communities in recent years.

3.1 Pinpointing Formula

Suppose that we have a consequence α that follows from an ontology T . The
pinpointing formula is a monotone Boolean formula that describes all the subsets
of T from wich a consequence α still follows. More formally, let labB be a mapping
that assigns to each axiom t in T a unique propositional variable. A monotone
Boolean formula φ is called a pinpointing formula for T , α if for every S � T it
holds: S $ α iff

�
tPS labBptq |ù φ.2

It is easy to see that if we consider as bimonoid the lattice of monotone
Boolean formulae over the image of labB (modulo equivalence) pB�,_,^,K,Jq,
then computing a pinpointing formula is an instance of the SumProd problem;
i. e. SPpT , α, labBq is a pinpointing formula for T , α. We will later show that the
pinpointing formula is in fact a general solution to the SumProd problem.

3.2 Access Control

In access control we assume that there is a finite lattice pL,¤q that represents
the levels of security in an application. Given an ontology T , each axiom t P T

is assigned an element labLptq of L. Basically, labLpt1q labLpt2q means that
axiom t2 is more public than t1 (which is more private). Additionally, there are
some users that are assigned an access level in L; that is, there is a mapping acc

from the set of all users to L. The access level of a user u defines a subset of
axioms that are visible to this user: Tu :� tt P T | accpuq ¤ labLptqu.

Let α be a consequence such that T $ α. We are interested in finding a
so-called boundary. An element µ P L is called a boundary for T , α under labL
if for every user u it follows that Tu $ α iff accpuq ¤ µ.

It was shown in [17] that lubS�T ,S$αglbtPS labLptq is a boundary.3 Hence, if
we consider the lattice L with its lub and glb operators as a bimonoid, we obtain
that the computation of a boundary is an instance of the SumProd problem.
That is, SPpT , α, labLq is a boundary for T , α under labL.

3.3 Utility From Preference Formulae

We now leave behind applications where a lattice is used and allow for more
general cases of bimonoids. One problem that has started to raise interest is how

2 A monotone Boolean formula is a propositional formula that contains no negation.
3 lub and glb denote the least upper bound and the greatest lower bound, respectively.

Using Sums-of-Products for Non-standard Reasoning 5

to compute the utility of a preference set in a negotiation process. We first define
the problem of finding the minimal utility value in DL [18, 19], and then show
that this problem is an instance of the SumProd problem.

Definition 4. Let T be a DL ontology. A preference is a pair pP, vq where P is
a DL concept such that T |ù P and v P R

�.

Intuitively, a preference pP, vq tells us how much value we assign to the
satisfaction of the concept P . If we have a set of preferences P , and are presented
with a concept C (called a proposal) we would like to be able to know how good
this proposal is related to P , in the sense of knowing the total value of the
preferences in P that are compatible with C. Taking the conservative approach,
we want to know the minimal utility value.

Definition 5. Let T be an ontology, C a concept such that T |ù C and P a set
of preferences. The minimal utility value for C w.r.t. P is given by:

MUVpT , C,Pq :� min
I|ùC,I|ùT

¸pP,vqPP,I|ùP v.
Basically, the minimal utility value expresses the least value that we are

expected to obtain whenever the proposal C is satisfied. In a negotiation process,
we would be confronted with several proposals. We can then compare how worth
each of them is w.r.t. our preference set and accept that with the highest MUV.

We now show that the problem of finding the minimal utility value is in fact
an instance of SumProd. We consider the bimonoid pR� Y t0,8u,min,�,8, 0q,
which is a semiring, and construct a new ontology T 1 :� T YtJ � P | pP, vq P
Pu.4 The labeling labR : T 1 Ñ R

� Y t0,8u is defined as follows:

labRptq :� #0 if t P T ,

v if pP, vq P P , t � J � P .

Finally, given a proposal C, we consider the consequence α :� C � K.

Theorem 1. Let T be an ontology, C a concept such that T |ù C and P a set of
preferences. If T , α and labR are constructed as above, then, under the bimonoidpR� Y t0,8u,min,�,8, 0q,

SPpT 1, α, labRq � MUVpT , C,Pq.
3.4 Best Entailment Degree

Another problem that is gaining the interest of the community is the combination
of DLs with reasoning under uncertainty and, in particular, with the use of fuzzy
operators: t-norm b, t-conorm `, negation a, and implication Ù. The exact
semantics of fuzzy DLs depends on the specific family of fuzzy operators chosen.

4 J represents any tautological concept.

6 R. Peñaloza

The most important of these families are the Zadeh [20], the Lukasiewicz, the
Product and the Gödel [21] families.

In fuzzy DLs, every axiom in an ontology has an associated degree of truth,
denoted as a pair xt, ny, where t is a DL axiom and n P r0, 1s. Intuitively, such
a pair denotes that axiom t is true with a degree of at least n. The semantics
of fuzzy DLs is defined by means of fuzzy interpretations. A fuzzy interpretation
I � p∆I , �Iq consists of a non-empty set ∆I , called the domain, and a fuzzy
interpretation function that assigns to each concept name A P NC a function
AI : ∆I Ñ r0, 1s and to each role name r P NR a function rI : ∆I�∆I Ñ r0, 1s.
This function is extended to concept terms as follows: pC1[C2qIpxq � C1pxqIb
C2pxqI ; pC1 \ C2qIpxq � C1pxqI ` C2pxqI ; p CqIpxq � aCIpxq; p�r.CqIpxq �
infyP∆I rIpx, yqÙ CIpyq; and pDr.CqIpxq � supyP∆I rIpx, yqb CIpyq.

An interpretation I is a model of a fuzzy ontology T if for every xC � D,ny P
T it holds that infxP∆I pCIpxq Ù DIpxqq ¥ n. A fuzzy GCI xC � D,ny is a
consequence of a fuzzy ontology T , denoted T $ xC � D,ny, if every model of
T is also a model of xC � D,ny.5
Definition 6. Let T be a fuzzy ontology and t a (crisp) GCI. The best entail-
ment degree of t w.r.t. T is

BEDpT , tq :� sup
T $xt,nyn.

Briefly, the best entailment degree expresses the best bound that can be given
on the fuzzy value at which t follows from the ontology T . This problem is in
fact an instance of the SumProd problem over the bimonoid pr0, 1s,max,b, 0, 1q,
where b is the t-norm being used and the function labr0,1s maps every GCI in T

to its associated degree of truth. The following theorem holds for the Lukasiewicz,
Product, and Gödel families of fuzzy operators, but not for the Zadeh family.

Theorem 2. Let T be an ontology, labr0,1s : T Ñ r0, 1s the function assigning,
to every axiom in T , its associated degree of truth, and t a (crisp) GCI. Then,
under the bimonoid pr0, 1s,max,b, 0, 1q,

SPpT , t, labr0,1sq � BEDpT , tq.
4 Solving the SumProd Problem

It was shown in [22] that the pinpointing formula is the most general solution of
the SumProd problem over distributive lattices: given an arbitrary distributive
lattice M , the (unique) homomorphism from B

� to M can be used to compute
SPpT , α, labM q from the pinpointing formula for T , α. In fact, the pinpointing
formula can be used to solve the SumProd problem over any bimonoid, through
weighted model counting.

5 For simplicity, we are restricting ourselves to the case where both, the axioms in the
ontology and the consequences, are concept inclusions. For settings dealing with a
wider variety of axioms and consequences, see, e.g. [11].

Using Sums-of-Products for Non-standard Reasoning 7

Definition 7. Let pM,`,b,0,1q be a bimonoid, V a set of propositional vari-
ables, ψ a Boolean formula over V and wt a function that maps every literal
corresponding to a variable in V to an element of M . Weighted model counting
corresponds to the task of computing

WMCpψ,wtq :� à
V|ùψâℓPV wtpℓq.

Let T be an ontology and α a consequence such that T $ α. If φ is a
pinpointing formula for T , α, then by definition there is a bijective function labB

between T and a superset of the propositional variables appearing in φ. Let nowpM,`,b,0,1q be a bimonoid and labM : T Ñ M . We construct the function
wt as follows: for every positive literal p, we set wtppq � labM plab�1

B
ppqq, and for

every negative literal p, we set wtp pq � 1.

Theorem 3. Let φ be a pinpointing formula for T , α and wt built as above.
Then SPpT , α, labM q �WMCpφ,wtq.
Proof. Let V be a valuation and p1, . . . , pn the positive literals appearing in
V , and set S � tlab�1

B
ppiq | 1 ¤ i ¤ nu. As φ is a pinpointing formula, we

have that S $ α iff
�n
i�1

pi |ù φ iff V |ù φ. Additionally,
Â

tPS labM ptq �Ân
i�1

labM plab�1

B
ppiqq �Ân

i�1
wtppiq �ÂℓPV wtpℓq. Hence, we have that

SPpT , α, labM q � à
S$αâtPS labM ptq � à

V|ùφâℓPV wtpℓq �WMCpφ,wtq. [\
This theorem shows that if one has a pinpointing formula for some ontology

T and consequence α, then one can solve any instance of the SumProd problem
related to T , α through a call to a weighted model counter. It has been shown
that the pinpointing formula can be computed by a modified version of the
decision algorithm used to verify that T $ α. Recently, general approaches that
modify tableaux- [15, 9] and automata-based [16, 10] decision procedures have
been developed. However, the formulas obtained by these methods are in general
form, with conjunctions and disjunctions nested within each other, while the
efficiency of modern weighted model counters relies on having an input formula
in CNF.

It is well-known that for every formula ψ it is possible to construct in poly-
nomial time (on the length of ψ) a formula ψ1 in CNF such that there is a
bijection between the models of ψ and the models of ψ1 [23]. The idea consists
in introducing new variables that capture complex subformulae of ψ. By setting
to 1 the weights of all newly added literals, we can ensure that both formulas
are also equivalent w.r.t. weighted model counting. Although this does not affect
the overall complexity of the method, it introduces an unnecessary step. In fact,
it is possible to improve the structure-sharing idea used in [10] to directly obtain
a formula that is equivalent (with respect to WMC) to the pinpointing formula.

We first recall the necessary notions for automata-based pinpointing, and
then show how these ideas yield a formula in CNF that can be used to solve any
instance of SumProd.

8 R. Peñaloza

4.1 Axiomatic Automata

We consider Büchi automata over trees, whose input alphabet has only one
element of arity k. A Büchi automaton for arity k is a tuple pQ,∆, I, F q, where
Q is a finite set of states, ∆ � Qk�1 is the set of transitions, and I, F � Q

are the set of initial and final states, respectively. A weighted Büchi automaton
(WBA) over a lattice L is a tuple pQ, in, wt, F q, where Q is a finite set of states,
in : Q Ñ L,wt : Qk�1 Ñ L, are the initial and transition distribution, and
F � Q.

The reasoning necessary for the computation of the pinpointing formula (and,
in general, the SumProd problem) for T , α, needs to know for which subontolo-
gies T 1 of T , T 1 $ α holds. Thus, we assume that the automaton AT ,α for decid-
ing T $ α also contains automata for all axiomatized inputs T 1, α with T 1 � T ,6

which can be obtained by appropriately restricting the states and transitions of
AT ,α. To be more precise, let A � pQ,∆, I, F q be a Büchi automaton for arity
k, T an ontology and α a consequence. The functions ∆res : T ÑPpQk�1q and
Ires : T ÑPpQq are respectively called a transition restricting function and an
initial restricting function. The restricting functions ∆res and Ires are extended
to sets of axioms T 1 � T as follows:

∆respT 1q :� £
tPT 1∆resptq and IrespT 1q :� £

tPT 1 Iresptq.
For T 1 � T , the T 1-restricted subautomaton of A w.r.t. ∆res and Ires is

A|T 1 :� pQ,∆X∆respT 1q, I X IrespT 1q, F q.
Definition 8. Let A � pQ,∆, I, F q be a Büchi automaton for arity k, T an
ontology, α a consequence, and ∆res : T Ñ PpQk�1q and Ires : T Ñ PpQq a
transition and an initial restricting function, respectively. We call pA, ∆res, Iresq
an axiomatic automaton for Γ .

Given an inference relation $, we say that pA, ∆res, Iresq is correct for T , α

w.r.t. $ if the following holds for every T 1 � T : T 1 $ α iff A|T 1 does not have
a successful run r with rpεq P I X IrespT 1q.

Given a correct axiomatic automaton for T , α, we can decide T 1 $ α for
T 1 � T through an emptiness test on the automaton A|T 1 . Any correct axiomatic
automaton can be transformed into a pinpointing automaton: a weighted Büchi
automaton whose behaviour is a pinpointing formula for the input.

Recall first that in the definition of pinpointing formula we consider a map-
ping labB assigning a unique propositional variable to each t P T . The pinpointing
automaton takes its weights from the T -Boolean bimonoid pBpT q,^,_,J,Kq,
where BpT q is the quotient set of all monotone Boolean formulae over labBpT q by
the propositional equivalence relation, i.e., two propositionally equivalent formu-
lae correspond to the same element of BpT q. It is easy to see that this bimonoid
is in fact a finite distributive lattice, where the partial order is defined as φ ¤ ψ

6 Recall that every subset of an admissible set of axioms is also admissible.

Using Sums-of-Products for Non-standard Reasoning 9

iff ψ Ñ φ is valid.7 Note that this bimonoid is different from the one used in
Section 3.1, in that the two operations are exchanged. This is done to follow the
construction in [10] and be able to reuse their results.

Definition 9. Let pA, ∆res, Iresq be an axiomatic automaton for T , α, with A �pQ,∆, I, F q. The violating functions ∆vio : Qk�1 Ñ BpT q and Ivio : QÑ BpT q
are

∆viopq0, q1, . . . , qkq :� ªttPT |pq0,q1,...,qkqR∆resptqu labptq;
Iviopqq :� ªttPT |qRIresptqu labptq.

The pinpointing automaton induced by pA, ∆res, Iresq w.r.t. T is the WBA
over B

T pA, ∆res, Iresqpin � pQ, in, wt, F q, where

inpqq :� # Iviopqq if q P I,J otherwise;

wtpq0, q1, . . . , qkq :� #∆viopq0, q1, . . . , qkq if pq0, q1, . . . , qkq P ∆,J otherwise.

As shown in [10], the behaviour of the pinpointing automaton yields the pin-
pointing formula. However, the iterative approach for computing the behaviour
of a weighted automaton requires an alternation of the operators b and `, and
hence, when grounded to the bimonoid BpT q, the formula obtained this way is
not in CNF. Furthermore, in order to ensure a polynomially bounded execution
time, it was necessary to resort to a compact encoding of the generated formula,
using structure sharing. Translating this encoding into a CNF formula may result
in an exponential blowup.

Fortunately, it is possible to modify the above mentioned iterative approach
so that it explicitely exploits the idea of structure sharing by adding new vari-
ables during the construction of the formula. The result of this modification is
an algorithm that outputs a formula ψ in CNF such that every valuation satis-
fying the pinpointing formula can be uniquely extended to a valuation satisfying
ψ, and conversely, every valuation that satisfies ψ, satisfies also the pinpointing
formula. We now show how these changes can be made.8

4.2 Computing a CNF Formula

We first briefly recall the iterative method for computing the behaviour of the
pinpointing automaton and some of its properties. We later show how it can be
used to compute the desired CNF formula.

7 More precisely, BpT q is the free distributive lattice over the generators labBpT q.
8 For the DL EL, our approach reduces to the one in [24]

10 R. Peñaloza

In the following we assume that we have a pinpointing automaton A �pQ, in, wt, F q. The iterative method defines operators Of ,Q : BpT qQ Ñ BpT qQ,
where BpT qQ denotes the set of all mappings from Q to BpT q, and f P BpT qQ.
The operator Of is defined as follows for every σ P BpT qQ:

Of pσqpqq � ©pq,q1,...,qkqPQk�1

�
wtpq, q1, . . . , qkq _ kª

j�1

stepf pσqpqjq� ,
where

stepf pσqpqq � #fpqq if q P F
σpqq otherwise.

This operator is monotonic, and hence it makes sense to speak about its least
fixpoint (lfp). The operator Q is based in this lfp: given σ P BpT qQ,

Qpσq � lfppOσq.
The operator Q is also monotonic, and thus it has a greatest fixpoint (gfp). The
following result is a direct consequence of those in [10].

Lemma 1. Let ς � gfppQq. Then
�
qPQ inpqq _ ςpqq is a pinpointing formula.

The results in [10] are in fact stronger, since they also set a bound, depending
on the number of states and the number of final states, on the times the operators
need to be applied before obtaining the fixpoints.

Lemma 2. Let n � |Q|,m � |F |, and denote as rJ, rK the functions that map
every state in Q to J and K, respectively. The following two results hold:

lfppOf q � On�m�1

f prJq, gfppQq � QmprKq.
In order to construct a formula in CNF, we are going to simulate applica-

tions of the operators Of and Q, introducing new variables that will stand as
abbreviations of the formulas constructed at each application. The total number
of variables and clauses introduced this way will be polynomially bounded by
the size of the automaton, due to Lemma 2.

We introduce the variables xζ,q, y
η
ζ,q, and z

η

ζ,pq,q1,...,qkq. Intuitively, the vari-

able xζ,q is an abbreviation for the formula QζprKqpqq. Likewise, the variable yηζ,q
represents the value of Oη

QζprKqprJqpqq. The other variables are used as auxiliary

means for keeping the formula in CNF. The formula ϕCNF is composed by the
following clauses, where 0 ¤ ζ m, 0 ¤ η n�m� 1, q, q1, . . . , qk P Q:9

x0,q � K,
xζ�1,q � yn�m�1

ζ,q ,

y0

ζ,q � J,
y
η�1

ζ,q � ©pq,q1,...,qkqPQk�1

z
η�1

ζ,pq,q1,...,qkq,
9 For brevity, we use double implications rather than clauses. These implications can

easily be transformed in clausal form, thus yielding a CNF formula.

Using Sums-of-Products for Non-standard Reasoning 11

z
η�1

ζ,pq,q1,...,qkq � wtpq, q1, . . . , qkq _ kª
j�1

choice
η
ζ pqjq,

where

choice
η
ζ pqq � #xζ,q if q P F

y
η
ζ,q otherwise.

Finally, we add for every q P Q the clause

inpqq _ xm,q.
Notice that the new variables are effectively nothing more than abbreviations for
longer formulas. The truth value of each of them depends ultimately only on the
truth value of the original propositional variables used for defining the function
wt. The last clauses introduced simply use the definition of pinpointing formula
from Lemma 1. The following result is a direct consequence of Lemmas 1 and 2.

Theorem 4. Let φ be a pinpointing formula and ϕCNF the formula in CNF
constructed above. Then, every valuation V satisfying φ can be uniquely extended
to a valuation V 1 satisfying ϕCNF. Conversely, every valuation that satisfies ϕCNF

satisfies also φ.

Corollary 1. Let ϕCNF be constructed as above, and wt built as for Theorem 3,
and extended to the new literals by setting wtpℓq � 1 for all new literal ℓ. Then
SPpT , α, labM q �WMCpϕCNF,wtq.
5 Conclusions

We have shown that some of the recently studied non-standard inference prob-
lems can be seen as instances of the general SumProd problem. We have also
shown that the ideas of automata-based axiom pinpointing can be adapted to
reduce the SumProd problem to a weighted model counting problem (with the
input formula in CNF).

As future work we would like to find more non-standard inferences that
fall into the framework described in this paper, for distinct inference relations,
also beyond the realm of DL. Additionally, we would like to empirically test
our approach by introducing the formula ϕCNF into a state-of-the-art weighted
model counter. We want then to compare the execution time to other ad-hoc
implementations, such as the black-box method for computing the boundary in
access control [17] or the algorithm for MUV from [18].

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

12 R. Peñaloza

2. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Sem. 1(1) (2003) 7–26

3. Haarslev, V., Möller, R.: RACER system description. In: Proc. of IJCAR’01.
(2001)

4. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of DL’04. (2004)
212–213

5. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of IJCAR’06. Volume 4130 of LNCS., Springer (2006) 292–297

6. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Proc. of IJCAR’06. Volume 4130 of LNAI., Springer
(2006) 287–291

7. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics
using hypertableaux. In: Proc. of CADE’07. Volume 4603 of LNCS., Springer
(2007) 67–83

8. Kazakov, Y.: Consequence-driven reasoning for horn shiq ontologies. In Boutilier,
C., ed.: Proc. of IJCAI’09, Pasadena, California (2009) 2040–2045

9. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
and Computation (2010) Special Issue: Tableaux’07. To appear.

10. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. Journal of Auto-
mated Reasoning (2010) Special Issue: IJCAR 2008. To appear.

11. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and
datatypes. Fuzzy Sets and Systems 160(23) (2009) 3382–3402

12. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intel. 172(6-7)
(2008) 852–883

13. Bacchus, F., Dalmao, S., Pitassi, T.: Solving #sat and bayesian inference with
backtracking search. J. of Art. Intel. Research 34 (2009) 391–442

14. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intel. 48(1) (1991) 1–26

15. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Proc. of
TABLEAUX 2007. Volume 4548 of LNAI., Springer (2007) 11–27

16. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Proc. of IJ-
CAR 2008. Volume 4667 of LNAI., Springer (2008) 226–241

17. Baader, F., Knechtel, M., Peñaloza, R.: A generic approach for large-scale onto-
logical reasoning in the presence of access restrictions to the ontology’s axioms. In:
Proc. of ISWC 2009. (2009)

18. Ragone, A., Noia, T.D., Donini, F.M., Sciascio, E.D., Wellman, M.P.: Weighted
description logics preference formulas for multiattribute negotiation. In Godo, L.,
Pugliese, A., eds.: Proc. of SUM’09. Volume 5785 of LNCS., Washington, DC,
USA, Springer (2009) 193–205

19. Ragone, A., Noia, T.D., Donini, F.M., Sciascio, E.D., Wellman, M.P.: Comput-
ing utility from weighted description logic preference formulas. In Baldoni, M.,
Bentahar, J., Lloyd, J., van Riemsdijk, M.B., eds.: Proc. of DALT’09, Budapest,
Hungary, Springer (2009)

20. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3) (1965) 338–353
21. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (2001)
22. Peñaloza, R.: Reasoning with weighted ontologies. In Grau, B.C., Horrocks, I.,

Motik, B., Sattler, U., eds.: Proc. of DL’09. Volume 477 of CEUR-WS. (2009)
23. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. In:

Studies in Mathematics and Mathematical Logic, Part II. (1968)
24. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics

via horn-sat encoding and conflict analysis. In: Proc. of CADE 2009. (2009) 84–99

