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Introduction

Unification in Description Logics (DLs) has been proposed in [7] as a novel
inference service that can, for example, be used to detect redundancies in on-
tologies. For instance, assume that one knowledge engineer defines the concept
of professors that are mothers as Person u Female u ∃child.> u ∃job.Professor,
whereas another knowledge engineer represents this notion in a somewhat dif-
ferent way, e.g., by using the concept term Motheru∃job.(TeacheruResearcher).
These two concept terms are not equivalent, i.e., they are not interpreted by
the same set of individuals in every interpretation, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by substituting the concept name Professor in the first term by the concept term
Teacher u Researcher and the concept name Mother in the second term by the
concept term Person u Female u ∃child.>. We call a substitution that makes two
concept terms equivalent a unifier of the two terms. Such a unifier proposes
definitions for the concept names that are used as variables. In our example,
we know that, if we define Mother as Person u Female u ∃child.> and Professor
as Teacher u Researcher, then the two concept terms from above are equivalent
w.r.t. these definitions.

The concept terms of the above example are formulated in the DL EL, which
has the concept constructors conjunction (u), existential restriction (∃r.C), and
the top concept (>). This DL has recently drawn considerable attention since,
on the one hand, important inference problems such as the subsumption problem
are polynomial in EL [1, 4]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies. For example, the large medical
ontology SNOMED CT3 can be expressed in EL. Unification in EL was first
investigated in [5], where it was shown that the decision problem is NP-complete.
Basically, the proof that one can check for the existence of an EL-unifier within
nondeterministic polynomial time given in [5] proceeds as follows. First, it is
shown that any solvable EL-unification problem has a local unifier, i.e., a unifier
that is “built from atoms” of the input problem. Second, since the definition
of locality implies that a local substitution can be guessed in polynomial time,
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one can test for the existence of a local unifier within NP by guessing a local
substitution and then checking whether it is indeed a unifier. In particular, this
means that the results of [5] also show how to compute all local unifiers of a
given EL-unification problem. In [6] it was shown that one can employ a SAT
solver to search for local EL-unifiers.

Actually, if one takes a closer look at the concept definitions in SNOMED CT,
then one sees that they do not use the top concept, i.e., SNOMED CT is not
formulated in EL, but rather in its sub-logic EL−>, which differs from EL in
that the use of the top concept is disallowed. If we employ EL-unification to de-
tect redundancies in (extensions of) SNOMED CT, then a unifier may introduce
concept terms that contain the top concept, and thus propose definitions for
concept names that are of a form that is not used in SNOMED CT. Apart from
this practical motivation for investigating unification in EL−>, we also found
it interesting to see how such a small change in the logic influences the unifi-
cation problem. Surprisingly, it turned out that the complexity of the problem
increases considerably: we were able to show in [2] that deciding unifiability in
EL−> is PSpace-complete. In [2], we restricted the attention to the decision
problem, and did not address the problem of how to compute unifiers of solvable
EL−>-unification problems.

In the present paper we introduce a notion of locality for EL−>-unifiers, and
show that we can always compute a local unifier for a solvable EL−>-unification
problem. However, whereas any EL-unification problem has only exponentially
many local EL-unifiers, each of which can be represented in polynomial space
using structure sharing, a given EL−>-unification problem can have infinitely
many local EL−>-unifiers. We show that a solvable EL−>-unification problem
always has a local EL−>-unifier of at most exponential size, which can effectively
be computed.

The Description Logics EL and EL−>

Starting with a set NC of concept names and a set NR of role names, EL-concept
terms are built using the concept constructors top-concept (>), conjunction (Cu
D), and existential restriction (∃r.C for every r ∈ NR). The EL-concept term C
is an EL−>-concept term if > does not occur in C. Since EL−>-concept terms
are special EL-concept terms, most definitions transfer from EL to EL−>, and
thus we only formulate them for EL.

The semantics of EL and EL−> is defined in the usual way, using the notion
of an interpretation I = (DI , ·I), which consists of a nonempty domain DI
and an interpretation function ·I that assigns binary relations on DI to role
names and subsets of DI to concept terms, as shown in the semantics column
of Table 1. The concept term C is subsumed by the concept term D (written
C v D) iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent
to D (written C ≡ D) iff C v D and D v C, i.e., iff CI = DI holds for all
interpretations I.

In order to define locality of unifiers in EL, we need the notion of an atom.
An EL-concept term is called an atom iff it is a concept name A ∈ NC or an



Name Syntax Semantics EL EL−>

concept name A AI ⊆ DI x x

role name r rI ⊆ DI ×DI x x

top-concept > >I = DI x

conjunction C uD (C uD)I = CI ∩DI x x

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x

subsumption C v D CI ⊆ DI x x

equivalence C ≡ D CI = DI x x

Table 1. Syntax and semantics of EL and EL−>.

existential restriction ∃r.D. Concept names and existential restrictions ∃r.D,
where D is a concept name or >, are called flat atoms. The set At(C) of atoms
of an EL-concept term C consists of all the subterms of C that are atoms.
For example, C = A u ∃r.(B u ∃r.>) has the atom set At(C) = {A,∃r.(B u
∃r.>), B,∃r.>}. Obviously, any EL-concept term C is a conjunction C = C1 u
. . .uCn of atoms and >. We call the atoms among C1, . . . , Cn the top-level atoms
of C. The EL-concept term C is called flat if all its top-level atoms are flat.

The notion of a top-level atom allows for a simple recursive characterization
of subsumption in EL. We have C v D iff every top-level atom of D subsumes
some top-level atom of C. In addition, the only atom subsumed by A ∈ NC is
A itself, and all atoms subsumed by ∃r.E are of the form ∃r.E′ with E′ v E.

In order to define locality of unifiers in EL−>, we additionally need the
notion of a particle: EL−>-concept terms of the form ∃r1. · · · ∃rn.A for n ≥ 0
role names r1, . . . , rn and a concept name A are called particles . The set Part(C)
of all particles of a given EL−>-concept term C is defined as

– Part(C) := {C} if C is a concept name,
– Part(C) := {∃r.E | E ∈ Part(D)} if C = ∃r.D,
– Part(C) := Part(C1) ∪ Part(C2) if C = C1 u C2.

For example, the particles of C = A u ∃r.(A u ∃r.B) are A,∃r.A, ∃r.∃r.B.

Unification in EL and EL−>

To define unification in EL and EL−> simultaneously, let L ∈ {EL, EL−>}.
When defining unification in L, we assume that the set of concept names is
partitioned into a set Nv of concept variables (which may be replaced by sub-
stitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). An L-substitution σ is a mapping from Nv into the set of all
L-concept terms. This mapping is extended to concept terms in the usual way,
i.e., by replacing all occurrences of variables in the term by their σ-images. An
L-concept term is called ground if it contains no variables, and an L-substitution
σ is called ground if the concept terms σ(X) are ground for all X ∈ Nv.

Unification tries to make concept terms equivalent by applying a substitution.



Definition 1. An L-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are L-concept terms. The L-substitution
σ is an L-unifier of Γ iff it solves all the equations Ci ≡? Di in Γ , i.e., iff
σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ is called L-unifiable.

In the following, we will use the subsumption C v? D as an abbreviation for the
equation C uD ≡? C. Obviously, σ solves this equation iff σ(C) v σ(D).

Clearly, every EL−>-unification problem Γ is also an EL-unification problem.
Whether Γ is L-unifiable or not may depend, however, on whether L = EL or
L = EL−>. As an example, consider the problem Γ := {A v? X,B v? X},
where A,B are distinct concept constants and X is a concept variable. Obviously,
the substitution that replaces X by > is an EL-unifier of Γ . However, Γ does
not have an EL−>-unifier. In fact, for such a unifier σ, we would need to have
A v σ(X) and B v σ(X), and it is easy to see that this is only possible if
σ(X) ≡ >.

As shown in [5], we may without loss of generality restrict our attention to
ground unifiers of flat L-unification problems, i.e., unification problems in which
the left- and right-hand sides of equations are flat L-concept terms. Given a flat
L-unification problem Γ , we denote by At(Γ ) the set of all atoms of Γ , i.e., the
union of all sets of atoms of the concept terms occurring in Γ . By Var(Γ ) we
denote the variables that occur in Γ , and by NV(Γ ) := At(Γ ) \ Var(Γ ) the set
of all non-variable atoms of Γ .

Local unifiers

In EL, every solvable unification problem has a local EL-unifier, i.e., an EL-
unifier γ such that, for every variable X, the top-level atoms of γ(X) are of the
form γ(D) for D ∈ NV(Γ ).

Example 1. Consider the flat EL-unification problem Γ that consists of the three
equations

X ≡? Y uA, Y u ∃r.X ≡? ∃r.X, Z u ∃r.X ≡? ∃r.X.

Then the substitutions σ0 := {X 7→ A, Y 7→ >, Z 7→ >} and σ1 := {X 7→
A, Y 7→ >, Z 7→ ∃r.A} are the only local EL-unifiers of Γ . In fact, we have
NV(Γ ) = {A,∃r.X}, and thus the only possible image for X in a local unifier σ
is A (since σ(∃r.X) = ∃r.σ(X) obviously cannot be a conjunct of σ(X)). Since
the first equation implies that A = σ(X) v σ(Y ), we know that σ(Y ) can only
be > or A. However, the second equation prevents the second possibility. Finally,
the third equation ensures that σ(Z) is > or ∃r.A.

Note that σ0 and σ1 both contain >, and thus are not EL−>-unifiers. This
shows that Γ does not have an EL−>-unifier that is local in the sense defined
above. Nevertheless, Γ has an EL−>-unifier. For example, the substitution γ1 :=
{X 7→ Au∃r.A, Y 7→ ∃r.A, Z 7→ ∃r.∃r.A} is such a unifier. Except for the atom
A, the top-level atoms of γ1(X), γ1(Y ), γ1(Z) are not of the form γ(D) for some
D ∈ NV(Γ ), but the ones different from A are all particles of γ(D) for some
D ∈ NV(Γ ). This motivates the following definition.



Definition 2. The EL−>-unifier γ of Γ is a local EL−>-unifier of Γ if, for
every variable X, each top-level atom of γ(X) is of the form γ(D) for some
D ∈ NV(Γ ) or a particle of γ(D) for some D ∈ NV(Γ ).

The unification problem of Example 1 can be used to demonstrate that a
given EL−>-unification problem can have infinitely many local EL−>-unifiers.
It is easy to see that the substitutions

γn := {X 7→ Au∃r.Au · · · u (∃r.)nA, Y 7→ ∃r.Au · · · u (∃r.)nA,Z 7→ (∃r.)n+1A}

are all local EL−>-unifiers of Γ in the sense of Definition 2. Indeed, every top-
level atom of γn(X), γn(Y ), and γn(Z) is either A or a particle of γn(∃r.X).

We are now ready to formulate the main result of this paper.

Theorem 1. Given a solvable EL−>-unification problem Γ , we can construct a
local EL−>-unifier of Γ of at most exponential size in time exponential in the
size of Γ .

We now provide a high-level description of the procedure for EL−>-unification
from [2, 3] and show how it can be adapted such that it produces a local EL−>-
unifier of size at most exponential in the size of Γ whenever there is an EL−>-
unifier.

Constructing local EL−>-unifiers

The first step of the EL−>-unification procedure reduces EL−>-unifiability of Γ
to solvability of a certain kind of linear language inclusions over the alphabet
NR. These inclusions are of the form Xi ⊆ L0 ∪ L1X1 ∪ · · · ∪ LnXn, where
X1, . . . , Xn are indeterminates, i ∈ {1, . . . , n}, and each Li (i ∈ {0, . . . , n}) is a
subset of NR ∪ {ε}. For each variable X ∈ Nv and each constant A ∈ Nc, there
is one indeterminate XA in these inclusions.

A solution θ of such an inclusion assigns sets θ(Xi) ⊆ N∗R to the indetermi-
nates such that θ(Xi) ⊆ L0 ∪ L1θ(X1) ∪ · · · ∪ Lnθ(Xn). A solution to a set I
of such inclusions is called admissible if, for every variable X ∈ Nv, there is a
constant A ∈ Nc such that θ(XA) is nonempty. This condition will ensure that
the constructed unifier of Γ is indeed an EL−>-substitution, i.e., it does not
contain >. We are also only interested in finite solutions, i.e., solutions θ such
that all the sets θ(Xi) are finite.

The problem of finding an EL−>-unifier for Γ can be reduced to the problem
of finding a finite, admissible solution to a certain set of such language inclu-
sions. More precisely, there is a set FΓ of exponentially many sets I of language
inclusions (of polynomial size) such that Γ is EL−>-unifiable iff there is a finite,
admissible solution for one I ∈ FΓ . This reduction uses nondeterministic poly-
nomial time in the size of Γ since we can guess an element of FΓ in polynomial
time.

Lemma 1. The EL−>-unification problem Γ has an EL−>-unifier iff there is a
set I ∈ FΓ that has a finite, admissible solution.



In this paper, we are further concerned with local solutions and their con-
nection to local EL−>-unifiers of Γ .

Definition 3. Let I be a finite set of inclusions of the above form. A solution θ
of I is called local if all words w ∈ θ(X) \ {ε} for some indeterminate X occur
on the right-hand side of some inclusion Xi ⊆ L0 ∪L1X1 ∪ · · · ∪LnXn under θ,
i.e., either w ∈ L0 or w ∈ (Li \ {ε})θ(Xi) for some i ∈ {1, . . . , n}.

The next lemma states the close connection between the two notions of lo-
cality.

Lemma 2. If there is a finite, local, admissible solution θ for one I ∈ FΓ , then
one can construct a local EL−>-unifier σ of Γ that is of size at most exponential
in the size of Γ and polynomial in the size of θ.

Example 2. One element of FΓ for the EL−>-unification problem Γ from Ex-
ample 1 consists of the inclusions

YA ⊆ XA, XA ⊆ {ε} ∪ YA, YA ⊆ {r}, ZA ⊆ {r}XA.

For any n ∈ N, the mapping {XA 7→ {ε, r, . . . , rn}, YA 7→ {r, . . . , rn}, ZA 7→
{rn+1}} is a finite, local, admissible solution of these inclusions, which corre-
sponds to the local EL−>-unifier γn of Γ (see Example 1).

This illustrates that there may be infinitely many such solutions for a given
I ∈ FΓ . However, there always is one of size at most exponential in the size
of Γ if there is one at all. To show this, we consider the remaining part of the
EL−>-unification algorithm. There we use the computational model of alter-
nating finite automata with ε-transitions (ε-AFA), which are a special case of
two-way alternating finite automata. In order to decide the existence of a finite,
admissible solution of I, for each variable XA an ε-AFA A(X,A) is constructed
that has the following property.

Lemma 3. The language accepted by A(X,A) is non-empty iff there is a finite
solution θ of I such that θ(XA) 6= ∅.

The emptiness test for such automata is a PSpace-complete task [8]. Fur-
thermore, if the language accepted by A(X,A) is non-empty, then one can con-
struct a run of this automaton of size at most exponential in the size of Γ . This
run can then be translated into a finite solution of I with the property that
θ(XA) 6= ∅. Using a weak condition on the structure of runs of A(X,A), we can
even construct a finite, local solution of I with this property.

Lemma 4. If the language accepted by A(X,A) is non-empty, then one can
construct a finite, local solution θ of I with θ(XA) 6= ∅.

The set of all solutions of I is closed under point-wise union, i.e., if θ1 and θ2
are solutions of I, then θ1 ∪ θ2 is also one, where (θ1 ∪ θ2)(X) := θ1(X)∪ θ2(X)
for each indeterminate X of I. Thus, I has a finite, admissible solution iff for



each X ∈ Nv there is a constant A ∈ Nc such that A(X,A) accepts a non-
empty language. Since the union of local solutions is again local, it is possible to
construct a finite, local, admissible solution of I in exponential time in the size
of Γ if there exists a finite, admissible solution of I.

To summarize, assume that Γ is unifiable. Then we enumerate all elements
I of FΓ and check whether they have a finite, admissible solution. By Lemma 1,
at least one of them must have such a solution. Lemmata 3 and 4 show that
one can construct a finite, local, admissible solution θ of I that is of size at
most exponential in the size of Γ . Using Lemma 2, we can then construct a local
EL−>-unifier of Γ that is of size at most exponential in the size of Γ .

It is shown in [3] that this exponential bound is optimal, i.e., there is a
sequence Γn of solvable EL−>-unification problems of size polynomial in n such
that any local EL−>-unifier of Γn has size at least exponential in n.
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