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Abstract. The combination of Fuzzy Logics and Description Logics
(DLs) has been investigated for at least two decades because such fuzzy
DLs can be used to formalize imprecise concepts. In particular, tableau
algorithms for crisp Description Logics have been extended to reason
also with their fuzzy counterparts. Recently, it has been shown that, in
the presence of general concept inclusion axioms (GCIs), some of these
fuzzy DLs actually do not have the finite model property, thus throwing
doubt on the correctness of tableau algorithm for which it was claimed
that they can handle fuzzy DLs with GCIs.
In a previous paper, we have shown that these doubts are indeed jus-
tified, by proving that a certain fuzzy DL with product t-norm and in-
volutive negation is undecidable. In the present paper, we show that
undecidability also holds if we consider a t-norm-based fuzzy DL where
disjunction and involutive negation are replaced by the constructor im-
plication, which is interpreted as the residuum. The only condition on
the t-norm is that it is a continuous t-norm “starting” with the product
t-norm, which covers an uncountable family of t-norms.

1 Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an
application domain in a structured and formally well-understood way. They were
employed in various application domains, such as natural language processing,
configuration, and databases, but their main breakthrough arguably came with
the adoption of the DL-based language OWL [17] as standard ontology language
for the semantic web. Another successful application area for DLs is the definition
of medical ontologies, such as SnomedCT1 and Galen.2

In Description Logics, concepts are formally described by concept descrip-
tions, i.e., expressions that are built from concept names (unary predicates)
and role names (binary predicates) using concept constructors. The expressivity
of a particular DL is determined by which concept constructors are available
in it. From a semantic point of view, concept names and concept descriptions

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.opengalen.org/



represent sets of individuals, whereas roles represent binary relations between
individuals. For example, using the concept names Patient and Running-nose,
and the role name has-symptom, the concept of all patients with running noses
can be represented by the concept description

Patient u ∃has-symptom.Running-nose.

In addition to the description language (i.e., the formalism for constructing con-
cept descriptions), DLs provide their users with a terminological and an asser-
tional formalism. In its simplest form, a DL terminology (usually called TBox )
can be used to introduce abbreviations for complex concept descriptions. For
example, the concept definition

Private-patient ≡ Patient u ∃has-insurance.Private-health

says that private patients are patients that have a private health insurance.
So-called general concept inclusions (GCIs) can be used to state additional con-
straints on the interpretation of concepts and roles. In our medical example, one
could express that patients with running noses have a cold or hay fever using
the GCI

Patient u ∃has-symptom.Running-nose v ∃has-disease.(Cold t Hay-fever).

Note that the concept definition A ≡ C can be expressed using the two GCIs
A v C and C v A.

In the assertional part (ABox) of a DL-based ontology, facts about a spe-
cific application situation can be stated, by introducing named individuals and
relating them to concepts and roles. For example, the assertions

LINDA : Patient, (LINDA,AXA-PPP) : has-insurance, AXA-PPP : Private-health

state that Linda is a patient that has the private health insurance AXA-PPP. An
ontology is a TBox together with an ABox, i.e., finite set of GCIs and assertions.

Knowledge representation systems based on DLs provide their users with var-
ious inference services that allow them to deduce implicit knowledge from the ex-
plicitly represented knowledge. For example, given the concept definition and the
assertions of our example, one can deduce the assertion LINDA : Private-patient,
i.e., that Linda is a private patient. An important inference service for DL-based
ontologies is testing their consistency, i.e., checking whether a given ontology
is non-contradictory by testing whether it has a model. In fact, all the other
standard inference problems can be reduced to consistency.

Fuzzy variants of Description Logics (DLs) were introduced in order to deal
with applications where membership to concepts cannot always be determined
in a precise way. For example, assume that we want to express that a patient
that has a high temperature and a running nose has a cold using the GCI

Patientu∃has-symptom.Running-noseu∃has-temperature.High v ∃has-disease.Cold.



Here it makes sense to view High as a fuzzy concept, to which 36◦C belongs
with a low membership degree (say 0.2), 38◦C with a higher membership degree
(say 0.7), and 40◦C with an even higher membership degree (say 0.9). In the
presence of such fuzzy concepts, ABox assertions must then be equipped with
a membership degree. For example, the assertion 〈T1 : High ≥ 0.8〉 says that
temperature T1 is high with membership degree at least 0.8. If we are not so
sure about the measurement (e.g., if it was taken under the armpit), we could
also equip the role assertion (LINDA,T1) : has-temperature with a membership
degree smaller than 1. The use of fuzzy concepts in medical applications is, for
instance, described in more detail in [19].

A great variety of fuzzy DLs have been investigated in the literature [18,14].
In fact, compared to crisp DLs, fuzzy DLs offer an additional degree of free-
dom when defining their expressiveness: in addition to deciding which concept
constructors (like conjunction u, disjunction t, existential restriction ∃r.C) and
which terminological formalism (like no TBox, acyclic concept definitions, gen-
eral concept inclusions) to use, one must also decide how to interpret the concept
constructors by appropriate functions on the domain of fuzzy values [0, 1]. For
example, conjunction can be interpreted by different t-norms (such as Gödel,
Łukasiewicz, and product) and there are also different options for how to inter-
pret negation (such as involutive negation and residual negation). In addition,
one can either consider all models or only so-called witnessed models [16] when
defining the semantics of fuzzy DLs.

Decidability of fuzzy DLs is often shown by adapting the tableau-based algo-
rithms [3] for the corresponding crisp DL to the fuzzy case. This was first done
for the case of DLs without general concept inclusion axioms (GCIs) [26,24,22,9],
but then also extended to GCIs [23,25,7,8]. Usually, these tableau algorithm rea-
son w.r.t. witnessed models.3 It should be noted, however, that in the presence
of GCIs there are different ways of extending the notion of witnessed models
from [16], depending on whether the witnessed property is required to apply
also to GCIs (in which case we talk about strongly witnessed models) or not (in
which case we talk about witnessed models).

The paper [7] considers the case of reasoning w.r.t. fuzzy GCIs in the set-
ting of a logic with product t-norm and involutive negation. More precisely, the
tableau algorithm introduced in that paper is supposed to check whether an on-
tology consisting of fuzzy GCIs and fuzzy ABox assertions expressed in this DL
has a strongly witnessed model or not.4 Actually, the proof of correctness of this
algorithm given in [7] implies that, whenever such an ontology has a strongly
witnessed model, then it has a finite model. However, it was recently shown in [4]
that this is not the case in the presence of general concept inclusion axioms, i.e.,
there is an ontology written in this logic that has a strongly witnessed model,
but does not have a finite model. Of course, this does not automatically imply

3 In fact, witnessed models were introduced in [16] to correct the proof of correctness
for the tableau algorithm presented in [26].

4 Note that the authors of [7] actually use the term “witnessed models” for what we
call “strongly witnessed models.”



that the algorithm itself is wrong. In fact, if one applies the algorithm from [7] to
the ontology used in [4] to demonstrate the failure of the finite model property,
then one obtains the correct answer, and in [4] the authors actually conjecture
that the algorithm is still correct. However, incorrectness of the algorithm has
now independently been shown in [5] and in [2]. Thus, one can ask whether the
fuzzy DL considered in [7] is actually decidable. Though this question is not
answered in [2], the paper gives strong indications that the answer might in fact
be “no.” More precisely, [2] contains a proof of undecidability for a variant of
the fuzzy DL considered in [7], which (i) additionally allows for strict GCIs, i.e.,
GCIs whose fuzzy value is required to be strictly greater than a given rational
number; and (ii) where the notion of strongly witnessed models used in [7] is
replaced by the weaker notion of witnessed models.

In the present paper, we show that, in the presence of GCIs, undecidability
also holds if we consider a t-norm-based fuzzy DL where disjunction and invo-
lutive negation are replaced by the constructor implication, which is interpreted
as the residuum.5 The only condition on the t-norm is that it is a continu-
ous t-norm “starting” with the product t-norm. In particular, this includes the
fuzzy DL with product t-norm introduced in [16], where decidability of reason-
ing w.r.t. witnessed models was shown for the case without GCIs. In [13], an
analogous decidability result was shown for the case of reasoning w.r.t. so-called
quasi-witnessed models. Following [13], we call this logic ∗-ALE . Note that our
undecidability result holds for several variants of the notion of witnessed models
(including witnessed, quasi-witnessed, and strongly witnessed models).

In the next section, we introduce basic notions from fuzzy logics, and in
Section 3 we introduce the fuzzy DLs considered in this paper. In Section 4
we then show undecidability of these DLs w.r.t. witnessed and quasi-witnessed
models, and in Section 5 w.r.t. strongly witnessed and finite models.

2 T-norms and Fuzzy Logic

Fuzzy logics are formalisms introduced to express imprecise or vague informa-
tion [15]. They extend classical logic by interpreting predicates as fuzzy sets over
an interpretation domain. Given a non-empty domain ∆, a fuzzy set is a function
F : ∆→ [0, 1] from ∆ into the real unit interval [0, 1], with the intuition that an
element δ ∈ ∆ belongs to F with degree F (δ). The interpretation of the logical
constructors is based on appropriate truth functions that generalize the proper-
ties of the connectives of classical logic to the interval [0, 1]. The most prominent
truth functions used in the fuzzy logic literature are based on t-norms.

A t-norm is a binary operator ⊗ : [0, 1]× [0, 1]→ [0, 1] that is associative and
commutative, has 1 as its unit element, and is monotonic, i.e., for every x, y, z ∈
[0, 1], if x ≤ y, then x⊗ z ≤ y⊗ z. The t-norm ⊗ is continuous if it is continuous

5 This change of the constructors used is not irrelevant: in general, disjunction and
involutive negation cannot be expressed using only conjunction and residua.



Name t-norm (x⊗ y) Residuum (x⇒ y)

Gödel min(x, y)

{
1 if x ≤ y

y otherwise

product x · y

{
1 if x ≤ y

y/x otherwise

Łukasiewicz max(x+ y − 1, 0) min(1− x+ y, 1)

Table 1. Gödel, product and Łukasiewicz t-norms and their residua

as a function, i.e., we have for all convergent sequences {xn}n≥0, {yn}n≥0 that

( lim
n→∞

xn)⊗ ( lim
n→∞

yn) = lim
n→∞

(xn ⊗ yn).

If ⊗ is a continuous t-norm, then there exists a unique binary operator⇒, called
the residuum, that satisfies z ≤ x⇒ y iff x⊗z ≤ y for every x, y, z ∈ [0, 1]. Three
important continuous t-norms are the Gödel, product and Łukasiewicz t-norms.
These t-norms and their corresponding residua are shown in Table 1.

The following are simple consequences of the definition of t-norms and their
residua (see [15], Lemma 2.1.6).

Lemma 1. For every t-norm ⊗ and x, y ∈ [0, 1] the following hold:

– x⇒ y = 1 iff x ≤ y,
– 1⇒ y = y, 0⇒ y = 1, and
– if x > 0, then x⇒ 0 = 0.

The t-norms described in Table 1 are fundamental in the sense that all other
continuous t-norms can be constructed from them: every continuous t-norm can
be expressed as the ordered sum of copies of Łukasiewicz, Gödel and product
t-norms [20]. More formally, if ⊗ is a continuous t-norm, then there exists a (pos-
sibly infinite) family S = {〈(ai, bi),⊗i〉 | i ∈ J }, where (ai, bi) are non-empty,
pairwise disjoint open subintervals of [0, 1] and ⊗i is either the Łukasiewicz or
the product t-norm, such that

x⊗ y =

{
ai + (bi − ai) · ( x−aibi−ai ⊗i

y−ai
bi−ai ) if x, y ∈ [ai, bi] for some i ∈ J

min(x, y) otherwise

holds for all x, y ∈ [0, 1]. The residuum of this t-norm is given, for every x, y ∈
[0, 1], by

x⇒ y =


1 if x ≤ y
ai + (bi − ai) · ( x−aibi−ai ⇒i

y−ai
bi−ai ) if ai ≤ y < x ≤ bi for some i ∈ J

y otherwise,

where ⇒i represents the residuum of the t-norm ⊗i, i ∈ J .
In this paper we will focus on t-norms whose expression as an ordered sum

use the product t-norm as “first element.”



Definition 2. Given a t-norm ⊗ obtained as ordered sum from the family S =
{〈(ai, bi),⊗i〉 | i ∈ J } and a number q ∈ (0, 1], we say that ⊗ q-starts with the
product t-norm (q-starts with Π for short) if there is an index i ∈ J such that
(ai, bi) = (0, q) and ⊗i is the product t-norm. It starts with Π if it q-starts with
Π for some q ∈ (0, 1].

Notice that, for every q ∈ (0, 1), there exist uncountably many t-norms
that q-start with Π. In fact, for every real number r ∈ (q, 1], we can take
the family {〈(0, q),⊗1〉, 〈(q, r),⊗2〉} where ⊗1 is the product t-norm and ⊗2

is the Łukasiewicz t-norm. As a simple consequence of this, there are uncount-
ably many continuous t-norms that q-start with Π for a rational number q. Our
undecidability proofs will only deal with such t-norms. The following lemma is
a simple consequence of the properties described before.

Lemma 3. For a given t-norm ⊗ and q ∈ (0, 1], if ⊗ q-starts with Π, then for
every x, y ∈ [0, q] the following holds:

– x⊗ y = (x · y)/q, and
– if x > y, then x⇒ y = q · (y/x).

3 Fuzzy Description Logics

In this section, we introduce the fuzzy description logic ∗-ALE and some of its
properties, which will be useful throughout the paper.

The syntax of this logic is slightly different from standard description logics,
as it has an implication constructor, but no negation or disjunction constructors.
∗-ALE concepts are built through the syntactic rule

C ::= A | ⊥ | > | C1 u C2 | C1 → C2 | ∃r.C | ∀r.C

where A is a concept name and r is a role name.
A ∗-ALE ABox is a finite set of assertion axioms of the form 〈a : C B q〉 or

〈(a, b) : r B q〉, where C is a ∗-ALE concept, r ∈ NR, q is a rational number in
the interval [0, 1], a, b are individual names and B is either ≥ or =. A ∗-ALE
TBox is a finite set of concept inclusion axioms of the form 〈C v D ≥ q〉, where
C,D are ∗-ALE concepts and q is a rational number in [0, 1]. A ∗-ALE ontology
is a tuple (A, T ), where A is a ∗-ALE ABox and T a ∗-ALE TBox. For the
rest of the paper we will often drop the prefix ∗-ALE , and speak simply of e.g.
TBoxes and ontologies.

The semantics of this logic extend the classical DL semantics by interpreting
concepts and roles as fuzzy sets over an interpretation domain. The precise se-
mantics depends on the t-norm chosen; thus, in the following, we assume that we
have an arbitrary, but fixed, continuous t-norm ⊗ and that ⇒ is the associated
residuum. The semantics of ∗-ALE is based on interpretations. An interpreta-
tion is a tuple I = (∆I , ·I) where ∆I is a non-empty set, called the domain,
and the function ·I maps each individual name a to an element of ∆I , each



concept name A to a function AI : ∆I → [0, 1] and each role name r to a func-
tion rI : ∆I ×∆I → [0, 1]. The interpretation function is extended to arbitrary
∗-ALE concepts as follows. For every δ ∈ ∆I ,

>I(δ) = 1,

⊥I(δ) = 0,

(C1 u C2)
I(δ) = CI1 (δ)⊗ CI2 (δ)

(C1 → C2)
I(δ) = CI1 (δ)⇒ CI2 (δ)

(∃r.C)I(δ) = sup
γ∈∆I

rI(δ, γ)⊗ CI(γ)

(∀r.C)I(δ) = inf
γ∈∆I

rI(δ, γ)⇒ CI(γ).

The interpretation I = (∆I , ·I) satisfies the assertional axiom 〈a : C B q〉 iff
CI(aI)Bq, it satisfies 〈(a, b) : r B q〉 iff rI(aI , bI)Bq and it satisfies the concept
inclusion 〈C v D ≥ q〉 iff infδ∈∆I (CI(δ) ⇒ DI(δ)) ≥ q. This interpretation is
called a model of the ontology O if it satisfies all the axioms in O.

In fuzzy DLs, reasoning is often restricted to witnessed models [16]. An in-
terpretation I is called witnessed if it satisfies the following two conditions:

(wit1) for every δ ∈ ∆I , role r and concept C there exists γ ∈ ∆I such that
(∃r.C)I(δ) = rI(δ, γ) · CI(γ), and

(wit2) for every δ ∈ ∆I , role r and concept C there exists γ ∈ ∆I such that
(∀r.C)I(δ) = rI(δ, γ)⇒ CI(γ).

This model is called weakly witnessed if it satisfies (wit1) and quasi-witnessed
if it satisfies (wit1) and the condition

(wit2’) for every δ ∈ ∆I , role r and concept C, either (∀r.C)I = 0 or there
exists γ ∈ ∆I such that (∀r.C)I(δ) = rI(δ, γ)⇒ CI(γ).

In the presence of GCIs, witnessed interpretations are sometimes further
restricted [9,4,14] to satisfy

(wit3) for every two concepts C,D, there is a γ such that

inf
η∈∆I

(CI(η)⇒ DI(η)) = CI(γ)⇒ DI(γ).

Witnessed interpretations that satisfy this third restriction (wit3) are called
strongly witnessed interpretations.

We say that an ontology O is consistent (resp. weakly witnessed consistent,
quasi-witnessed consistent, witnessed consistent, strongly witnessed consistent)
if it has a model (resp. a weakly witnessed model, a quasi-witnessed model,
a witnessed model, a strongly witnessed model). Obviously, strongly witnessed
consistency implies witnessed consistency, which implies quasi-witnessed consis-
tency, which itself implies weakly witnessed consistency. The converse implica-
tions, however, need not hold; for instance, a quasi-witnessed consistent ∗-ALE
ontology that has no witnessed models can be derived from the example in [13].



Witnessed models were introduced to simplify the construction of tableau-
based reasoning procedures for fuzzy DLs [16]. Intuitively, with the general se-
mantics for existential restrictions, interpreted as a supremum, it is possible that
an existential restriction is interpreted with a value that is never reached; that
is, (∃r.C)I(δ) > rI(δ, η)⊗CI(η) for all η ∈ ∆I . Given an existential restriction,
a tableau-based procedure tries to introduce one successor individual that yields
this value. Condition (wit1) ensures that this approach is sound. Without it,
the procedure would also need to address the case where there are infinitely
many successors yielding values whose supremum is the value of the existential
restriction. It is not clear how to do this with a terminating procedure.

We now derive some properties of the ∗-ALE axioms and introduce useful
abbreviations. First, recall that, for all x, y ∈ [0, 1], it holds that x ⇒ y = 1
iff x ≤ y (Lemma 1). Thus, given two concepts C,D, the axiom 〈C v D ≥ 1〉
expresses that CI(δ) ≤ DI(δ) for all δ ∈ ∆I .

In the following, we will use the expression 〈C r
 D〉 to abbreviate the axioms

〈C v ∀r.D ≥ 1〉 , 〈∃r.D v C ≥ 1〉. To understand this abbreviation, consider an
interpretation I satisfying 〈C r

 D〉 and let δ, γ ∈ ∆I with rI(δ, γ) = 1. From
the first axiom it follows that

CI(δ) ≤ (∀r.D)I(δ) = inf
η∈∆I

rI(δ, η)⇒ DI(η)

≤ rI(δ, γ)⇒ DI(γ) = 1⇒ DI(γ) = DI(γ).

From the second axiom it follows that

CI(δ) ≥ (∃r.D)I(δ) = sup
η∈∆I

rI(δ, η)⊗DI(η)

≥ rI(δ, γ)⊗DI(γ) = 1⊗DI(γ) = DI(γ),

and hence, both axioms together imply that CI(δ) = DI(γ). In other words,
〈C r
 D〉 expresses that the value of CI(δ) is propagated to the valuation

of the concept D on all r successors with degree 1 of δ. Conversely, given an
interpretation I such that rI(δ, γ) ∈ {0, 1} for all δ, γ ∈ ∆I , if rI(δ, γ) = 1

implies CI(δ) = DI(γ), then I is a model of 〈C r
 D〉.

For a concept C and a natural number n ≥ 1, the expression Cn denotes the
concatenation of C with itself n times, i.e., C1 := C and Cn+1 := C u Cn. If ⊗
q-starts with Π, then the semantics of u yields (Cn)I(δ) = (CI(δ))n/qn−1, for
every interpretation I and every δ ∈ ∆I with CI(δ) ∈ [0, q] (see Lemma 3).

For the rest of the paper we assume that ⊗ q-starts with Π for some arbitrary
but fixed rational number q ∈ [0, 1]. We will show that, under such a t-norm,
consistency of ∗-ALE ontologies w.r.t. the different variants of witnessed models
introduced above is undecidable.

4 Undecidability w.r.t. Witnessed Models

We will show undecidability using a reduction from the Post correspondence
problem, which is well-known to be undecidable [21].



Definition 4 (PCP). Let ((v1, w1), . . . , (vm, wm)) be a finite list of pairs of
words over an alphabet Σ = {1, . . . , s}, s > 1. The Post correspondence problem
(PCP) asks whether there is a non-empty sequence i1, i2, . . . , ik, 1 ≤ ij ≤ m,
such that vi1vi2 · · · vik = wi1wi2 · · ·wik . If such a sequence exists, then the word
i1i2 · · · ik is called a solution of the problem.

We assume w.l.o.g. that there is no pair vi, wi where both words are empty.
For a word µ = i1i2 · · · ik ∈ {1, . . . ,m}∗, we will denote as vµ and wµ the words
vi1vi2 · · · vik and wi1wi2 · · ·wik , respectively.

The alphabet Σ consists of the first s positive integers. We can thus view
every word in Σ∗ as a natural number represented in base s+1 in which 0 never
occurs. Using this intuition, we will express the empty word as the number 0.

In the following reductions, we will encode the word w inΣ∗ using the number
q · 2−w ∈ [0, q]. We will construct an ontology whose models encode the search
for a solution. The interpretation of two designated concept names A and B at
a node will respectively correspond to the words vµ and wµ for µ ∈ {1, . . . ,m}∗.

It should be noted that, in the following constructions, the only relevant
values used for interpreting the different concepts will be [0, q] ∪ {1}. For this
reason, it is only important that ⊗ q-starts with Π, while the precise definition
of the t-norm over the rest of the unit interval is irrelevant.

To be more precise, we will show undecidability of consistency w.r.t. wit-
nessed models by constructing, for a given instance P = ((v1, w1), . . . , (vm, wm))
of the PCP, an ontology OP such that, for every witnessed model I of OP and
every µ ∈ {1, . . . ,m}∗, there is an element δµ ∈ ∆I with AI(δµ) = q · 2−vµ and
BI(δµ) = q ·2−wµ . Additionally, we will show that this ontology has a witnessed
model whose domain has only these elements. Then, P has a solution iff for every
witnessed model I of OP there exist a δ ∈ ∆I such that AI(δ) = BI(δ).

Let δ ∈ ∆I encode the words v, w ∈ Σ∗; that is, AI(δ) = q · 2−v and
BI(δ) = q ·2−w, and let i, 1 ≤ i ≤ m. Assume additionally that we have concept
names Vi,Wi with V Ii (δ) = q · 2−vi and W Ii (δ) = q · 2−wi . We want to ensure
the existence of a node γ that encodes the concatenation of the words v, w with
the i-th pair from P; i.e. vvi and wwi. This is done through the TBox

T iP := {〈> v ∃ri.> ≥ 1〉 , 〈(Vi uA(s+1)|vi|)
ri A〉, 〈(Wi uB(s+1)|wi|)

ri B〉}.

Recall that we are viewing words in Σ∗ as natural numbers in base s+1. Thus,
the concatenation of two words u, u′ corresponds to the operation u·(s+1)|u

′|+u′.
Additionally, AI(δ) ≤ q and hence

(A(s+1)|vi|)I(δ) =
q(s+1)|vi| · 2−v·(s+1)|vi|

q(s+1)|vi|−1
= q · 2−v·(s+1)|vi| .

Since V Ii (δ) ≤ q, we then have

(Vi uA(s+1)|vi|)I(δ) =
(q · 2−vi) · (q · 2−v·(s+1)|vi|)

q
= q · 2−vvi .



Analogously, we get that (Wi uB(s+1)|wi|)I(δ) = q · 2−wwi .
If I is a witnessed model of T iP , then from the first axiom in T iP it follows

that (∃ri.>)I(δ) = 1, and according to (wit1), there must exist a γ ∈ ∆I

with rI(δ, γ) = 1. The last two axioms then ensure that AI(γ) = q · 2−vvi and
BI(γ) = q · 2−wwi ; thus, the concept names A and B encode, at node γ, the
words vvi and wwi, as desired. If we want to use this construction to recursively
construct all the pairs of concatenated words defined by P, we need to ensure
also that V Ij (γ) = q · 2−vj , W Ij (γ) = q · 2−wj hold for every j, 1 ≤ j ≤ m. This
can be done through the axioms

T 0
P := {〈Vj

ri Vj〉, 〈Wj
ri Wj〉 | 1 ≤ i, j ≤ m}.

It only remains to ensure that there is a node δε where

AI(δε) = BI(δε) = q = q · 20,

that is, where A and B encode the empty word, and for every j, 1 ≤ i ≤ m,
V Ij (δε) = q · 2−vj and W Ij (δε) = q · 2−wj hold. This condition is easily enforced
through the ABox

A0
P := {〈a : A = q〉 , 〈a : B = q〉} ∪

{
〈
a : Vi = q · 2−vi

〉
,
〈
a :Wi = q · 2−wi

〉
| 1 ≤ i ≤ m}.

Finally, we include a concept nameH that must be interpreted as q/2 in every
domain element reachable from a. This is enforced by the following axioms:

A0 := {〈a : H = q/2〉},
T0 := {〈H ri H〉 | 1 ≤ i ≤ m}.

The concept name H will later be used to detect whether P has a solution (see
the proof of Theorem 6).

Let now OP := (AP , TP) where AP = A0
P ∪A0 and TP := T0 ∪

⋃m
i=0 T iP . We

define the interpretation IP := (∆IP , ·IP ) as follows:

– ∆IP = {1, . . . ,m}∗,
– aIP = ε,

for every µ ∈ ∆IP ,

– AIP (µ) = q · 2−vµ , BIP (µ) = q · 2−wµ , HIP (µ) = q/2,

and for all j, 1 ≤ j ≤ m,

– V IPj (µ) = q · 2−vj , W IPj (µ) = q · 2−wj , and
– rIPj (µ, µj) = 1 and rIPj (µ, µ′) = 0 if µ′ 6= µj.

It is easy to see that IP is in fact a model of OP . This model is trivially witnessed
since, for every i, 1 ≤ i ≤ m, every node has only one ri successor with degree
greater than 0. More interesting, however, is that every witnessed model I of
OP “contains” IP in the sense stated in the following lemma.



Lemma 5. Let I be a witnessed model of OP . Then there exists a function
f : ∆IP → ∆I such that, for every µ ∈ ∆IP , CIP (µ) = CI(f(µ)) holds for
every concept name C and rIi (f(µ), f(µi)) = 1 holds for every i, 1 ≤ i ≤ m.

Proof. The function f is built inductively on the length of µ. First, as I is a
model of AP , there must be a δ ∈ ∆I such that aI = δ. Notice that AP fixes
the interpretation of all concept names on δ and hence f(ε) = δ satisfies the
condition of the lemma.

Let now µ be such that f(µ) has already been defined. By induction, we can
assume that AI(f(µ)) = q · 2−vµ , BI(f(µ)) = q · 2−wµ , HI(f(µ)) = q/2, and
for every j, 1 ≤ j ≤ m, V Ij (f(µ)) = q · 2−vj ,W Ij (f(µ)) = q · 2−wj . Since I is a
witnessed model of 〈> v ∃ri.> ≥ 1〉, for all i, 1 ≤ i ≤ m, there exists a γ ∈ ∆I
with rIi (f(µ), γ) = 1, and as I satisfies all the axioms of the form 〈C r

 D〉 in
TP , it follows that

AI(γ) = q · 2−vµvi = q · 2−vµi , BI(γ) = q · 2−wµwi = q · 2−wµi , HI(γ) = q/2,

and for all j, 1 ≤ j ≤ m, V Ij (γ) = q · 2−vj ,W Ij (γ) = q · 2−wj . Setting f(µi) = γ
thus satisfies the required property. ut

From this lemma it then follows that, if the PCP P has a solution µ for some
µ ∈ {1, . . . ,m}+, then every witnessed model I of OP contains a node δ = f(µ)
such that AI(δ) = BI(δ); i.e., where A and B encode the same word. Conversely,
if every witnessed model contains such a node, then in particular IP does, and
thus P has a solution. The question is now how to detect whether a node with
this characteristics exists in every model. We will extend OP with axioms that
further restrict IP to satisfy AIP (µ) 6= BIP (µ) for every µ ∈ {1, . . . ,m}+. This
ensures that the extended ontology has a model iff P has no solution.

In order to come up with the right axioms for achieving this, suppose for now
that, for some µ ∈ {1, . . . ,m}∗, it holds that

q · 2−vµ = AIP (µ) > BIP (µ) = q · 2−wµ .

We then have that vµ < wµ and hence wµ − vµ ≥ 1. It thus follows that

(A→ B)IP (µ) = q · (q · 2−wµ)/(q · 2−vµ) = q · 2−(wµ−vµ) ≤ q · 2−1 = q/2

and thus ((A→ B) u (B → A))IP (µ) ≤ q/2. Likewise, if AIP (µ) < BIP (µ), we
also get ((A → B) u (B → A))IP (µ) ≤ q/2. Additionally, if AIP (µ) = BIP (µ),
then it is easy to verify (see Lemma 1) that ((A → B) u (B → A))IP (µ) = 1.
From all this it follows that, for every µ ∈ {1, . . . ,m}∗,

AIP (µ) 6= BIP (µ) iff ((A→ B) u (B → A))IP (µ) ≤ q/2. (1)

Thus, the instance P has no solution iff for every µ ∈ {1, . . . ,m}+ it holds that
((A→ B) u (B → A))IP (µ) ≤ q/2.

We define now the ontology O′P := (AP , T ′P) where

T ′P := TP ∪ {〈> v ∀ri.(((A→ B) u (B → A))→ H) ≥ 1〉 | 1 ≤ i ≤ m}.



Theorem 6. The instance P of the PCP has a solution iff the ontology O′P is
not witnessed consistent.

Proof. Assume first that P has a solution µ = i1 · · · ik and let u = vµ = wµ and
µ′ = i1i2 · · · ik−1 ∈ {1, . . . ,m}∗. Suppose there is a witnessed model I of O′P .
Since OP ⊆ O′P , I must also be a model of OP . From Lemma 5 it then follows
that there are nodes δ, δ′ ∈ ∆I such that AI(δ) = AIP (µ) = BIP (µ) = BI(δ),
HI(δ) = HIP (µ) = q/2, and rIik(δ

′, δ) = 1. Then we have ((A → B) u (B →
A))I(δ) = 1, and hence

(((A→ B) u (B → A))→ H)I(δ) = 1⇒ q/2 = q/2.

This then means that (∀rik .(((A→ B)u (B → A))→ H))I(δ′) ≤ q/2, violating
one of the axioms in T ′P \ TP . Hence, I is cannot be a model of O′P .

Conversely, assume that O′P is not witnessed consistent. Then IP is not a
model of O′P . Since it is a model of OP , there must exist an i, 1 ≤ i ≤ m such
that IP violates the axiom 〈> v ∀ri.(((A→ B) u (B → A))→ H) ≥ 1〉. This
means that there is some µ ∈ {1, . . . ,m}∗ such that

(∀ri.(((A→ B) u (B → A))→ H))IP (µ) < 1.

Since rIPi (µ, µ′) = 0 for all µ′ 6= µi and rIPi (µ, µi) = 1, this implies that

(((A→ B) u (B → A))→ H)IP (µi) < 1;

i.e. ((A → B) u (B → A))IP (µi) > q/2. From the equivalence (1) above, it
follows that AIP (µi) = BIP (µi), and hence µi is a solution of P. ut

Corollary 7. Witnessed consistency of ∗-ALE ontologies is undecidable if con-
junction is interpreted using a t-norm that q-starts with Π for a rational number
q ∈ (0, 1].

Notice that in the proofs of Lemma 5 and Theorem 6, the second condition
of the definition of witnessed models was never used. Moreover, the witnessed
interpretation IP is also weakly witnessed. We thus have the following corollary.

Corollary 8. Weakly witnessed consistency and quasi-witnessed consistency of
∗-ALE ontologies are undecidable if conjunction is interpreted using a t-norm
that q-starts with Π for a rational number q ∈ (0, 1].

5 Undecidability w.r.t. Strongly Witnessed Models

Unfortunately, the model IP constructed in the previous section is not a strongly
witnessed model of OP since, for instance, infη∈∆IP (>IP (η) ⇒ AIP (η)) = 0,
but there is no δ ∈ ∆IP with AIP (δ) = 0. Thus, the construction of O′P does
not yield an undecidability result for strongly witnessed consistency in ∗-ALE .

This means that we need a different reduction to prove undecidability of
strongly witnessed consistency. This reduction will follow a similar idea to the



one from the previous section, in which models describe a search for a solution
of the PCP P. However, rather than building the whole search tree, models
will describe only individual branches of this tree. The condition (wit3) will
help ensure that at some point in this branch a solution is found. Conversely,
the models constructed from solutions will be finite, and thus trivially strongly
witnessed.

Before describing the reduction in detail, we recall a useful property of t-
norms. Using a t-norm ⊗ and its associated residuum ⇒, one can express the
minimum and maximum operators as follows [15]:

– min(x, y) = x⊗ (x⇒ y),
– max(x, y) = min(((x⇒ y)⇒ y), ((y ⇒ x)⇒ x)).

We can thus introduce w.l.o.g. the ∗-ALE concept constructor max with the
obvious semantics. We will use this constructor to simulate the non-deterministic
choices in the search tree as described next.

Given an instance P = ((v1, w1), . . . , (vm, wm)) of the PCP, we define the
ABox A0

P and the TBox T 0
P as in the previous section, and for every i, 1 ≤ i ≤ m,

we construct the TBox

T siP := {〈Ci v ∃ri.> ≥ 1〉 , 〈Vi uA(s+1)|vi| ri A〉, 〈Wi uB(s+1)|wi| ri B〉}.

The only difference between the TBoxes T iP and T siP is in the first axiom. In-
tuitively, the concept names Ci encode the choice of the branch in the tree to
be expanded. Only if CIi (δ) = 1, there will be an ri successor with degree 1,
and the i-th branch of the tree will be explored. For this intuition to work, we
need to ensure that at least one of the Cis is interpreted as 1 in every node. On
the other hand, we can stop expanding the tree once a solution has been found.
Using this intuition, we define the ontology OsP := (AsP , T sP) where

AsP := A0
P ∪ {a : max(C1, . . . , Cm) = 1},

T sP := T 0
P ∪

m⋃
i=1

T siP ∪ {〈(A uB)→ ⊥ v ⊥ ≥ 1〉} ∪

{〈> v ∀ri.max((A→ B) u (B → A), C1, . . . , Cm) ≥ 1〉 | 1 ≤ i ≤ m}.

Theorem 9. The instance P of the PCP has a solution iff the ontology OsP is
strongly witnessed consistent.

Proof. Let ν = i1i2 · · · ik be a solution of P and let pre(ν) denote the set of all
prefixes of ν. We build the finite interpretation IsP as follows:

– ∆I
s
P := pre(ν),

– aI
s
P = ε,

for all µ ∈ ∆IsP ,

– AI
s
P (µ) = q · 2−vµ , BIsP (µ) = q · 2−wµ ,

and for all j, 1 ≤ j ≤ m



– V
IsP
j (µ) = q · 2−vj , W I

s
P

j (µ) = q · 2−wj ,
– C

IsP
j (µ) = 1 if µj ∈ pre(ν) and CI

s
P
j (µ) = 0 otherwise, and

– r
IsP
j (µ, µj) = 1 if µj ∈ pre(ν) and rI

s
P
j (µ, µ′) = 0 if µ′ ∈ pre(ν) and µ′ 6= µj.

We show now that IsP is a model of OsP . Since IsP is finite, it follows immedi-
ately that it is also strongly witnessed. Clearly IsP satisfies all axioms in A0

P ;
additionally, we have that CI

s
P
i1

(ε) = 1 and thus, IsP satisfies AsP . The axiom
〈(A uB)→ ⊥ v ⊥ ≥ 1〉 expresses that (A u B)I

s
P (µ) ⇒ 0 = 0, and hence

(A u B)I
s
P (µ) > 0 for all µ ∈ pre(ν), which clearly holds. We now show that

the other axioms are also satisfied for every µ ∈ pre(ν).
Let µ ∈ pre(ν) \ {ν}. Then we know that there exists i, 1 ≤ i ≤ m, such that

C
IsP
i (µ) = 1 and rI

s
P
i (µ, µi) = 1; thus µ satisfies the axioms in T siP . Moreover,

C
IsP
j (µ) = 0 = r

IsP
j (µ, µ′) for all j 6= i and all µ′ ∈ pre(ν), which means that

µ trivially satisfies all axioms in T sjP . If µi = ν, then ((A → B) u (B →
A))I

s
P (µi) = 1 since ν is a solution. Otherwise, there is a j, 1 ≤ j ≤ m with

µij ∈ pre(ν), and thus CI
s
P
j (µi) = 1. Thus, we have in both cases that µ also

satisfies the last axioms in T sP .
Finally, if µ = ν, then rI

s
P
i (µ, µ′) = 0 and Ci(µ) = 0, for all µ′ ∈ pre(ν) and

all i, 1 ≤ i ≤ m, and thus the axioms are all trivially satisfied.
Conversely, let I be a strongly witnessed model of OsP . Then, there must be

an element δ0 ∈ ∆I with aI = δ0. Since I must satisfy all axioms in AsP , there
is an i1, 1 ≤ i1 ≤ m such that CIi1(δ0) = 1. Since δ0 must satisfy the axioms in
T si1P , there must exist a δ1 ∈ ∆I with rIi1(δ0, δ1) = 1, AI(δ1) = q · 2−vi1 , and
BI(δ1) = q·2−wi1 . If AI(δ1) = BI(δ1), then i1 is a solution of P. Otherwise, from
the last set of axioms in T sP , there must exist an i2, 1 ≤ i2 ≤ m with CIi2(δ1) = 1.
We can then iterate this construction to generate a sequence i3, i4, . . . of indices
and δ2, δ3, . . . ∈ ∆I where AI(δk) = q · 2−vi1 ···vik , and BI(δk) = q · 2−wi1 ···wik .

If there is some k such that AI(δk) = BI(δk), then i1 · · · ik is a solution
of P. Assume now that no such k exists. We then have an infinite sequence of
indices i1, i2, . . . and since, for every i, 1 ≤ i ≤ m, either vi 6= 0 or wi 6= 0,
then at least one of the sequences vi1 · · · vik , wi1 · · ·wik increases as k gets larger.
Thus, for every natural number n there is a k such that either vi1 · · · vik > n or
wi1 · · ·wik > n; consequently (A uB)I(δk) < q · 2−n. This implies that

inf
η∈∆I

(>I(η)⇒ (A uB)I(η)) = 0,

and since I is strongly witnessed, there must exist a γ ∈ ∆I with

0 = >I(γ)⇒ (A uB)I(γ) = (A uB)I(γ).

But from this it follows that ((A u B) → ⊥)I(γ) ⇒ 0 = 0, contradicting the
axiom 〈(A uB)→ ⊥ v ⊥ ≥ 1〉 of T sP . Thus, P has a solution. ut

Notice that, if P has no solution, then OsP still has witnessed models, but
no strongly witnessed models. It is also relevant to point out that OsP has a



strongly witnessed model iff it has a finite model. In fact, the condition of strongly
witnessed was only used for ensuring finiteness of the model, and hence, that a
solution is indeed found.

Corollary 10. For ∗-ALE ontologies, strongly witnessed consistency and con-
sistency w.r.t. finite models are undecidable if conjunction is interpreted using a
t-norm that q-starts with Π for a rational number q ∈ (0, 1].

6 Conclusions

We have shown that consistency of ∗-ALE ontologies w.r.t. several notions of
models, ranging from finite models to weakly witnessed models, is undecidable
if the t-norm used to interpret conjunction is a t-norm that q-starts with Π for
a rational number q ∈ (0, 1]. Since, for every q ∈ (0, 1], there exist uncountably
many t-norms that q-start with Π, our results yield an uncountable family of t-
norms for which reasoning in ∗-ALE becomes undecidable. Whether consistency
in general (i.e., without restricting the class of interpretations) is also undecidable
under these t-norms is still an open problem. The same is true if a t-norm that
does not q-start with Π for a rational number q ∈ (0, 1] is used. For the case
of fuzzy DLs where disjunction and involutive negation is used in place of the
residuum, we have an undecidability results for the product t-norm, but only for
the case of witnessed models and with an extension of the TBox formalism to
allow for the use of > in fuzzy GCIs [2].

Since the results in [5,2] have shown that the tableau-based algorithms for
fuzzy DLs with GCIs are actually incorrect, the only decidability results for
fuzzy DLs with GCIs that are currently available are those that use a finite set
of fuzzy membership degrees [11,12,10], or consider a rather simple t-norm (e.g.
the Gödel t-norm) over the interval [0, 1], where only finitely many membership
degrees are relevant for reasoning [6]. In these cases, a black-box approach that
calls a crisp DL reasoner can be used.
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