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Abstract—This paper concentrates on a fuzzy Description
Logic with product t-norm and involutive negation. It does not
answer the question posed in its title for this logic, but it gives
strong indications that the answer might in fact be “no.” On the
one hand, it shows that an algorithm that was claimed to answer
the question affirmatively for this logic is actually incorrect. On
the other hand, it proves undecidability of a variant of this logic.

Index Terms—Fuzzy Description Logics, Undecidability, Rea-
soning

I. INTRODUCTION

Description logics (DLs) [1] are a well-investigated family
of logic-based knowledge representation formalisms, which
can be used to model a given application domain using termi-
nological axioms and assertional axioms. On the terminologi-
cal side, modern DL systems provide their users with so-called
concept inclusion axioms. The availability of these axioms
increases the complexity of reasoning, both from a complexity
theoretic and a practical point of view. For example, for
the standard DL ALC, the complexity rises from PSpace to
ExpTime if these axioms are added. In addition, the tableau-
based reasoning procedure used by most DL systems run
into a termination problem: one has to add so-called blocking
conditions in order to ensure their termination [2].

Fuzzy variants of DLs were introduced in order to deal
with applications where precise definitions are not possible [3].
Decidability of fuzzy DLs is often shown by adapting the
tableau-based algorithms for the corresponding crisp DL to the
fuzzy case. This was first done for the case of DLs without
concept inclusion axioms [4], [5] or with only crisp concept
inclusion axioms [6], [7], but then also extended to DLs with
concept inclusion axioms [8], [9]. In particular, Bobillo and
Straccia [10], [11] have developed such an algorithm for a DL
with product t-norm and involutive negation. Whereas [11]
focuses only on so-called acyclic TBoxes, the algorithm
from [10] allows for general concept inclusion axioms. More
precisely, this algorithm is supposed to check whether an
ontology expressed in this DL has a so-called witnessed model.
Actually, the proof of correctness of this algorithm implies that,
whenever such an ontology has a witnessed model, then it has a
finite model. However, it was recently shown in [12] that this
is not the case in the presence of general concept inclusion
axioms, i.e., there is an ontology written in this logic that has
a witnessed model, but does not have a finite model. Of course,
this does not automatically imply that the algorithm itself is
wrong. In fact, if one applies the algorithm from [10] to the

ontology used in [12] to demonstrate the failure of the finite
model property, then one obtains the correct answer.

In this paper, we will first show that the algorithm is
indeed incorrect by exhibiting an example ontology on which
it gives an incorrect answer. This shows that the question of
whether (witnessed) consistency of this logic is decidable or
not is an open question. The second result shown in this paper
gives an indication that the answer could in fact be “no.” We
prove undecidability for a slightly modified problem where
(i) we allow not only ≥ but also > in our fuzzy concept
inclusion axioms, and (ii) consider a somewhat weaker notion
of witnessed model.

II. PRELIMINARIES

We introduce the logic fuzzy ALC with product t-norm and
involutive negation and the tableau-based algorithm for this
logic presented in [10], and then give an example that shows
that this algorithm is not correct.

A. Fuzzy ALC with Product t-norm and involutive negation

The syntax of fuzzy ALC concepts is the same as for crisp
ALC. From two disjoint sets NC and NR of concept- and role-
names, respectively, fuzzy ALC concepts are built using the
syntax rule:

C ::= > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR.
The syntax of the axioms in this logic is slightly different

from the crisp case since they need to state a degree of
truth with which they hold. A fuzzy ALC ABox is a finite
set of concept assertion axioms of the form 〈a : C ≥ q〉 and
role assertion axioms 〈(a, b) : r ≥ q〉, where C is a fuzzy
ALC concept, r ∈ NR, q is a rational number in [0, 1], and
a, b ∈ NI , with NI the set of individual names. A fuzzy
ALC TBox is a finite set of concept inclusion axioms of the
form 〈C v D ≥ q〉, where C,D are ALC concepts and q is
a rational number in [0, 1]. A fuzzy ontology O = (A, T )
consists of a fuzzy ABox A together with a fuzzy TBox T .

The semantics of this logic extends the classical semantics
ofALC by interpreting concepts and roles as fuzzy sets over an
interpretation domain. Given a non-empty set ∆ (the domain),
a fuzzy set over ∆ is a function F : ∆ → [0, 1], with the
intuition that an element δ ∈ ∆ belongs to F with degree F (δ).
The semantics of the different concept constructors depends on
the class of fuzzy operators chosen to interpret them. In this



paper, we use the binary operators product t-norm ⊗, product t-
conorm ⊕, and residuum→, and the unary operator involutive
negation 	 over the interval [0, 1]. These operators are defined
as follows, for every α, β ∈ [0, 1]:

α⊗ β := α · β,
α⊕ β := α+ β − α · β,

α→ β :=

{
1 if α ≤ β
β/α otherwise,

	α := 1− α.

It is useful to notice that, for every α, β, q ∈ [0, 1], we have
α → β ≥ q iff β ≥ q · α. In particular, this means that
(i) α → β ≥ 1 iff β ≥ α and (ii) 1 → β = β. We will often
make use of these properties in the rest of this paper.

The semantics of fuzzy ALC is based on the notion of an
interpretation, which is a tuple I = (∆I , ·I) where ∆I is a
non-empty set, called the domain, and the function ·I maps
each individual name a to an element of ∆I , each concept
name A to a function AI : ∆I → [0, 1] and each role name r to
a function rI : ∆I ×∆I → [0, 1]. The interpretation function
is extended to arbitrary fuzzy ALC concepts as follows. For
every δ ∈ ∆I ,

>I(δ) = 1

⊥I(δ) = 0

(C1 u C2)I(δ) = CI1 (δ) · CI2 (δ)

(C1 t C2)I(δ) = CI1 (δ) + CI2 (δ)− CI1 (δ) · CI2 (δ)

(¬C)I(δ) = 1− CI(δ)

(∃r.C)I(δ) = sup
γ∈∆I

(rI(δ, γ) · CI(γ))

(∀r.C)I(δ) = inf
γ∈∆I

(rI(δ, γ)→ CI(γ)).

The interpretation I = (∆I , ·I) satisfies the concept assertion
〈a : C ≥ q〉 iff CI(aI) ≥ q, it satisfies the role assertion
〈(a, b) : r ≥ q〉 iff rI(aI , bI) ≥ q, and it satisfies the concept
inclusion 〈C v D ≥ q〉 iff infδ∈∆I (CI(δ) → DI(δ)) ≥ q.
This interpretation is called a model of the ontology O if it
satisfies all the axioms in O.

An important notion in fuzzy DLs is that of witnessed
models [13], [14]. A model is called witnessed if for every
δ ∈ ∆I , role r and concepts C,D there exist γ, γ′ ∈ ∆I such
that
• (∃r.C)I(δ) = rI(δ, γ) · CI(γ) and
• (∀r.C)I(δ) = rI(δ, γ′)→ CI(γ′).

Notice that, in the literature (e.g. [11], [12], [15]), witnessed
models are usually required to satisfy additionally that, for
every two concepts C,D, there is a γ such that

inf
η∈∆I

(CI(η)→ DI(η)) = CI(γ)→ DI(γ).

We call those witnessed models that satisfy this additional
restriction strongly witnessed models.

The reason why we do not include this condition is that, in
our opinion, it does not capture the spirit of fuzzy concept

inclusions: the axiom 〈C v D ≥ q〉 is meant to constrain
the interpretation of concepts and roles such that, for each
individual δ ∈ ∆, we have CI(δ) → DI(δ) ≥ q. With this
point of view, it is not really necessary that the infimum of
the values for the residuum is indeed reached. In contrast, for
the value restriction, this infimum is really the degree of this
restriction, and thus it makes sense to require that this degree
is witnessed by a role successor.

We say that an ontology O is consistent if it has a model,
it is witnessed consistent if it has a witnessed model, and it
is strongly witnessed consistent if it has a strongly witnessed
model.

As it has been shown in [11], consistency does not imply
witnessed consistency in fuzzy ALC. However, it is standard
in fuzzy DL to restrict reasoning to witnessed models only
(see for instance [10], [11]).

Notation. We will often use the expression 〈C = q〉 to ab-
breviate the two axioms 〈> v C ≥ q〉 , 〈> v ¬C ≥ 1− q〉,
and the expression 〈C ≡ D〉 to abbreviate 〈C v D ≥ 1〉,
〈D v C ≥ 1〉. Likewise, 〈a : C = q〉 is an abbreviation for
〈a : C ≥ q〉 , 〈a : ¬C ≥ 1− q〉.

Intuitively, the expressions 〈C = q〉 , 〈C ≡ D〉, and
〈a : C = q〉 restrict every model I to be such that, for
all δ ∈ ∆I , we have CI(δ) = q, CI(δ) = DI(δ), and
CI(aI) = q, respectively.

B. The Original Algorithm of [10]

A tableau-based algorithm for deciding strongly witnessed
consistency of a fuzzy ALCF(D) ontology was presented
in [10].1 However, as we will show, this algorithm is incorrect,
even if restricted to fuzzy ALC. We now briefly introduce
the algorithm, leaving aside all the steps corresponding to
expressivity beyond that of fuzzy ALC. In the following,
x (possibly with sub- or superindices) denotes a continuous
variable taking values from [0, 1], q denotes a constant in
[0, 1], l denotes a literal, that is, a continuous variable x, a
negated variable 1−x or a constant, and y denotes a Boolean
variable taking values from {0, 1}.

The algorithm constructs a completion forest; that is, a
collection of trees whose roots may be arbitrarily intercon-
nected by edges. Every node v in this forest is labeled by
a set L(v) of labeled concepts of the form 〈C, l〉 and a set
C(v) of inequalities. Intuitively, 〈C, l〉 ∈ L(v) means that v
belongs to C with degree at least l and the inequalities in
C(v) constrain the valuations of the different variables used.
Additionally, every edge (v1, v2) is labeled with a set L(v1, v2)
of labeled role names 〈r, l〉 with the meaning that (v1, v2) are
in an r-relation with degree at least l.

The algorithm initializes the completion forest to contain
one root node vi for each individual name ai appearing in
the ABox A with L(vi) = {〈C, l〉 | 〈ai : C ≥ l〉 ∈ A} and
L(vi, vj) = {〈r, l〉 | 〈(ai, aj) : r ≥ l〉 ∈ A}. The sets C(vi)
are all initialized as empty. This completion forest is extended

1Fuzzy ALCF(D) is fuzzy ALC extended with additonal constructors that
are not relevant for this paper.



(A) if 〈A, l〉 ∈ L(v) then add xv:A ≥ l to C(v)
(A) if 〈¬A, l〉 ∈ L(v) then add xv:A ≤ 1− l to C(v)
(r) if 〈r, l〉 ∈ L(v, w) then add x(v,w):r ≥ l to C(w)
(>) if 〈>, l〉 ∈ L(v) or 〈¬⊥, l〉 ∈ L(v) then add l = 1 to C(v)
(⊥) if 〈⊥, l〉 ∈ L(v) or 〈¬>, l〉 ∈ L(v) then add l = 0 to C(v)
(¬¬) if 〈¬¬C, l〉 ∈ L(v) then add 〈C, l〉 to L(v)
(u) if 〈C uD, l〉 ∈ L(v) then add 〈C, x1〉 , 〈D,x2〉 to L(v) and

x1 · x2 ≥ l to C(v)
(u) if 〈¬(C uD), l〉 ∈ L(v) then add 〈¬C t ¬D, l〉 to L(v)
(t) if 〈C tD, l〉 ∈ L(v) then add 〈C, x1〉 , 〈D,x2〉 to L(v) and

x1 + x2 − x1 · x2 ≥ l to C(v)
(t) if 〈¬(C tD), l〉 ∈ L(v) then add 〈¬C u ¬D, l〉 to L(v)
(∀) if 〈∀r.C, l1〉 ∈ L(v) and 〈r, l2〉 ∈ L(v, w) then add 〈C, x〉 to
L(w) and x ≥ l1 · l2 to C(w)

(∃) if 〈¬∃r.C, l1〉 ∈ L(v) and 〈r, l2〉 ∈ L(v, w) then add
〈¬C, 1− x1〉 to L(w) and x(v,w):r ≤ x2, x1 · x2 = 1 − l1 to
C(w)

(∀) if 〈¬∀r.C, l〉 ∈ L(v) then create a new node w and add 〈r, x1〉 to
L(v, w), 〈C, x2〉 to L(w) and y · x1 + (1 − y) · x2 ≥ y · x2 +
(1− y) · x1, l ≤ y, y · x2 ≤ x1 − l · x1 to C(w)

(∃) if 〈∃r.C, l〉 ∈ L(v) then create a new node w and add 〈r, x1〉 to
L(v, w), 〈C, x2〉 to L(w) and x1 · x2 ≥ l to C(w)

(v) if 〈C v D ≥ q〉 ∈ T and v is a node in the forest, then add
〈¬C, 1− x1〉 , 〈D, x2〉 to L(v) and x2 ≥ x1 · q to C(v).

TABLE I
COMPLETION RULES FOR FUZZY ALC CONSISTENCY.

x, x1, x2, y ARE ALWAYS NEW VARIABLES

by application of the completion rules from Table I. As is
standard with tableau-based algorithms, these rules are only
applied as long as something new is added to the completion
forest.

The main idea of these rules is that they decompose
complex concepts into their subconcepts, while preserving the
fuzzy semantics through the restrictions in C. Assume for
the moment that the algorithm has terminated (i.e., no more
completion rules are applicable) and that the constraint system
C :=

⋃
v C(v) generated by the algorithm has a solution in

[0, 1]. The claim is then that the completion forest obtained
by the algorithm describes a model of the ontology, where
the membership degree of a node v to a concept name A
corresponds to the value of the variable xv:A, and accordingly
for roles. Conversely, from any model of the ontology it is
possible to build a satisfying valuation of the variables in C.

However, as it is also the case for crisp ALC, this comple-
tion forest construction may not terminate, due to the fact that
concept inclusions can express cyclic relationships between
concepts, which may enforce an infinite generation of new in-
dividuals. In order to ensure termination, a blocking condition
is used, which disallows the application of “generating” rules;
i.e., the (∃) and (∀) rules cannot be applied in any node that
is considered to be blocked.

Definition 1 (blocking [10]). Two non-root nodes v, w are
called equivalent, denoted as L(v) ≈ L(w), if L(v) =
{〈C1, l1〉 , . . . , 〈Ck, lk〉},L(v) = {〈C1, l

′
1〉 , . . . , 〈Ck, l′k〉} and

for every 1 ≤ i ≤ k, li, l′i are either both variables, or are

both negated variables, or are both the same constant.
A node v is directly blocked iff it is not a root node and

it has an ancestor w such that L(v) ≈ L(w); in this case we
say that w is the blocking node of v. A node is blocked if it
is directly blocked or its predecessor is blocked.

With this blocking condition, it is not hard to show that
the algorithm always terminates. It then answers that the input
ontology O is strongly witnessed consistent iff the system of
inequalities C generated by this terminating run on input O
has a solution.

The idea behind the proof of correctness of this algorithm,
as presented in [10], is that the variables appearing in blocking
and blocked nodes can be evaluated to the same numerical
value in a solution of C. If correct, this proof would show
that an ontology that has a strongly witnessed model always
has a finite model. Indeed, the interpretation constructed from
the completion forest generated by a terminating run of the
algorithm is finite. Unfortunately, as we will see below, it need
not be a model. The first blow to the claimed correctness of
the algorithm came when it was shown in [12] that the logic
does not have the finite model property. More precisely, in [12]
the authors present a simple ontology that is strongly witnessed
consistent, but does not have a finite model. Thus, the approach
through which the algorithm tries to build a (finite) model is
wrong. However, this does not automatically imply that the
algorithm itself is wrong. In fact, if one applies the algorithm to
the ontology used in [12], then one obtains the correct answer,
namely that the ontology is strongly witnessed consistent. The
authors conjecture in [12] that the algorithm is still correct.2

Note that the algorithm tries to construct a finite portion of
a model. If the input ontology is indeed consistent, and thus
has a (possibly infinite) model, then it is easy to see that this
construction will always succeed (i.e., the constraint system
generated by the algorithm is satisfiable). This means that the
algorithm is complete.

Remark 2. The algorithm from [10] is complete for strongly
witnessed consistency; that is, it yields the right answer
whenever the input ontology is strongly witnessed consistent.

Unfortunately, as the following example shows, it is not
sound since it fails to correctly identify inconsistency.

Example 3. Consider the ontology with the following axioms:
ax1 : 〈a : A ≥ 0.1〉
ax2 : 〈A v (∀r.A) uB ≥ 1〉
ax3 : 〈> v ¬B ≥ 0.5〉
ax4 : 〈> v ∃r.> ≥ 1〉.

We will prove first that this ontology is inconsistent, and
thus also not (strongly) witnessed consistent. We then show
that the algorithm described above yields the wrong answer,
i.e., it claims that the ontology is strongly witnessed consistent.

2Independently from us, a counterexample to the correctness of the al-
gorithm in [10] has now also been found by the authors of [12]. This
counterexample, which is presented in [16], is different from the one we give
here. The paper [16], which is an improved version of [12], was available
online only after we had submitted the present paper.



Suppose that there is a model (not necessarily witnessed)
I = (∆I , ·I) of this ontology, and let v0 ∈ ∆I be any element
of the domain. From axiom ax4, we obtain that

1 = (∃r.>)I(v0) = sup
δ∈∆I

rI(v0, δ).

This means that there must exist v1 ∈ ∆I such that
rI(v0, v1) > 0.99.3 From ax3 it follows that (¬B)I(v0) ≥ 0.5;
i.e., BI(v0) ≤ 0.5; additionally, from ax2 we know

AI(v0) ≤ (∀r.A)I(v0) ·BI(v0) ≤ (∀r.A)I(v0) · 0.5,

or equivalently,

2 ·AI(v0) ≤ (∀r.A)I(v0) = inf
δ∈∆I

rI(v0, δ)→ AI(δ)

≤ rI(v0, v1)→ AI(v1)

≤ 0.99→ AI(v1). (1)

Additionally, it holds that 0.99 → AI(v1) ≤ 1, and so
AI(v0) ≤ 0.5. Recall that v0 was an arbitrary element of the
domain, and thus the previous holds also for v1; in particular
we have that AI(v1) ≤ 0.5 and 0.99→ AI(v1) = c ·AI(v1),
where c = 100/99. Since 2/c > 1, it follows from the
inequality (1) that

AI(v0) < (2/c) ·AI(v0) ≤ AI(v1) ≤ 0.5.

Once again, since all the previous is true for any element of
the domain, it follows that there must exist infinitely many
elements v2, v3, . . . such that for every n ≥ 0 it holds

(2/c)n ·AI(v0) ≤ AI(vn) ≤ 0.5

But since 2/c > 1, it then follows that AI(v0) = 0. In
particular, this is true for v0 = aI ∈ ∆I . But this is a
contradiction to the assumption that I is a model of the axiom
ax1. Thus, the ontology is inconsistent.

Let us now analyse the execution of the algorithm on this
input. The algorithm starts with a single root node v0 with
L(v0) = {〈A, 0.1〉} and C(v0) = ∅. Application of the rule (v)
with axioms ax2, ax3 and ax4 will add

〈¬A, 1− x1〉 , 〈(∀r.A) uB, x2〉 , 〈¬>, 1− x3〉 , 〈¬B, x4〉 ,
〈¬>, 1− x5〉 , 〈∃r.>, x6〉

to L(v0) and x1 ≤ x2, 0.5·x3 ≤ x4, x5 ≤ x6 to C(v0). The rule
(u) then adds 〈∀r.A, x7〉 , 〈B, x8〉 to L(v0) and x2 = x7 · x8

to C(v0). The rules (A), (A), and (⊥) then yield

0.1 ≤ xv0:A ≤ x1, x8 ≤ xv0:B ≤ 1− x4,

1− x3 = 0, 1− x5 = 0.

Finally, an application of the rule (∃) produces a new node v1

with labels L(v1) = {〈>, x9〉}, L(v0, v1) = {〈r, x10〉}, and
C(v1) = {x9 · x10 = x6}. The rule (∀) then adds 〈A, x11〉 to
L(v1) and x11 ≥ x7 · x10 to C(v1).

Notice that all the concepts and constraints added to the
labels of v0, except 〈A, 0.1〉, were caused by the axioms ax2

3Notice that the choice of 0.99 is an arbitrary one; the same arguments can
be used with any constant κ > 0.5.

to ax4, and thus they will also be added to v1. The result of
the rule applications to this node is then

L(v1) = { 〈A, x11〉 , 〈¬A, 1− x′1〉 , 〈(∀r.A) uB, x′2〉 ,
〈¬>, 1− x′3〉 , 〈¬B, x′4〉 ,
〈¬>, 1− x′5〉 , 〈∃r.>, x′6〉 , 〈∀r.A, x′7〉 , 〈B, x′8〉},

C(v1) = {x9 · x10 = x6, x11 ≥ x7 · x10, x
′
1 ≤ x′2,

0.5 · x′3 ≤ x′4, x′5 ≤ x′6, x′2 = x′7 · x′8,
x11 ≤ xv1:A ≤ x′1, x′8 ≤ xv1:B ≤ 1− x′4,
1− x′3 = 0, 1− x′5 = 0}.

Once again we can apply the (∃) rule to obtain a new
individual v2. From the (∀) rule and again the application
of (v) rule with axioms ax2 to ax4 we obtain

L(v2) = { 〈A, x′11〉 , 〈¬A, 1− x′′1〉 , 〈(∀r.A) uB, x′′2〉 ,
〈¬>, 1− x′′3〉 , 〈¬B, x′′4〉 ,
〈¬>, 1− x′′5〉 , 〈∃r.>, x′′6〉 , 〈∀r.A, x′′7〉 , 〈B, x′′8〉},

C(v2) = {x′9 · x′10 = x′6, x
′
11 ≥ x′7 · x′10, x

′′
1 ≤ x′′2 ,

0.5 · x′′3 ≤ x′′4 , x′′5 ≤ x′′6 , x′′2 = x′′7 · x′′8 ,
x′11 ≤ x′v2:A ≤ x′′1 , x′′8 ≤ xv2:B ≤ 1− x′′4 ,
1− x′′3 = 0, 1− x′′5 = 0}.

At this point L(v1) ≈ L(v2), and hence node v2 is blocked
and the algorithm terminates.

It is easy to verify that the valuation that sets

0.1 = x1 = x2 = xv0:A,

0.2 = x7 = x11 = x′1 = x′2 = xv1:A,

0.4 = x′7 = x′11 = x′′1 = x′′2 = xv2:A,

0.5 = x4 = x′4 = x′′4 = x8 = x′8 = x′′8

= xv0:B = xv1:B = xv2:B ,

0.8 = x′′7

and all other variables to 1 satisfies all the constraints in C.
Thus the algorithm returns “strongly witnessed consistent” as
an answer, which we have shown to be incorrect.

Notice that the arguments used to show inconsistency in
this example do not depend on the exact value of the constant
0.1 in ax1. In order to make the ontology inconsistent, any
constant κ greater than 0 can be used. However, the algorithm
multiplies this value with 2 three times before stopping (see the
valuation of x′′7 above). To ensure that the algorithm finishes
with a satisfiable system of constraints, the constant chosen
has to be small enough to ensure that 8 · κ ≤ 1.

We emphasize that the ontology from the previous example
has no model at all, which means that the algorithm is
incorrect even if we do not restrict to only strongly witnessed
models. Thus, at this moment there is no known algorithm
for deciding consistency, witnessed consistency, or strongly
witnessed consistency of fuzzy ALC ontologies under the
product t-norm and involutive negation. In fact, it is not
even clear whether this is a decidable problem. In [13] it
was shown that, in the absense of concept inclusion axioms,



consistency of fuzzy ALC with product t-norm and residual
negation w.r.t. witnessed models is decidable; this result was
extended to so-called quasi-witnessed models (but still without
concept inclusion axioms) in [17]. However, there is so far
no result regarding the use of involutive negation or concept
inclusion axioms. In the following section, we show that for a
small extension of this logic, witnessed consistency becomes
undecidable.

III. AN UNDECIDABILITY RESULT

We now consider the logic fuzzy ALC+, which extends
fuzzy ALC by strict concept inclusions.

Definition 4 (strict concept inclusion). A strict concept inclu-
sion axiom is an expression of the form 〈C v D > q〉 where
C,D are fuzzy ALC concepts and q ∈ [0, 1). An interpretation
I satisfies this axiom if for every δ ∈ ∆I it holds that

CI(δ)→ DI(δ) > q.

For models that are not strongly witnessed, the semantics
for strict axioms introduced above may differ from the one
given by

inf
δ∈∆I

(CI(δ)→ DI(δ)) > q

since the infimum may be q although there is no witness δ
actually yielding the value q. In contrast, for the case of non-
strict axioms, saying that the infimum is ≥ q is the same
as saying that the values for all individuals are ≥ q, i.e.,
CI(δ) → DI(δ) ≥ q for all δ ∈ ∆. As argued before,
we think that the essence of a concept inclusion axiom is
to enforce the inequality for the value of all individuals, and
not to say something about the infimum of these values. This
explains why we do not use the infimum in our definition of
the semantics for strict concept inclusions.

We will show that witnessed consistency of fuzzy ALC+

ontologies is undecidable, by a reduction from the Post cor-
respondence problem, which is well-known to be undecid-
able [18].

Definition 5 (PCP). Let v1, . . . , vm and w1, . . . , wm be two
finite lists of words over an alphabet Σ = {1, . . . , s}, s > 1.
The Post correspondence problem (PCP) asks whether there
is a non-empty sequence i1, i2, . . . , ik, 1 ≤ ij ≤ m such that
vi1vi2 · · · vik = wi1wi2 · · ·wik . If such a sequence exists, it is
called a solution of the problem.

We assume w.l.o.g. that vi 6= wi for every i, 1 ≤ i ≤ m
since otherwise the problem has a trivial solution. Note that
we assume the alphabet Σ to consist of the first s positive
integers. We can thus view every word in Σ∗ as a number in
base s+ 1 representation in which 0 never occurs. Using this
intuition, we will represent the empty word as the number 0.

Before describing the reduction in detail, we introduce a
useful abbreviation.

Notation. Let C,D be two concepts and r a role name. We
use the expression

〈
D

r
 C

〉
to abbreviate the two axioms

〈D v ∀r.C ≥ 1〉 , 〈¬D v ∀r.¬C ≥ 1〉.

To understand this abbreviation, consider an interpretation
I satisfying

〈
D

r
 C

〉
and let δ, γ ∈ ∆I with rI(δ, γ) = 1.

From the first axiom it follows that

DI(δ) ≤ (∀r.C)I(δ) = inf
η∈∆I

rI(δ, η)→ CI(η)

≤ rI(δ, γ)→ CI(γ) = 1→ CI(γ)

= CI(γ).

Analogously, from the second axiom we can deduce that

1−DI(δ) ≤ 1− CI(γ),

and hence DI(δ) = CI(γ). Thus,
〈
D

r
 C

〉
expresses that

the value of DI(δ) is propagated to the valuation of the
concept C on all r successors with degree 1 of δ.

Let now C,D be two concepts and T the TBox

ax1 : 〈C t Y1 ≡ X1〉
ax2 : 〈X1 ≡ S u ¬Y1〉
ax3 : 〈¬Y1 uD ≡ Y1〉

For every model I of T and δ ∈ ∆I it holds that

CI(δ)(1− Y I1 (δ)) + Y I1 (δ) = XI1 (δ), (2)

XI1 (δ) = SI(δ)(1− Y I1 (δ)), (3)

DI(δ)(1− Y I1 (δ)) = Y I1 (δ), (4)

where equalities (2), (3), and (4) follow from axioms ax1, ax2,
and ax3, respectively. Additionally, ax3 implies that Y I1 (δ) 6= 1
since otherwise Y I1 (δ) must also be 0. It then holds that

CI(δ) +DI(δ) = SI(δ).

We can thus introduce the concept constructor � to denote
this addition without extending the expressivity of the logic.
Notice however that the TBox having the axioms ax1 to ax3

is only satisfiable by models where CI(δ) + DI(δ) ≤ 1
for all δ ∈ ∆I . One must keep this in mind when using
this constructor to avoid making the ontology inconsistent.
Given CI(δ) and DI(δ), there is exactly one value for XI1 (δ)
and Y I1 (δ) that will satisfy the three axioms above. Then,
describing the valuation of the concepts C and D suffices for
knowing also the valuation of the auxiliar concepts X1, Y1.

Notation. Let C,D be two concepts, then C � D is also a
concept, with the semantics (C �D)I(δ) = CI(δ) +DI(δ).

Let P = (v1, . . . , vm, w1, . . . , wm) be an instance of
the PCP. We will construct an ontology OP whose models
represent a search tree for a solution for P . More precisely,
every model of OP will contain one node δ for each possible
sequence of indices i1, . . . , ik, such that the interpretations of
two concept names A and B in δ encode the words vi1 · · · vik
and wi1 · · ·wik , respectively. Then P has a solution iff for
every model I of OP there is a δ such that AI(δ) and BI(δ)
encode the same word.

Let Σ = {1, . . . , s} be the alphabet over which P is defined.
We will encode words in Σ∗ using numbers from the inter-
val [0, 1] in base s+ 1. For technical reasons that will become



clear later, the concepts A and B will encode words in a
slightly different way. For every sequence of indices i1, . . . , ik,
there will be a node δ such that AI(δ) = 0.1vi1 · · · vik and
BI(δ) = 0.0wi1 · · ·wik (see Figure 1).

If there is a node δ encoding the words v and w, then we
want to ensure the existence of a node γ that encodes their
concatenation with the i-th pair; i.e., vvi and wwi. To do this,
we define, for every i, 1 ≤ i ≤ m, the TBox T iP as follows:

T iP :={〈∃ri.> = 1〉 , 〈Vi = 0.0vi〉 , 〈Wi = 0.0wi〉 ,〈
Lvi = (s+ 1)−|vi|

〉
,
〈
Lwi = (s+ 1)−|wi|

〉
,〈

A� (Vi u LA)
ri A

〉
,
〈
LA u Lvi

ri LA

〉
, (5)〈

B � (Wi u LB)
ri B

〉
,
〈
LB u Lwi

ri LB

〉
}. (6)

Let I be a witnessed model of T iP and δ ∈ ∆I such that
AI(δ) = 0.1v and BI(δ) = 0.0w for some words v, w ∈ Σ∗.
Assume additionally that LIA(δ) = (s + 1)−|v| and LIB(δ) =
(s+1)−|w|; that is, LA, LB yield information about the length
of the words encoded by A and B in δ. From the first axiom
we know that (∃ri.>)I(δ) = 1, and since I is witnessed,
there must exist γ ∈ ∆I such that rIi (δ, γ) = 1. The axioms
in line (5) ensure that

AI(γ) = (A� (Vi u LA))I(δ)

= AI(δ) + (V Ii (δ) · LIA(δ))

= 0.1v + (0.0vi · (s+ 1)−|v|) = 0.1vvi

LIA(γ) = (LA u Lvi)I(δ)

= (s+ 1)−|v| · (s+ 1)−|vi| = (s+ 1)−|vvi|

and the axioms in (6) analogously entail

BI(γ) = 0.0wwi

LIB(γ) = (s+ 1)−|wwi|.

Thus, the interpretation of A,B at node γ encodes the words
vvi, wwi, and the concepts LA, LB yield information on the
lengths of these words.

As we have seen, we can use the TBox T iP to ensure that
the concatenation of some words with the i-th pair of P will be
encoded in every model. The following ABox AP introduces
the root of the search tree, where A and B both encode the
empty word, which obviously has lenght 0.

AP := { 〈a : A = 0.1〉 , 〈a : B = 0〉 ,
〈a : LA = 1〉 , 〈a : LB = 1〉}

Notice that every finite sequence of indices i1, . . . , ik, with
1 ≤ ij ≤ m can be seen as a word ν ∈ {1, . . . ,m}∗. For a
word ν = i1i2 · · · ik ∈ {1, . . . ,m}∗, let vν and wν represent
the words vi1 · · · vik , wi1 · · ·wik ∈ {1, . . . , s}∗, respectively.
We define the tree-like interpretation IP := (∆IP , ·IP ), where
• ∆IP = {1, . . . ,m}∗,
• aIP = ε,
• AIP (ν) = 0.1vν , BIP (ν) = 0.0wν ,
• LIPA (ν) = (s+ 1)−|vν |, LIPB (ν) = (s+ 1)−|wν |, and

A = 0.1
B = 0

A = 0.1v1

B = 0.0w1

A = 0.1v1v1

B = 0.0w1w1

...

r1

A = 0.1v1vm
B = 0.0w1wm

...

rm

r1

A = 0.1v2

B = 0.0w2

...

r2

A = 0.1vm
B = 0.0wm

...

rm· · ·

· · ·

Fig. 1. The tree-shaped interpretation IP .

for all i, 1 ≤ i ≤ m
• rIPi (ν, νi) = 1 and rIPi (ν, ν′) = 0 if ν′ 6= νi,
• V IPi (ν) = 0.0vi, W IPi (ν) = 0.0wi,
LIPvi (ν) = (s+ 1)−|vi|, and LIPwi (ν) = (s+ 1)−|wi|.

The main idea underlying this interpretation is depicted in
Figure 1. It is easy to see that this interpretation is a model of
the ontology OP := (AP ,

⋃n
i=1 T iP).

Lemma 6. IP is a model of OP .

More interesting, however, is that every witnessed model of
OP must “include” IP , as stated by the following lemma.

Lemma 7. Let I be a witnessed model of OP . Then there ex-
ists a function f : ∆IP → ∆I such that CIP (ν) = CI(f(ν))
holds for every concept name C occurring in OP and every
ν ∈ ∆IP .

Proof: We first remark that every model of OP must
interpret the concept names Vi,Wi, Lvi , and Lwi with the same
constant function defined by the TBox; e.g. V Ii (δ) = 0.0vi for
every model I and δ ∈ ∆I . Thus, the interpretation function
of any model is fully determined by the interpretation of the
concept names A,B,LA, LB .

We build the function f inductively on the length of ν. First,
since I is a model of AP , there must be a δ ∈ ∆I such that
aI = δ. We fix f(ε) := δ, and verify that

AI(δ) = 0.1 = AIP (ε)

BI(δ) = 0 = BIP (ε)

LIA(δ) = LIB(δ) = 1 = LIPA (ε) = LIPB (ε).

Let now ν be such that f(ν) has been defined. Then by
induction we assume AI(f(ν)) = 0.1vν , BI(f(ν)) = 0.0wν ,
and LA, LB represent the lengths of these words. Since I
is a witnessed model, for every i, 1 ≤ i ≤ m there must
exist a γ ∈ ∆I with rIi (f(ν), γ) = 1, AI(γ) = 0.1vνvi,
BI(γ) = 0.0wνwi, and LA, LB encode the respective lengths.
We set f(νi) := γ, which as we have seen satisfies the required
property.

From this lemma it follows that, if the PCP P has a solution



ν for some ν ∈ {1, . . . ,m}+, then every witnessed model I
must contain a node δ = f(ν) such that AI(δ) = 0.1+BI(δ);
that is, where A and B encode the same word. Thus, to decide
whether P has a solution, we will search for a node δ such
that ((¬A) � B)I(δ) = 1 − 0.1 = s/(s + 1). Conversely, if
every witnessed model contains such a node, then in particular
IP has such a node, and thus P has a solution.

We now show how to detect whether a node where A
and B encode the same non-empty word exists in every
interpretation I. To do this, we will introduce flag concepts
that are interpreted as 1 whenever a given condition is satisfied.
Let C,D be two concepts and q ∈ [0, 1]. The axiom

〈¬F v ¬F u ¬F ≥ 1− q〉

restricts every model I to satisfy, for every δ ∈ ∆I

((¬F )I(δ))2 ≥ (¬F )I(δ) · (1− q);

that is, for every δ ∈ ∆I , it holds that either (¬F )I(δ) = 0
or (¬F )I(δ) ≥ 1 − q. If we add the axiom 〈C v F ≥ 1〉,
then it follows that CI(δ) ≤ F I(δ), and hence, F I(δ) = 1
if CI(δ) > q. We will denote this concept F as F[C>q]. In
addition, if we have the axioms

〈¬F v ¬F u ¬F > q〉 , 〈¬F v C ≥ 1〉

then it follows that for every δ ∈ ∆I , F I(δ) < 1 − q or
F I(δ) = 1, and that 1−CI(δ) ≤ F I(δ), and hence F I(δ) = 1
if CI(δ) ≤ q. Such concept F will be denoted as F[C≤q].4 In
a similar way, we can define flags F[C<q] and F[C≥q]. Finally,
the flag F[C=q] is defined by

〈
F[C=q] ≡ F[C≤q] u F[C≥q]

〉
.

Notation. For a concept C and q ∈ [0, 1], the expression
F[C./q], where ./ is one of >,<,≥,≤,=, denotes a concept
such that for every model I and δ ∈ ∆I , FI[C./q](δ) = 1 if
CI(δ) ./ q.

Using these flags, we can detect whether A and B encode
the same word, that is ((¬A) � B)I(δ) = s/(s + 1), by
checking whether the flag F[(¬A)�B=s/(s+1)] is interpreted as
1, and test that this word is not the empty word using the flag
F[AtB>0.1]. Notice, additionally, that AIP (δ) ≥ BIP (δ) for
all δ, and thus the concept (¬A)�B is well-defined; that is,
the axioms that are used to encode it are satisfied by IP .

Thus, for a node δ, if AI(δ) and BI(δ) encode the same
non-empty word, then

(F[(¬A)�B=s/(s+1)] u F[AtB>0.1])
I(δ) = 1.

We now define the ontology O′P := (AP , TP) where

TP :=

m⋃
i=1

T iP ∪

{> v ¬(F[(¬A)�B=s/(s+1)] u F[AtB>0.1]) > 0}.

Theorem 8. The instance P of the PCP has a solution iff the
ontology O′P is not witnessed consistent.

4Notice that this is the first instance of a strict axiom used in our
construction so far.

Proof: Assume first that P has a solution i1, . . . , ik and
let ν = i1i2 · · · ik ∈ {1, . . . ,m}∗ and u = vν = wν . Suppose
there is a witnessed model I of O′P . Since OP ⊆ O′P , I must
also be a model of OP . From Lemma 7 it follows that there
is a node δ ∈ ∆I such that

AI(δ) = AIP (ν) = 0.1u,

BI(δ) = BIP (ν) = 0.0u,

We thus have ((¬A) � B)I(δ) = s/(s + 1) and hence
F[(¬A)�B=s/(s+1)] = 1. Additionally, since u is not the
empty word, it follows that (A t B)I(δ) > 0.1 and thus
F[AtB>0.1] = 1. But this violates the last axiom in TP , and
hence I cannot be a model of O′P .

To show the converse, we will extend IP to interpret the
three flag concepts F[(¬A)�B≥s/(s+1)], F[(¬A)�B≤s/(s+1)], and
F[AtB>0.1] as follows for every δ ∈ ∆IP :

FIP[C./q](δ) =

{
1 if CIP (δ) ./ q

CIP (δ) otherwise

if ./ is either ≥ or >, and

FIP[C≤q](δ) =

{
1 if CIP (δ) ≤ q
1− CIP (δ) otherwise.

It is easy to see that this valuation satisfies the two axioms
that define each flag concept.

Additionally, every element ν ∈ ∆IP has exactly one
ri-sucessor for every i, 1 ≤ i ≤ m, i.e. there is exactly
one element ν′ ∈ ∆IP such that rIPi (ν, ν′) > 0. Thus,
the interpretation IP trivially satisfies the two conditions of
witnessed models.

Suppose now that O′P is not witnessed consistent. Then
IP is not a model of O′P . Since it is a model of OP and
satisfies the axioms defining each of the three flag concepts,
it must violate the last axiom added to TP . Thus, there
is a node ν ∈ ∆IP such that FIP[(¬A)�B=s/(s+1)](ν) = 1

and FIP[AtB>0.1](ν) = 1. By our interpretation of these flag
concepts, it then follows that 1−AIP (ν)+BIP (ν) = s/(s+1),
or equivalently, AIP (ν) = 0.1 + BIP (ν) which means that
AIP (ν) and BIP (ν) encode the same word. From the second
flag, it follows that they both encode a non-empty word. But
then, this same ν must be a solution of P , which finishes the
proof.

IV. CONCLUSIONS

We have shown that the algorithm from [10] is incorrect,
and given an undecidability result for a small extension of
fuzzy ALC with product t-norm and involutive negation. Our
results do not show that the logic used in [10] is undecidable
since we (i) added expressivity by means of the strict axioms,
and (ii) used a weaker notion of witnessed models, which
we believe to be more closely related to the idea of concept
inclusions in DL. As future work, we will analyse the decid-
ability status of consistency (witnessed consistency, strongly
witnessed consistency) for the logic considered in [10], [11]
with general concept inclusions. On the one hand, this involves



trying to correct the algorithm from [10] by introducing a more
sophisticated blocking condition. On the other hand, we will
also try to modify our undecidability proof such that it does
not use strict inclusion axioms, or such that it can also deal
with pure consistency or strongly witnessed consistency.

Another area for future work includes studying the impact
of concept inclusion axioms when reasoning w.r.t. other t-norm
based semantics, in particular with the Łukasiewicz t-norm. We
will also analyse the applicability of other reasoning techniques
to fuzzy DLs. It is important to notice that under the product
t-norm semantics, the models of an ontology may, in general,
require infinitely many different interpretation values. Hence,
the methods for transforming fuzzy DL ontologies into crisp
DL ontologies [19], [20], [21] cannot be applied in this setting.
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description logics under Gödel semantics,” International Journal of
Approximate Reasoning, vol. 50, no. 3, pp. 494–514, 2009.

[21] F. Bobillo and U. Straccia, “Reasoning with the finitely many-valued
łukasiewicz fuzzy description logic SROIQ,” Information Sciences,
vol. 181, pp. 758–778, 2011.


