
Mining of EL-GCIs
Daniel Borchmann and Felix Distel

Faculty of Computer Science
TU Dresden

Dresden, Germany
{borch,felix}@tcs.inf.tu-dresden.de

Abstract—We consider an existing approach for mining general
inclusion axioms written in a lightweight Description Logic. In
comparison to classical association rule mining, this approach
allows more complex patterns to be obtained. Ours is the first
implementation of these algorithms for learning Description
Logic axioms. We use our implementation for a case study on
two real world datasets. We discuss the outcome and examine
what further research will be needed for this approach to be
applied in a practical setting.

Index Terms—Description Logics, General Inclusion Axioms

I. INTRODUCTION

Data mining has traditionally focused on the extraction of
relatively simple, rigid patterns from datasets. For example,
in association rule mining the patterns are simple pairs of
itemsets. Their semantics is that transactions that contain
the first itemset also contain the second. In this paper we
implement and test an approach for mining a more complex
and flexible type of associations, namely general concept
inclusions (GCIs) that are written in the Description Logic
(DL) EL [1]. Our hope is that this combination of data mining
and DL will be mutually beneficial for both fields.

Classical association rule mining requires a simple type of
data where individuals (or transactions) have attributes (or
items) associated with them [2]. In many data sets there are
also binary relations between individuals, e.g. there might be a
relation linking two transactions if they have been performed
by the same customer. In another scenario, the data may have
been obtained from a social network and the binary relations
are the various degrees of friendship among individuals. Clas-
sical association rules cannot take these relations into account,
at least not natively. Data mining (and in particular social
graph mining) might benefit from the use of a language (e.g.
a language from the DL family) that is inherently capable of
talking about binary relations.

Conversely, DL might benefit from a data mining technique
that can assist in the design of ontologies. Ontology design can
be a tedious and error-prone task. It is usually done by domain
experts, who are not experts in logics. By mining GCIs from
existing data one could obtain a starting point for building an
ontology. Ideally, the results of the mining process should be
verified by a domain expert.

The work in this paper is based on an algorithm presented in
[3], [4]. Ours is the first implementation of this algorithm. The
main purpose of this work is to serve as a prove of concept
that mining GCIs can yield useful results.

Unlike algorithms for mining association rules, which usu-
ally try to compute all possible association rules (with suffi-
cient support and confidence), this algorithm only computes
a compact representation of the GCIs, a so-called base. This
is necessary since even for a finite number of relations and
attributes there are infinitely many possible EL-GCIs.

We have chosen two datasets with different characteristics
for testing our implementation. The first is an excerpt from
DBpedia [5], namely those individuals who either have chil-
dren or are someone’s child. As this dataset has been semi-
automatically extracted from Wikipedia, it contains relatively
many errors. Thus, it can teach us valuable lessons on how the
algorithm behaves on noisy and incomplete data. Second, we
have used the DrugBank [6], which is part of the Linked Open
Data Cloud [7]. It contains data about various drugs and their
protein targets. In comparison to DBpedia it is relatively free
of errors. We test the algorithm on both datasets and discuss
the outcome. The results reveal potential, but they also give
indications in what areas more research will be needed (cf.
Section V).

The structure of the paper is divided as follows. We start
with a short introduction to EL and the mining algorithm.
This is followed by a description of our implementation and
the two datasets. We present some of our observations and
finally discuss what lessons can be learned from them.

II. THEORETICAL FOUNDATIONS

A. The Description Logic EL
EL is a lightweight Description Logic. Although being

relatively inexpressive compared to other DLs it has gained
widespread acceptance, e.g. in biomedical ontologies [8], [9]
and within the latest OWL standard that contains the profile
OWL 2 EL [10]. EL’s success is largely due to its favorable
algorithmic properties.

We give an overview over the syntax of EL as well as
an intuition for its semantics to the extent which is needed
to understand this work. For a more formal introduction
to DL consider [1]. Like all Description Logics EL can
be used to describe individuals and classes of individuals,
using concept descriptions. The main building blocks for
concept descriptions are a set NC of concept names and a
set NR of role names. Concept names, e.g. Parent, Child
or FictionalCharacter, are themselves concept descriptions.
Role names describe relationships between individuals such
as hasChild, createdBy, etc. New concept descriptions can be

Homer Bart

Person,Parent
FictionalCharacter

Person
FictionalCharacter

hasChild

Fig. 1: A Simple Model

constructed using the constructors top (>), conjunction (u) and
existential restrictions (∃): If C and D are concept descriptions
and r is a role name, then C uD and ∃r.C are also concept
descriptions. For example, the concept description

Parent u FictionalCharacter (1)

describes individuals that are both parents and fictional char-
acters. The description

∃hasChild.Parent (2)

describes individuals with children who are themselves par-
ents. More formally, the semantics of EL is based on models
I = (∆I , ·I). A model consists of a set ∆I called domain
and a function ·I mapping each concept name A to a subset
AI ⊆ ∆I and each role name r to a relation rI ⊆ ∆I ×∆I .
The function ·I can be extended recursively to map every
concept description C to its interpretation CI by defining
>I = ∆I , (C u D)I = CI ∩ DI and (∃r.C)I = {x ∈
∆I | ∃y ∈ CI : (x, y) ∈ rI}. Each model can be represented
by a directed graph, the so-called description graph of I,
whose edges are labeled with a role name and whose nodes are
labeled with sets of concept names as in Figure 1. In Figure 1
the description (1) is interpreted as {Homer} and, as there are
no grandparents in this model, the description (2) is interpreted
as the empty set.

Relationships between concepts can be expressed in the
form of general concept inclusions (GCIs). These are state-
ments of the form C v D where C and D are concept
descriptions. Consider for example

Person u ∃hasChild.> v Parent, (3)

which expresses that every person who has a child is a parent.
A GCI holds in a model if the interpretation of its left hand
side is contained in the interpretation of its right hand side,
e.g. the GCI from (3) holds in the model from Figure 1,
because both sides have the interpretation {Homer}. A concept
description C is more specific than a concept description D if
the GCI C v D holds in all possible models. If B is a set of
GCIs and C v D is another GCI, then we say that C v D
follows semantically from B if and only if in every model I in
which all GCIs from B hold, the GCI C v D holds as well.

Observe that ordinary association rules can be expressed as a
simple form of GCIs where only conjunction and no existential
restrictions are used. An association rule stating that people
who buy cereals and honey also buy milk could be expressed

as BuyerOfCereal u BuyerOfHoney v BuyerOfMilk. EL-
GCIs are more expressive whenever relations exist between
individuals. In such a situation an infinite number of concepts
can be described using EL (Usually, only a fraction of them
will be interesting in practice). Therefore, we have tested our
approach only on datasets where relations between individuals
exist. The two datasets used in this work are presented in
Section III.

B. The Basic Mining Algorithm

We provide an overview of the theory that is involved. It
is described in detail in [3], [4]. In conventional association
rule mining there is only a finite number of items and therefore
only a finite number of rules. When using EL-GCIs to describe
associations this is no longer the case, as it allows for nesting
of existential restrictions, causing a blowup. Even worse, the
number of possible concept descriptions grows faster than
exponential with the number of nestings (the so-called role
depth). Hence, even with a restricted role depth we cannot
expect to enumerate all associations that hold in the data in
reasonable time. Instead, we enumerate a base of the EL-GCIs
holding in the data, i.e. a set B of GCIs such that
• all GCIs from B hold in the model, and
• all GCIs that hold in the model follow semantically from
B.

In [3], [4] a first algorithm for computing a finite base from a
given dataset is presented. Its main purpose is knowledge base
completion, and as a knowledge base completion algorithm it
competes with other methods, e.g. [11], [12]. Here we employ
it in a slightly different setting, where no knowledge base, but
a large dataset is initially present.

The algorithm proceeds in two steps. First, since it is
impossible to consider all possible EL-concept descriptions,
a finite set of relevant concept descriptions is obtained from
the data using a technique called model-based most specific
concepts. For a given model I and a set X ⊆ ∆I the concept
description C is called the model-based most specific concept
of X if it is the most specific concept description that still
satisfies X ⊆ CI . The model-based most specific concept of
X is denoted by XI . The set of relevant concept descriptions
is then obtained as

MI = NC ∪ {∃r.XI | X ⊆ ∆I}.

In [4] it is shown that the GCIs where both sides are conjunc-
tions of these relevant concept descriptions already form a base
B. This base usually contains a large number of redundancies.

Lemma 1. The set of GCIs

B = {C v (CI)I | C ∈ RI}

where RI = {
d

U | U ⊆MI} is a base for the model I.

Whenever only conjunctions occur in a GCI its semantics
become simpler. This allows the use of established theories
to further reduce the size of B. In the second step of the
algorithm this is done using a mathematical theory called For-
mal Concept Analysis (FCA) [13]. FCA uses a data structure

called formal contexts. A formal context K is defined to be
a triple K = (G,M, I) where G is a set of objects, M is a
set of attributes and I ⊆ G×M is a binary relation. Pseudo-
intents are subsets of M with certain special properties and
that can be used to characterize the implicational theory of
a formal context (cf. [13] for a formal definition). Using an
algorithm from FCA, called Next-Closure, pseudo-intents can
be computed. A smaller base B′ can be obtained using the
following result from [4].

Lemma 2. Let I be a model and KI = (∆I ,MI , I) be
the context where I is defined to contain the pair (x,C) iff
x ∈ CI . The set of GCIs

B′ =
{l

P v ((
l

P)I)I | P pseudo-intent of KI
}

is a base for the model I.

Given KI as input Next-Closure successively returns new
GCIs (or more precisely their left hand sides), however the
delay between two GCIs can be exponentially large [14]. It has
been a longstanding problem in FCA whether improvements
to Next-Closure can be made, yet no breakthrough has been
achieved so far. It can be shown that B′ has minimal cardinality
among all bases of the EL-GCIs holding in a given dataset.

Notice that the algorithm will only compute GCIs that hold
in a given dataset. In data mining terminology one could say
it computes associations with confidence 1. The reasons for
this and its implications will be discussed in Section IV-C.

C. Modifications to the Basic Algorithm

The basic algorithm described above consists of two parts,
first the relevant concept descriptions are computed and then
Next-Closure is used to obtain the basis. During the first
step a long delay can occur during which no output is
produced. To avoid this a modification to the basic algorithm
is suggested in [4] where relevant concept descriptions are
computed on the fly, i.e. during the execution of Next-Closure.
Our implementation uses this modified approach.

Models that occur in practice can be cyclic, i.e. the graph
that represents them is not a tree or forest. In this case the
existing strategy for obtaining the relevant concept descriptions
does not work when EL is used. This makes it necessary to
use an extension of EL namely the DL ELgfp that allows
for cyclic concept descriptions. Using ELgfp the cycles in the
model can be mirrored within the concept descriptions. In this
work, one of the models (DBpedia) contains cycles, while the
other does not.

III. DESCRIPTION OF DATA USED

We have implemented the EL-exploration algorithm proto-
typically as part of a larger program called conexp-clj,
which has been developed for Formal Concept Analysis.
The implementation language is Clojure, a dialect of Lisp
running on the Java Virtual Machine. The implementation
itself provides an abstract handling of Description Logics and
interpretations and allows for the examination of properties

of the algorithm. Not necessarily is it designed for perfor-
mance. Nevertheless, some optimizations ideas have been
implemented and evaluated. The descriptions of these requires
more technical insight into the algorithm and is therefore out
of the scope of this paper. For details see [15].

We have tested the algorithm on two different data sets
of different quality and size. In the next two subsections
we describe these two data sets and how they have been
constructed from data from the Linked Open Data Cloud [7].

A. Child-Relation in DBpedia

The first data set has been extracted from data from the
DBpedia project [5]. The aim of this project is to automatically
extract relational data from Wikipedia infoboxes. The data
snapshot from March 2011, which has been used for our
experiments, contains over 10 million RDF triples. To handle
them all at once is out of the scope of our capabilities, yet.
Instead, we have chosen a small subset of the data to construct
an EL-model for our experiments.

To this purpose, we have used two data sets of RDF triples
from the DBpedia, one containing relations between individ-
uals and the other containing instances of certain classes.
We then chose the role http://dbpedia.org/ontoloy/child and
collected all RDF triples from the relational data set labeled
with this relation. The individuals which appeared in these
collected triples formed the base set ∆DB for our model. Then
the concept names were chosen from the data set containing
the instances. Here all those classes have been chosen which
had at least one instance in ∆DB. In sum, this procedure
resulted in an EL-model IDB containing 5626 individuals, one
role relation and 60 concept names.

As we shall see later, this model has some odd properties
which are due to numerous errors in the DBpedia data sets.
First of all, the child relation we have chosen proves to be
cyclic in this interpretation. Furthermore, the relation does not
exist between persons alone but also between authors and their
work or even between persons and places. Those errors are
mostly owed to the nature of Wikipedia’s infoboxes which
are not standardized in any way. Thus, the data collected
by the DBpedia project has to be normalized in certain
ways and often enough errors occur. We shall see later what
consequences this has for our algorithm and the computed
results.

B. DrugBank

As another data set from the Linked Open Data Cloud we
have chosen the DrugBank [6] and Diseasome [16] data sets.
They provide information about drugs, their possible disease
targets and information about genes that are influenced by
given drugs. Three different roles occur in the datasets, namely
isSubtypeOf between diseases describing an is-a relation,
treatedBy from diseases to drugs and targets from drugs to
protein sequences being affected by the given drug. In contrast
to the DBpedia model we construct the concept names for this
model by looking at certain RDF triples. More precisely, we
collect the RDF triples named with

• http://www4.wiwiss.fu-berlin.de/drugbank/resource/
drugbank/drugCategory

• http://www4.wiwiss.fu-berlin.de/diseasome/resource/
diseasome/class

• http://www4.wiwiss.fu-berlin.de/drugbank/resource/
drugbank/goClassificationProcess.

Every individual appearing on the left side of one such RDF
triple is associated with the right side of the triple as its
concept name. The first of the three relations associates drugs
with their category in the DrugBank data set, such as being
an antianemic agent, an anticoagulant, an antiviral agent and
so on. In a similar fashion classes like metabolic, endocrine,
immunological are associated with diseases by the second
relation.

The third relation associates protein sequences with their
processes they are involved in. These processes have a verba-
tim description in the corresponding RDF triples and are there-
fore quite many, resulting in a lot of different concept names
if taken literally. We therefore did a very simple clustering by
searching for words like “metabolism”, “signal transduction”
or “homeostasis” in those process descriptions and classified
the genes according to the first match found. Undoubtedly, this
is not a very sophisticated method of clustering the processes,
but it is an easy method to keep the example small and
controllable.

The construction described so far results in an EL-model
Idrugs with 13335 individuals, three role relations and 899
concept names. In contrast to the model constructed from the
DBpedia data set, the model Idrugs is supposed to be of much
higher quality. Furthermore, the roles have been chosen such
that the resulting model Idrugs is acyclic.

IV. RESULTS

A. Results for DBpedia

We have tested our implementation on the model derived
from the child-relation from DBpedia as described in Sec-
tion III-A. In total, 1252 GCIs were found. Among these only
the first 339, i.e. less than one third, are of a form that could
have been obtained without using a Description Logic. More
precisely, they were either of the form

l

C∈A
C v

l

C∈B
C, (4)

or
l

C∈A
C v All. (5)

for some sets of concept names A and B. All stands for the
concept description that combines all possible attributes that
an individual can have. Intuitively, (5) states that an individual
that belongs to all concepts from A must belong to any ELgfp-
concept. In practice, this usually occurs when there is no
individual belonging to all concepts from A in the model.

Examples for obtained GCIs are the following

Chancellor v Politician

Book vWork

Person u Place v All

Astronaut uModel v All

(6)

The second and third GCI in (6) refer to concepts such as
Book or Place that one would not expect to apply to persons.
Since the model that we use is restricted to individuals oc-
curring in the child-relation, one would expect all individuals
to be persons. Book, Work, and Place still occur because of
errors in DBpedia. These errors result from the process in
which DBpedia is created. We discuss ways to address flawed
data in Section IV-C1.

The algorithm has a tendency to enumerate GCIs in an order
of increasing role depth of the left hand sides. More details
on why this is the case can be found in [3]. This is a desired
property, since in our tests GCIs with very large role depth
were more likely to be too specific due to overfitting and
therefore less interesting.

For the DBpedia model the GCIs of role depth 1 were
mostly of the form A u ∃child.> v All. One example is

Model u ∃child.> v All,

which states that individuals belonging to Model that have a
child successor must belong to all possible concepts. More
bluntly speaking, no offspring of a fashion model has ever
gained enough relevance to merit a DBpedia entry.

The GCIs appearing later are more complex. For example,
the relatively general GCI

∃child.Person v Person (7)

is found (which applies to 1359 individuals), but also very
specific GCIs with larger role depths appear, such as

∃child.Artist u ∃child.Politician u Person v
v ∃child.Actor u ∃child.OfficeHolder

u ∃child.Congressman u OfficeHolder, (8)

which is only applicable to the individual Robert F. Kennedy.
Notice that, while (7) is most likely a desired outcome, (8) is
an artefact of incomplete data. This problem shall be discussed
Section IV-C1. Towards the end of the exploration, the GCIs
become even more specific and much more convoluted, result-
ing in expressions which are hardly understandable.

B. Results for DrugBank

Owing to the mining algorithm’s tendency to produce GCIs
of lower role depth earlier, the first GCIs are of relatively
simple nature. In our DrugBank model there are concepts
that only apply to drugs, such as Nootropics for drugs that
belong to the class of nootropics, and concepts that only
apply to protein targets, such as RNA processing for proteins
that are involved in RNA processing. No individual can be
both a drug and a protein target, thus conjunctions of such

concepts must be unsatisfiable. This results in a large number
of GCIs of the form

d
C∈A C v All. Furthermore, all drugs

in the DrugBank have a target, yielding GCIs of the formd
C∈A C v ∃target.>. In total, about 1700 GCIs of these two

forms were found.
Among the more interesting GCIs relatively few were of

role depth 0, one example is

tRNA processing v RNA processing

uMetabolism u Physiological process.

Quite a large number of GCIs of role depth 1 are found,
such as

MuscarinicAntagonists v ∃targets
(
Signal transduction

u Cell communication u Cellular process
)

or more complex ones like

Anti-inflammatory LocallyApplied

v Anti-allergicAgents u AntiulcerAgent topical

u∃targets.
(
Response to biotic stimulusuDefense response

u Immune response u Response to stimulus
)

u ∃targets.
(
Signal transduction

uG-protein coupled receptor protein signaling pathway
)
.

Notice that in the second GCI the two existential restric-
tions really refer to two distinct targets, one (typically
Interleukin-3) is responsible for an Immune response and
another (e.g. Cysteinyl leukotriene receptor1) is responsible
for Signal transduction.

Unlike the DBpedia, which is the result of a semiautomated
process, the DrugBank has been created by human experts.
Hence can be assumed to contain relatively few errors. There-
fore, one could imagine that the results of the mining process
form a good starting point for the construction of an ontology.
Ideally, each of them should nevertheless be verified by an
expert.

C. Observations

1) Insufficient or Noisy Data: Two types of shortcomings
in the data can affect the results of the mining. First, there
may be incomplete data. In such a situation there might be
GCIs that one would not expect to hold, but for which there
is no counterexample present in the data. Second, noise or
factual errors can cause the opposite problem. There may be
GCIs that one would expect to hold, but the data contains a
(faulty) counterexample. Both of these problems occur in the
DBpedia model, while the DrugBank is relatively free of errors
in comparison. We present some examples from DBpedia to
illustrate these issues.

Insufficient Data: One example for this issue is the GCI
(8). This GCI holds in the model since no other person with
an artist and a politician as children has a DBpedia entry. Yet,
in reality such persons are nevertheless likely to exist.

Errors in the Data: Among the output of the DBpedia-
Exploration is the following fairly incomprehensible GCI.

Person u ∃child.
(

Person u ∃child.
(
Person u

∃child.(Person u ∃child.∃child(Person u ∃child.>))
))

v ∃child.
(

Person u ∃child.
(
Personu

∃child.(Personu∃child.(Personu∃child.∃child.Person))
))

It roughly states that a fourth great-grandparent’s second
great-grandchild must be a person. It is clearly true, but
unnecessarily complicated. It occurs only because the much
simpler GCI

Person u ∃child.> v ∃child.Person, (9)

from which it could be concluded, is not among the output.
There is a whole range of false counterexamples, that seem-
ingly disprove (9).

The individual named Bertolt Brecht is one such example.
Bertolt Brecht has two child-successors, Frank Banholzer
and Stefan Brecht. Both are not instances of Person. It is
surprising to see that this is not an exceptional counterexample,
as 1188 individuals in our DBpedia-model contradict (9).
Some of these reveal even more oddities in the DBpedia,
largely due to incorrect use of the child-relation. For example
the individual John Perkins (the author) has April 1982 as
one of his children, most likely because his real daughter was
born in April 1982. Other examples include places as children
and literary works as children of their authors.

Combinations of Errors and Insufficient Data: Among
the output is the GCI

Person u ∃child.
(

Person u ∃child.
(
Person u ∃child.(Person

u ∃child.Artist)
))
u ∃child.

(
Person u ∃child.

(
Personu

∃child.∃child.(Person u ∃child.>)
))

v
(
C, {C ≡Writer u ∃child.C}

)
Just like (8) it has a complicated left hand side that is only
satisfied by one individual, namely Carol Ann Duffy, the
UK’s poet laureate. Hence it owes its existence to incomplete
data. What makes it even more odd is its right hand side.
The right hand side is an ELgfp-concept description describing
individuals whose child is a Writer whose child is a Writer,
and so on infinitely. This peculiar consequence is due to an
error where both Carol Ann Duffy and her husband are each
labeled as their respective spouse’s child. As we can see, the
combination of effects from incomplete and false data can lead
to very undesirable artifacts.

Approaches for Dealing with Noise and Incompleteness:
A supervised approach for dealing with incomplete data has
been examined in [3], [4]. Each of the newly found GCIs
is presented to an expert who can accept it or reject it by
providing a counterexample. This method is quite sensitive

with respect to errors in the data. It is suitable when the data
can be assumed to be largely correct. Since expert interaction
is usually costly it should in most situations be applied on a
limited scale or with restricted role depths. The DrugBank
appears to be a good application for this approach, while
DBpedia does not.

An approach that we would like to investigate in the future
is by adapting the notions of support and confidence to GCIs.
For a more detailed discussion of this approach see Section V.

2) The Influence of Roles: One of the distinguishing fea-
tures of the presented algorithm is the added expressivity
provided by a DL language that can talk about roles in addition
to concepts. It also causes some new problems, among the
problem of cyclic roles. To test the impact of cyclic roles
on the overall behavior of the exploration we have extended
both our DBpedia model and the DrugBank model with cyclic
roles. More precisely, we have constructed a model IcycDB
from the given DBpedia data sets in the same way as described
in III-A but instead of only considering the child relation we
also added the relation of having someone as mother or father.
The resulting model proved to be very hard to be explored.
Instead of the 4.5 hrs needed to explore the original model
IDB, after three days of runtime only 1700 GCIs had been
collected and the computation of the next GCI took over half
an hour. Furthermore, due to the highly cyclic nature of IcycDB
most of the resulting GCIs were very hard to understand and
thus of very little value.

However, things got even worse when we considered the
relation interactsWith given in the DrugBank data set, model-
ing the information which two drugs interact with each other.
Obviously, this relation is highly cyclic (but not symmetric,
due to some technical reasons). If we add this relation to
our model Idrugs exploration gets unfeasible with our imple-
mentation. The reason for this is that two drugs, Bumetanide
and Furosemide, show up as two individuals for which a
description graph has to be computed which represents the
model based most specific concept of both of them. However,
both drugs are very similar and have a large number of other
drugs they interact with, resulting in a description graph of
over 5 million vertexes. Our prototypical implementation was
not built to handle such large description graphs and therefore
we could not conduct the exploration. However, before this
large description graph appeared, 6 GCIs had been collected,
one of which contained a non-trivial cyclic concept description
as it’s conclusion. But this description was too large to be
understandable, showing that even when the exploration yields
GCIs in this case, the result might be of little value for the
domain expert.

3) Time and Space Behavior: The time and space behavior
may give insights into properties of the algorithm itself and we
want to discuss our corresponding observations in this section.
For the exploration of the DBpedia-model they are depicted
graphically in Figure 2.

The time behavior of the exploration shows some kind of
exponentially growing delay between the computation of two
successive GCIs. Since the FCA part of the implementation

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

500

1,000

Time in seconds

G
C

Is
fo

un
d

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

40

60

80

100

Time in seconds

Sp
ac

e
in

%
of

th
e

av
ai

la
bl

e
sp

ac
e

Fig. 2: Time and space behavior when exploring the DBpedia-
model.

relies on the computation of pseudo intents in lexicographic
order (using Next-Closure), this bottleneck can most likely not
be avoided [14]. Unfortunately, our experiments indicate that
the worst case might be very close to the average case in our
application.

For the space behavior of our implementation concrete
interpretations are much harder to make. This is because of
the Java Virtual Machine and its memory model on which the
implementation runs on, which is based on automatic garbage
collection. However, from the description of the algorithm
we can expect a very moderate memory consumption of the
overall run of the exploration, which should mostly be due
to storing the generated GCIs. All other operations involved
might need some extra space but only for a short time. This
expectation can be seen from the graphical representation
because of the appearance of “stairs” in the diagram, showing
the periods where the next GCI is searched for, alternating with
the periods of steep increase, where other computations are
performed. The steep declines of the curve correspond to calls
of the garbage collector and they show that in almost every
case that 50% of the main memory could have been reclaimed,
further supporting our hypothesis that only a moderate number
of memory is used.

Finally, it is interesting to see that the calls to the garbage
collector get less and less the longer the exploration runs. This
corresponds to the fact that it takes more and more time (in
average) to compute the next GCI the longer the exploration
runs.

V. FUTURE WORK

In the future two main issues should be addressed. First, we
would like to investigate approaches to improve the quality of
the output, in particular in the case of incomplete or noisy
data. Second, we want to improve on memory and space
requirements.

A. Improving the Quality of the Output

One should not forget that the algorithms that are used here
are mathematically proven to yield a sound and complete base
of minimal cardinality for the dataset provided. That means,
provided that the data is complete and error-free there is no
room for improvement in terms of quality. In practice, we are
unlikely to ever encounter perfect data. Hence the question is,
how can the effects of poor data be mitigated.

In Section IV-C1 we have observed the two different types
of influence of incomplete data and faulty data. In association
rule mining these two problems are usually dealt with by in-
troducing the measures of support and confidence [2]. A naive
translation of the support and confidence to the terminology
of EL-GCIs could look like this:

supp(A v B) =
|(C uD)I |

∆I
conf(C v D) =

|(C uD)I |
|CI |

(10)

The idea is that by searching only for GCIs with a certain
minimal support one can mitigate the effects of incomplete
data. At the same time imposing a minimum on the confidence
can limit the effects of noise in the data.

Several obstacles need to be overcome to make this ap-
proach work. First, we have argued that the large number of
possible GCIs requires a compact representation, e.g. a base.
Now, if A v B and B v C both have a confidence greater
than 0.9, the GCI A v C, even though it follows from the first
two, may have a confidence as low as 0.81. Hence, imposing a
lower limit on the confidence results in a set of GCIs that is no
longer closed with respect to semantic deductions. In such a
situation computing a base is meaningless. An obvious way to
mend this is to consider both GCIs with sufficient confidence
and support, as well as all GCIs that follow semantically
from them to be trustworthy. This set of trustworthy GCIs has
the necessary closure property, but has not been researched
theoretically.

An alternative approach is to look for other compact rep-
resentations of the GCIs with sufficient support. One might
think of an analogous notion to frequent closed itemsets
(e.g. frequent “closed” EL-concept descriptions) and Iceberg
lattices [17].

We also need to address whether the naive translation of
the classical notions of support and confidence really does
what one intuitively expects it to. As a toy example assume
that a dataset about art is very incomplete, containing only
one Museum, the Louvre, but thousands of pieces of art that
belong to the Louvre (cf. Figure 3). Clearly, the GCI

Museum v ∃hasLocation.FrenchCity,

Mona Lisa

Venus de Milo

Louvre Paris

Museum FrenchCity

hasLocation

ownedBy

ownedBy

Fig. 3: Classical Support is Counterintuitive

which states that all museums are in a French city, is no more
trustworthy than the GCI

∃ownedBy.Museum v ∃ownedBy.(∃hasLocation.FrenchCity),

which states that something that is owned by a museum is
owned by a museum in a French city. While the first GCI has
very small support (there is only one museum in the dataset)
the latter has very large support (in the dataset there are
thousands of pieces of art belonging to a museum). Whether
other notions of support are less counterintuitive needs to be
investigated.

B. Speeding Up the Mining Process

In its current state, the runtime and the memory require-
ments of our implementation leave plenty of room for im-
provement. While it is unlikely that the bottleneck (with
respect to runtime) that is presented by Next-Closure can be
avoided completely, there are some improvements that can
be made. There is hope that the introduction of a concept
constructor ⊥ describing the empty concept will significantly
improve memory requirements by making the All description
redundant. All is a very large concept description and since it
occurs quite frequently a large amount of memory is quickly
filled with various instances of All.

Another rather technical improvement would be to avoid
computing large intermediate results. This is mostly due to
computing large description graphs which then turn out to
be highly redundant. It would be more desirable to directly
compute a smaller part of this description graph which is
sufficient for our purposes. Improvements in this direction
would not only decrease the memory requirements for the
implementation but also the overall runtime, because extra
computation for reducing description graphs could be avoided.

As a rather drastic measure one could impose an upper
bound on the role depth of the EL-descriptions. This would
both remove the need for cyclic concept descriptions and
eliminate concept descriptions that consume large amounts
of memory. Our experiments provide anecdotal evidence that
GCIs with larger role depths are usually among the least
interesting.

C. Quality Assessment

The computed GCIs are sound and complete for the given
data set. However, that neither means that they are correct

in the domain nor that they are complete therein. Therefore
the results computed should merely be regarded as a starting
point for constructing of a knowledge base. Whether the
quality of the GCIs that are produced is sufficient in practical
applications should be examined in a case study in cooperation
with domain experts.

VI. CONCLUSION

We have prototypically implemented an algorithm that is
able to mine a small set of EL-GCIs from a dataset. We
have tested this algorithm on two real world datasets. The
results, at least for the relatively error-free dataset of the
DrugBank, appear promising. However, for a final verdict,
a quality assessment with domain experts will be needed.
We have also observed and discussed the implications of
incomplete and faulty data, as they appeared in the DBpedia
dataset. To the purpose of improving the quality of the GCIs
when mining from imperfect data, we have suggested to look
into measures similar to support and confidence, which are
known from association rule mining.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, May 1993,
pp. 207–216.

[3] F. Distel, “Learning description logic knowledge bases from data using
methods from formal concept analysis,” Ph.D. dissertation, TU Dresden,
Dresden, Germany, June 2011.

[4] F. Baader and F. Distel, “Exploring finite models in the Description
Logic ELgfp,” in Proc. of the 7th Int. Conf. on Formal Concept Analysis
(ICFCA 2009), S. Ferré and S. Rudolph, Eds. Springer, 2009.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives, “Dbpedia: A
nucleus for a web of open data,” in In 6th Intl Semantic Web Conference,
Busan, Korea. Springer, 2007, pp. 11–15.

[6] D2R server publishing the drugbank database. FU Berlin. [Online].
Available: http://www4.wiwiss.fu-berlin.de/drugbank/

[7] the data hub. Comprehensive Knowledge Archive Network. [Online].
Available: http://ckan.net/

[8] K. Spackman, K. Campbell, and R. Cote, “SNOMED RT: A reference
terminology for health care,” pp. 640–644, 1997, fall Symposium
Supplement.

[9] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A.
Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese,
J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock, “Gene
Ontology: Tool for the unification of biology,” Nature Genetics, vol. 25,
no. 1, pp. 25–29, 2000.

[10] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “Owl
2 web ontology language: Profiles,” W3C Recommendation, October
2009.

[11] F. Baader, B. Ganter, U. Sattler, and B. Sertkaya, “Completing Descrip-
tion Logic knowledge bases using Formal Concept Analysis,” in IJCAI-
07, 2007.

[12] S. Rudolph, “Relational exploration – combining Description Logics and
formal concept analysis for knowledge specification,” Ph.D. dissertation,
Technische Universität Dresden, 2006.

[13] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foun-
dations. New York: Springer, 1997.

[14] F. Distel, “Hardness of enumerating pseudo-intents in the lectic order,”
in Proc. of the 8th Int. Conf. on Formal Concept Analysis (ICFCA 2010),
ser. Lecture Notes in Artificial Intelligence, B. Sertkaya and L. Kwuida,
Eds., vol. 5986. Springer, 2010, pp. 124–137.

[15] D. Borchmann, “Implementing the exploration algorithm for ELgfp,”
TU Dresden, Tech. Rep., 2011.

[16] D2R server publishing the diseasome dataset. FU Berlin. [Online].
Available: http://www4.wiwiss.fu-berlin.de/diseasome/

[17] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal, “Comput-
ing iceberg concept lattices with TITANIC,” Data Knowl. Eng., vol. 42,
no. 2, pp. 189–222, 2002.

