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Abstract

Weighted automata can be seen as a natural generalization of finite
state automata to more complex algebraic structures. The standard
reasoning tasks for unweighted automata can also be generalized to
the weighted setting. In this paper we study the problems of intersec-
tion, complementation and inclusion for weighted automata on infinite
trees and show that they are not harder complexity-wise than reason-
ing with unweighted automata. We also present explicit methods for
solving these problems optimally.

1 Introduction
One of the current areas of interest in the field of automata theory is the
study of weighted automata. These automata can be seen as a generaliza-
tion of finite state automata in which the input structures are not accepted
or rejected, but rather given a value called their weight. More formally, a
weighted automaton defines a formal power series over a suitable algebraic
structure [22, 11].

The natural question to ask in the presence of such a generalization is
whether the properties of the special case still hold. We can find several
instances in the literature where this question is answered affirmatively.
For example, the relationship between automata and MSO logic, originally
shown by Büchi [7], has been proven to hold also for weighted automata
over finite and infinite words and trees [9, 12, 13, 21] and some weighted
MSO logics. In the area of Model Checking, where Büchi automata are
used to model properties of transition systems, weighted Büchi automata
have recently been considered for multi-valued model checking [6].

For this purpose, standard tasks like deciding emptiness or complement-
ing automata over finite or infinite words have been generalized to the
weighted setting, and algorithms solving these generalized problems have
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been developed. One interesting result obtained is that often the complex-
ity of these generalized tasks is not higher than in the unweighted case. For
instance, the so-called emptiness value problem of weighted automata on
infinite words is NLogSpace-complete [15].

Despite reasoning with weighted automata on infinite words being well
studied, there is a significant lack of results for weighted automata over
infinite trees. In fact, to the best of our knowledge, the only explicit reason-
ing algorithm for these automata was given in [4], where a polynomial-time
algorithm for computing the emptiness value of automata on infinite unla-
beled trees, if the weights belong to a distributive lattice, is described. For
labeled trees, a method that reduces the problem to several (unweighted)
emptiness tests was described in [10]. The execution time of this approach,
however, depends on the structure of the lattice.

In this paper we cover this gap by looking at reasoning problems for
weighted automata on infinite trees that arise from generalizing standard
problems for unweighted tree automata. We show that weighted union,
intersection and emptiness of tree automata are computable in polynomial
time, independently of the lattice used. We also look at the inclusion and
complementation problems, and we show that their complexity remains
equal to the unweighted case.

As for automata on infinite words, there are different kinds of automata
on infinite trees mainly depending on the acceptance condition used (e.g.,
Büchi or co-Büchi automata; see Section 2.2). Since some of these classes
are not closed under complementation, we analyze several different types of
automata with their closure properties relative to each other. Most of these
relationships are well-known for unweighted automata, but had not been
analyzed for weighted automata. We also present explicit constructions for
the complement of some classes of weighted and unweighted tree automata.

Due to a lack of space, some proofs have been left out of this paper.
They can be found in the technical report [5].

2 Automata on Infinite Trees
The object of our study are automata on infinite trees with weights from a
lattice [14]. We briefly introduce lattices before defining the automata.

2.1 Lattices
A lattice is a partially ordered set (S,≤) where infima and suprema of
arbitrary finite subsets of S always exist. The lattice (S,≤) is finite if
its carrier set S is finite, it is distributive if the infimum and supremum
operators distribute over each other, and it is bounded if it has a smallest
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element 0S and a greatest element 1S . In the following, we will often use
the carrier set S to denote the lattice (S,≤). The infimum (supremum) of
a finite subset T ⊆ S will be denoted by

⊗
a∈T a (

⊕
a∈T a). We will also

use the infix notation if the set contains only two elements.
A De Morgan lattice S is a bounded distributive lattice with a negation

function − : S → S that satisfies the property a = a for every a ∈ S and
the De Morgan law, a⊗ b = a⊕ b for every a, b ∈ S. As a consequence, the
following hold: a⊕ b = a⊗ b, a ≤ b iff b ≤ a, 0S = 1S , and 1S = 0S .

A Boolean lattice is a De Morgan lattice where a⊗ a = 0S (or, equiva-
lently a⊕a = 1S) holds for every a ∈ S; a is then called the complement of a.
Every finite Boolean lattice is isomorphic to a powerset lattice (P(X),⊆).

An element p of a lattice S is called meet prime if for every a, b ∈ S,
a ⊗ b ≤ p implies that either a ≤ p or b ≤ p. The dual notion is that of a
join prime element. Every element of a distributive lattice S is the infimum
of all meet prime elements above it. In a De Morgan lattice S, the negation
a of a meet prime element a ∈ S is join prime and vice versa. If the finite
Boolean lattice S is isomorphic to the powerset lattice over some set X,
then there are exactly |X| meet prime and |X| join prime elements in S.

2.2 Weighted Automata
We consider automata that receive as input infinite trees of a fixed arity k.
For a positive integer k, we define K := {1, . . . , k}. We focus on the full
k-ary tree K∗, whose root is denoted by the empty word ε, and the i-th
successor of the node u is identified by ui.1 A path p is a prefix-closed set
of nodes such that if u ∈ p, then there is at most one i ∈ K with ui ∈ p.
Path(K∗) denotes the set of all infinite paths of K∗. A labeled tree is a
mapping t : K∗ → Σ for some labeling alphabet Σ. As usual, the set of all
such mappings is denoted by ΣK∗ .

For an alphabet Σ and a lattice S, a formal tree series over Σ and S is
a mapping ΣK∗ → S; i.e., a function that assigns each labeled tree a weight
from S. For a formal tree series f : ΣK∗ → S, the expression (f, t), called
the coefficient of f at t, denotes the image of a tree t under f .

Definition 1. A weighted generalized Büchi tree automaton (WGBA) is a
tuple A = (Q,Σ, S, in,wt, F1, . . . , Fn) where Q is a finite set of states, Σ
is the input alphabet, S is a distributive lattice, in : Q → S is the initial
distribution, wt : Q × Σ × Qk → S is the transition weight function and
F1, . . . , Fn ⊆ Q are the sets of final states. A WGBA is called a weighted

1Infinite trees built over a ranked alphabet can always be embedded in a full k-ary
tree as long as the arity of the symbols is bounded by k.
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Büchi tree automaton (WBA) if n = 1 and weighted looping tree automaton
(WLA) if n = 0.

A run of the WGBA A is a labeled tree r ∈ QK∗ . This run is called
successful if for every path p ∈ Path(K∗) and every i, 1 ≤ i ≤ n there are
infinitely many nodes u ∈ p such that r(u) ∈ Fi. The set of all successful
runs of A is denoted by succ(A). We define the transition of r on t ∈ ΣK∗

at a node u ∈ K∗ as
−−−→
r(t, u) := (r(u), t(u), r(u1), . . . , r(uk)). The weight of

r on t is the value

wt(t, r) := in(r(ε))⊗
⊗
u∈K∗

wt(
−−−→
r(t, u)) .

The behavior of A on an input tree t ∈ ΣK∗ is

(‖A‖, t) :=
⊕

r∈succ(A)

wt(t, r) .

Since the images of in and wt are finite, the infima and suprema above
are restricted to a finitely generated (and thus finite) distributive sublattice.
Thus, even if S is an infinite lattice, the formal tree series ‖A‖ has a finite
image. In consequence, we can always assume w.l.o.g. that S is finite.

We will additionally consider weighted co-Büchi tree automata (WCA).
A WCA is like a WBA (i.e., n = 1), except that a run is successful if every
infinite path contains only finitely many states from Q \ F1. Notice that
WLA can be seen as special cases of both WBA and WCA in which F1 = Q
and hence every run is successful.

A more expressive acceptance condition is used in weighted parity tree
automata (WPA). A priority function π : Q → N assigns natural numbers
to the states. A run is accepted if every infinite path fulfills the condition
that the minimal priority that occurs infinitely often along this path must
be even. Both WBA and WCA can be expressed as WPA with only two
priorites. Other acceptance conditions as expressive as the parity condition
exist, e.g., the Rabin, Streett, or Muller conditions [25]. However, translat-
ing those conditions into each other may involve an exponential blowup [8].

Standard (unweighted) tree automata can be seen as weighted tree au-
tomata over the lattice B := ({0, 1},≤), with 0 < 1. The supremum and
infimum in this lattice are denoted as ∨ and ∧, respectively. The behavior of
such automata is the characteristic function of the set L(A) := {t ∈ ΣK∗ |
(‖A‖, t) = 1} of all trees accepted by A. Likewise, the functions in and wt
can be seen as a set I ⊆ Q and a relation ∆ ⊆ Q×Σ×Qk, respectively. The
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abbreviations PA, GBA, BA, CA, and LA will be used when the underlying
lattice of the automaton is B.

In the following we will use expressions of the form WXA or XA, where
X is a placeholder for the different acceptance conditions; i.e., WXA stands
for an arbitrary weighted tree automaton.

For the complexity results in this paper, we consider the size of an un-
weighted tree automaton to be the number |Q| of its states and the number
|im(π)| of priorities it uses. For Büchi, co-Büchi, and looping acceptance
conditions, the number of priorities is constant. The size of a weighted tree
automaton is |Q| log |S|+ |im(π)|, where log |S| is the space it takes to store
an element of the underlying lattice S. Often, the additional factor log |S|
does not affect the overall complexity and can be dropped.

Since weighted tree automata generalize unweighted tree automata, a
natural question is whether the standard results and constructions available
for the latter can be adapted to the former. For unweighted automata, one
is often interested in computing the union and intersection of the languages
accepted by two automata. These operations correspond to a supremum
and an infimum computation, respectively, in the weighed setting. As the
following lemma shows, these problems can be solved in polynomial time.

Lemma 2. Let A,B be WXA with X ∈ {L,B,C}. Then one can construct
WXA C and C′ of size polynomial in the sizes of A and B with (‖C‖, t) =
(‖A‖, t)⊗ (‖B‖, t) and (‖C′‖, t) = (‖A‖, t)⊕ (‖B‖, t) for all t ∈ ΣK∗ .

Another important problem for unweighted automata is deciding empti-
ness of the accepted language; i.e., whether there is at least one tree that
is accepted. The natural generalization of this problem is to compute the
supremum of the behavior of A over all possible input trees. Using the ideas
developed in [4], it is possible to show that this problem can be solved in
polynomial time for WGBA (and hence also for WBA and WLA).

Lemma 3. Given a WGBA A, the value
⊕

t∈ΣK∗ (‖A‖, t) is computable in
time polynomial in the size of A.

Before looking at the problem of deciding inclusion of the languages
accepted by two tree automata and its generalization to the weighted case,
we will motivate our interest in this problem, by showing how it can be used
for reasoning in description logics.

3 Motivation
In addition to the theoretical interest in deciding the inclusion of automata,
we are motivated by the fact that tree automata can be used for reasoning
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in Description Logics (DLs) [1]. DLs are decidable fragments of first-order
logic that have been successfully employed for knowledge representation.

Consider for example the DL ALC. Formulae of ALC, called concept
descriptions, are built using the syntactic rule C ::= A | C1 u C2 | ¬C1 |
∀r.C1, where A is an element of a fixed set NC of concept names, r is an
element of a fixed set NR of role names, and C1, C2 are concept descriptions.

The semantics of these formulae is defined using interpretations I =
(∆I , ·I) consisting of a domain ∆I and a function assigning a subset of ∆I

to every concept name and binary relations over ∆I to every role name. An
interpretation can be seen as a labeled directed graph with nodes ∆I and
edges labeled by role names and nodes labeled by sets of concept names.
Complex concept descriptions are interpreted as (C1 u C2)I := CI1 ∩ CI2 ;
(¬C1)I := ∆I\CI1 ; (∀r.C1)I := {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ rI → e ∈ CI1 }.

A terminological axiom is of the form C v D for two concept descrip-
tions C,D. This axiom is satisfied by an interpretation I if CI ⊆ DI holds.
In this case, I is called a model of the axiom. A concept description C is
satisfiable w.r.t. a given set T of axioms if there is a model of all axioms in
T such that CI 6= ∅.
ALC has the tree model property, i.e., every satisfiable concept descrip-

tion also has a (possibly infinite) tree-shaped model. This gives rise to a
characterization of satisfiability in ALC using the emptiness problem for
automata on infinite trees. One can construct a looping tree automaton
AC that accepts all tree models of a given concept description C [2].

Weighted tree automata over lattices have recently been used for more
specific reasoning tasks in ALC. If one has a large set T of terminological
axioms, it often does not suffice to know that a given concept C is unsatisfi-
able w.r.t. these axioms; to correct errors in the axioms, one may also want
to know the specific axioms that are responsible for the unsatisfiability of
C. This can be achieved by determining a so-called pinpointing formula
which can be computed by a lattice-weighted looping tree automaton [4].

Other applications include the presence of access restrictions on the
terminological axioms, where one wants to know whether a certain user has
access to some knowledge based on their access to the axioms [3], or fuzzy
DLs, where concept descriptions are interpreted as fuzzy sets and one wants
to find the degree to which a concept description is satisfiable [27, 24].

All these applications motivate us to look at the properties of unweighted
and weighted tree automata. In particular, deciding inclusion of tree au-
tomata can be used to decide whether a terminological axiom C v D is a
consequence of a set T of axioms, i.e., CI ⊆ DI holds in all models of T .
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One can construct tree automata AC and AD such that L(AC) ⊆ L(AD)
iff C v D is a consequence of T . This task can be reduced to checking
satisfiability of the concept C u ¬D w.r.t. T , thus eliminating the need for
checking the inclusion. However, in DLs without negation this reduction is
not possible and the inclusion test for tree automata has to be applied.

There are also other cases in which it may be necessary to compute such
consequences via the inclusion check between tree automata. Consider for
example the DL ALC(¬), which additionally allows for role expressions of
the form ¬r which are interpreted as (¬r)I := (∆I×∆I)\rI . This DL does
not have the tree model property, as, e.g., Au∀¬r.¬A is satisfiable, but has
no tree model. Any domain element belonging to this concept would need
to have itself as an r-successor, which forms a loop in the model.

Reasoning in ALC(¬) is more complex than in ALC. One may, however,
look at the more restricted reasoning task of deciding whether C v ∀¬r.D
holds for some ALC-concept descriptions C,D w.r.t. to a set of ALC-
terminogical axioms T . This is a reasoning task in ALC and thus can be
decided over tree models. It cannot be decided using reasoning methods
for ALC(¬) since these would have to consider all models of T and not
just the tree models. However, one can easily construct a Büchi automaton
checking whether ∀¬r.D holds, i.e., whether all individuals not connected
by an r-edge satisfy D. Thus, this restricted reasoning task can be solved
using the inclusion test between two tree automata.

In the following sections, we investigate the complexity of inclusion for
tree automata and generalize this problem to weighted tree automata.

4 Deciding Inclusion
We are interested in the inclusion problem of two tree automata which can
use different acceptance conditions. This problem is defined as follows.
Problem (Inclusion IX,Y). Given an XA A and a YA A′, decide whether
L(A′) ⊆ L(A).

One approach to solving this problem is to construct a tree automaton
that accepts the complement of L(A), since the inclusion L(A′) ⊆ L(A)
holds iff L(A′)∩L(A) = ∅. If one is able to efficiently decide the emptiness
of this intersection, then the inclusion problem can be easily solved. Thus,
we look also at the complementation problem.
Problem (Complementation CX,Y). Given an XA A, construct a YA A with
L(A) = L(A).

Notice that we do not require that the complement automaton has the
same acceptance condition as the original one. This is motivated by LA,
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BA and CA not being closed under complement [25, 18], but, e.g., the
complement of an LA can be recognized by a BA (see Theorem 6).

Despite the difference in expressivity, the inclusion problems IX,Y have
the same complexity for all X,Y ∈ {L,B,C, P}; they are all ExpTime-
complete. This follows from known results [23, 26, 8, 16].

Theorem 4. IX,Y is ExpTime-complete for X,Y ∈ {L,B,C, P}.

We present the above result in more detail for a special case. The
reason for this is that we want to adapt these constructions for solving
the weighted version of the inclusion problem. It is thus useful to have an
explicit description of an efficient complementation construction.

The following construction describes the complementation step for a
looping tree automaton A. The resulting automaton A uses a Büchi condi-
tion since the construction involves complementing the acceptance condition
(see [20] for details)2 and has an exponential number of states.

Definition 5. Let A = (Q,Σ, I,∆) be an LA. The complement automaton
of A is the BA A := (Qc,Σ, Ic,∆c, Fc) where

• Qc := P(Q),
• Ic := {I},
• (Q0, α,Q1, . . . , Qk) ∈ ∆c iff for all q0 ∈ Q0 and (q0, α, q1, . . . , qk) ∈ ∆

there is an index i ∈ K such that qi ∈ Qi,
• Fc := {∅}.

Correctness of this construction follows from the more general results
in [26]. However, we will present a direct proof here, which will later be
used to show the correctness of the weighted complementation construction
by lifting this proof to the more general lattice operations.

Theorem 6. If A is an LA and A its complement automaton (from Defi-
nition 5), then L(A) = L(A).

Proof Sketch. To show L(A) ⊆ L(A), we assume that there is a tree t ∈ ΣK∗

that is accepted by both A and A. Then there are successful runs r ∈ QK∗

of A and r ∈ QK∗
c of A. Using the definition of ∆c, one can show that there

is an infinite path p in the tree such that r(u) ∈ r(u) holds for all u ∈ p.
This means that r(u) 6= ∅ for all u ∈ p, which contradicts the success of r.

For the other inclusion, we take a tree t /∈ L(A). There must exist a
finite prefix T ⊆ K∗ on which every run r starting in a state q0 ∈ I must

2Actually, a reachability or weak Büchi condition would suffice.

8



already contain an invalid transition, i.e.,
−−−→
r(t, u) /∈ ∆ for some u ∈ T . This

can be shown by contradiction: If no such finite prefix existed, we could
construct an infinite run of A on t, which would contradict t /∈ L(A).

The next step is to define a run r ∈ QK∗
c of A that has only ∅-labels

outside of T and conforms to the transition relation ∆c. Moreover, this run
will satisfy the following property P on all nodes u ∈ T : if q ∈ r(u), then
every run r of A with r(u) = q has an invalid transition inside T . More
precisely, r is defined inductively as follows:

• r(ε) := {I}. P (ε) holds because of how we chose the tree T .
• If r(u) is already defined and u is not a leaf of T , we consider all states
q ∈ r(u) and all possible transitions (q, t(u), q1, . . . , qk) ∈ ∆. For each
transition, we choose a direction i ∈ K such that every subrun starting
in qi at node ui will contain an invalid transition in T . Such i must
exist since otherwise there would be a run starting in q at the node u
that had no invalid transition inside T , contradicting P (u).

It is obvious that r is successful. All its transitions are valid transitions
in ∆c, because of the construction of r and the fact that P (u) holds at the
leaves of T . Thus, t ∈ L(A).

A similar construction is possible for complementing a CA into a BA.
In this case we can adapt the construction for simulating alternating Büchi
word automata by nondeterministic ones from [19].

Theorem 7. For every CA A we can construct a BA A of size exponential
in the size of A with L(A) = L(A).

This provides a direct proof for IC,B being in ExpTime. Unfortunately,
a construction for CB,C is not possible: a tree language recognizable by a
BA, whose complement is not recognizable by any CA was shown in [17].

5 The Weighted Inclusion Problem
As mentioned already, unweighted tree automata are weighted tree au-
tomata over the Boolean lattice B, whose operators correspond to the logical
connectives. De Morgan lattices can be seen as a generalization of Boolean
logic, where conjunction, disjunction and negation are translated to infi-
mum ⊗, supremum ⊕, and complementation −, respectively. We can use
this fact to describe generalizations of the decision problems for unweighted
tree automata to the weighted setting.
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From a low-level point of view, the inclusion problem consists of deciding
whether the implication t ∈ L(A′)⇒ t ∈ L(A) holds for every input tree t.
Equivalently, we can express this property using the formula:∧

t∈ΣK∗

¬(‖A′‖, t) ∨ (‖A‖, t) ,

which can then be generalized to arbitrary De Morgan lattices as follows.

Problem (Weighted Inclusion IWX,WY). Given a WXA A and a WYA A′
over the same De Morgan lattice, compute

⊗
t∈ΣK∗ (‖A′‖, t)⊕ (‖A‖, t).

Remark. A more intuitive generalization of the inclusion problem is to de-
cide whether (‖A′‖, t) ≤ (‖A‖, t) holds for all input trees t. For Boolean
lattices, this is only a special case of the above problem, since

(‖A′‖, t) ≤ (‖A‖, t)⇔ (‖A′‖, t)⊕ (‖A‖, t) = 1S .

As in the unweighted case, the problem IWX,WY can sometimes be re-
duced to a complementation problem.

Problem (Weighted Complementation CWX,WY). Given a WXA A, con-
struct a WYA A over the same De Morgan lattice such that (‖A‖, t) =
(‖A‖, t) holds for every t ∈ ΣK∗ .

This reduction depends on the feasibility of computing the behavior of
the infimum of two tree automata. Recall that this task is of polynomial
complexity for WBA over distributive lattices (see Lemmata 2 and 3).

We now present two methods for solving the weighted inclusion prob-
lem. The first method uses a glass-box approach, i.e., it modifies the com-
plementation constructions from the previous section to perform the lattice
computations directly. This transformation generalizes the logical operators
to their lattice counterparts. However, it only works for Boolean lattices.

The second method uses the algorithm for testing the inclusion of un-
weighted tree automata as a black-box in the sense that this algorithm is
called several times in a systematic way until the desired aggregated infi-
mum is found. Surprisingly, the black-box approach turns out to be more
efficient than the glass-box method.

5.1 Glass-Box Approach
We now describe a construction that directly computes IWX,WY by gener-
alizing the method used for deciding inclusion of unweighted tree automata
presented in the previous section; hence the name glass-box.
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Recall from Section 4 that the procedure deciding inclusion of two tree
automata A and A′ (i.e., whether L(A′) ⊆ L(A)) required three steps:
first construct an automaton A accepting the complement of L(A); then,
intersect A′ and A, and finally decide emptiness of the resulting automaton.
We have shown that the last two steps can be solved for WBA in polynomial
time (see Lemmata 2 and 3). Thus, if we can solve the problem CWX,WB,
then we will also have a procedure that solves IWX,WB.

There are some drawbacks to this approach. First, we can only apply it
if an explicit and efficient complementation construction is known for the
unweighted automata and we have to do it for every construction separately.
Second, the construction presented below only works for Boolean lattices.

We will demonstrate this approach by considering the case of looping
tree automata. Definition 5 shows us how to build an automaton that ac-
cepts the complement language of a given LA. Notice first that the transition
relation of the automaton A is equivalent to the following formula:∧

(q0,α,q1,...,qk)∈Q×Σ×Qk

q0 /∈ Q0 ∨ y /∈ ∆ ∨
∨
i∈K

qi ∈ Qi .

In the weighted complementation construction, we replace the Boolean op-
erators by their lattice counterparts.

Definition 8. The complement automaton of a WLA A = (Q,Σ, S, in,wt)
over a Boolean lattice S is the WBA A = (Qc,Σ, S, inc,wtc, Fc) where

• Qc := SQ.

• For ϕ ∈ Qc, inc(ϕ) :=

{
1S if ϕ(q) ≥ in(q) for all q ∈ Q
0S otherwise .

• For ϕ0, . . . , ϕk ∈ Qc and α ∈ Σ, wtc(ϕ0, α, ϕ1, . . . , ϕk) :=⊗
y=(q0,α,q1,...,qk)∈Q×{α}×Qk

ϕ0(q0)⊕ wt(y)⊕
⊕
i∈K

ϕi(qi) .

• Fc := {0S} where 0S : Q→ S : q 7→ 0S .

The next theorem shows that this construction solves the weighted com-
plementation problem CWL,WB. The proof uses similar ideas to those of
Theorem 6, generalized to Boolean lattices.

Theorem 9. If A is a WLA over a Boolean lattice and A is its complement
automaton (Definition 8), then for all t ∈ ΣK∗ , (‖A‖, t) = (‖A‖, t).
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This construction gives us an automaton that has |S||Q| states, where
|Q| is the number of states of the original automaton, and hence solves the
problems CWL,WB and IWL,WB in exponential time.3 This is optimal with
respect to the complexity of the problems, as shown by Theorem 4.

5.2 Black-Box Approach
Since we already have a decision procedure for the unweighted problem
IX,Y for X,Y ∈ {L,B,C, P}, we can use this to construct a black-box
algorithm for IWX,WY. This approach reduces the problem IWX,WY to
several inclusion checks. The main advantage of such an approach is that
one can use any procedure deciding the unweighted problem, including any
optimizations developed for it, without modification.

The black-box reduction of IWX,WY to IX,Y is based on an idea from
[15, 10] and exploits the fact that every lattice element can be represented
as the infimum of all the meet prime elements above it. We demonstrate it
first on the case of IWB,WB.

Let A = (Q,Σ, S, in,wt, F ) and A′ = (Q′,Σ, S, in′,wt′, F ′) be two WBA
over the same De Morgan lattice S and p ∈ S a meet prime element.
We define the cropped automata Ap and A′p as the BA (Q,Σ, I,∆, F ) and
(Q′,Σ, I ′,∆′, F ′), respectively, where the initial state sets and transition
relations are as follows:

• I := {q ∈ Q | in(q) � p}, ∆ := {y ∈ Q× Σ×Qk | wt(y) � p},

• I ′ := {q′ ∈ Q′ | in′(q′) ≥ p}, ∆′ := {y′ ∈ Q′ × Σ×Q′k | wt′(y′) ≥ p}.

The transitions allowed in Ap (resp. A′p) are exactly those transitions
of A (resp. A′) having weight � p (resp. ≥ p). It is easy to see that this
property transfers to the behavior of the weighted automata as follows. For
all t ∈ ΣK∗ , (‖A‖, t) ≤ p iff t /∈ L(Ap) and (‖A′‖, t) ≥ p iff t ∈ L(A′p) . From
this it follows that

⊗
t∈ΣK∗ (‖A‖, t)⊕(‖A′‖, t) ≤ p holds iff L(A′p) * L(Ap).

We have assumed that the De Morgan lattice S is generated by the el-
ements in the images of the initial distribution and transition weight func-
tions of A and A′. Since the number of meet prime elements in any distribu-
tive lattice is at most exponential in the number of elements generating it,4

S has at most exponentially many meet prime elements measured in the
sizes of A and A′. Thus, this black-box approach requires at most exponen-
tially many inclusion tests, each of which is itself exponential in the sizes of

3Recall that the size of A is |Q| log |S|.
4Each meet prime element is the supremum of some generating elements and comple-

ments of generating elements.
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these automata. This means that this algorithm solves the problem IWB,WB

in exponential time, and hence is also optimal w.r.t. complexity.
Notice, additionally, that the reduction we used depends only on the

number of meet prime elements and on the existence of an exponential-time
inclusion test for the unweighted version of the automata, but not on the
specific acceptance condition used. In other words, if IX,Y can be decided
in exponential time, then IWX,WY is computable in exponential time, too.

Theorem 10. Let S be a De Morgan lattice and X, Y two acceptance
conditions such that IX,Y is in a complexity class C that includes ExpTime.
Deciding whether a ∈ S solves an instance of IWX,WY is also in C.

Corollary 11. Let S be a De Morgan lattice. Deciding whether a ∈ S solves
an instance of IWX,WY is ExpTime-complete for X,Y ∈ {L,B,C, P}.

We presented a glass-box and a black-box approach to solve IWL,WB,
both of which are of optimal (ExpTime) complexity. However, a more fine-
grained analysis of the algorithms shows that the black-box approach is in
fact more efficient than the glass-box approach. The main consideration is
that the number of meet prime elements of any Boolean lattice is logarithmic
in the size of the lattice. Hence, if there are n meet prime elements, then
the black-box approach involves n emptiness tests5 of automata of size 2|Q|.

On the other hand, the glass-box approach applies a polynomial time al-
gorithm to an automaton of size (2n)|Q|. Additionally, n is not independent
from |Q| but, given our assumption that the lattice S is generated by the
input automata, n grows proportionally to |Q|. Thus, the bigger the input
automata become, the more expensive the glass-box approach is, relative to
the black-box procedure. This is surprising as it shows that an all-purpose
procedure performs better than a specifically designed algorithm.

Obviously, looping tree automata are not the only ones that can be used
in a glass-box approach. By generalizing the complementation construction
for co-Büchi tree automata (see the technical report [5]) to Boolean lattices
as we did for Definition 5, we could obtain a method for solving CWC,WB.
However, this would again result in an automaton having |S||Q| states, which
is less efficient than the black-box approach.

6 Conclusions
We have investigated some of the standard problems for unweighted au-
tomata on infinite trees and their generalizations to weighted tree automata.

5The emptiness of Büchi automata can be tested in quadratic time.

13



In particular, we have looked at the inclusion and complementation prob-
lems for parity tree automata. Despite the class of Büchi tree automata
not being closed under complementation, for every looping or co-Büchi tree
automaton it is possible to build a Büchi tree automaton of exponential size
accepting the complement language. We demonstrated that these construc-
tions can be generalized to the weighted setting, thus giving exponential
time solutions to the weighted inclusion and complementation problems.
Additionally, we described a black-box approach that solves these problems
by performing several (unweighted) inclusion tests.

Since automata on infinite trees provide a clear characterization of rea-
soning in logics with the tree model property (e.g., some description log-
ics), in our future work we will study the relation between the generalized
problems for weighted automata and some non-standard inferences in these
logics. In particular, we will study their application to uncertainty and
multi-valued reasoning.
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