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Abstract
Uncertainty is unavoidable when modeling most
application domains. In medicine, for example,
symptoms (such as pain, dizziness, or nausea) are
always subjective, and hence imprecise and incom-
parable. Additionally, concepts and their relation-
ships may be inexpressible in a crisp, clear-cut
manner. We extend the description logicALC with
multi-valued semantics based on lattices that can
handle uncertainty on concepts as well as on the
axioms of the ontology. We introduce reasoning
methods for this logic w.r.t. general concept inclu-
sions and show that the complexity of reasoning is
not increased by this new semantics.

1 Introduction
Description logics (DLs) [Baader et al., 2003] are a family
of logic-based knowledge representation formalisms, which
have been employed in various application domains and
whose most notable success so far is the adoption of the DL-
based language OWL as a standard for the semantic web.
However, in their usual form, DLs lack the ability to han-
dle uncertainty. Uncertainty is unavoidable in areas such as
medicine, where determining without doubt whether a patient
has a specific disease may require intrusive or expensive tests.
For example, a full diagnosis for anemia requires a blood
test measuring the number of red blood cells and hemoglobin
level. However, this test should only be performed if there
is some valid reason to suspect an abnormality in these lev-
els. Additionally, when preparing a diagnosis, experts must
deal with symptoms reported by the patients, which are by
definition subjective, and hence imprecise and incomparable.

Moreover, the relationship between diseases and their ex-
ternal manifestations is rarely clear-cut. For instance, the
anemic syndrome may be caused by a very wide range of
maladies (undernourishment, leukemia, drepanocytosis, etc.)
which may be more or less likely depending on the ethnic ori-
gin, gender, or activity of the patient, but none of these factors
is fully determinant to the origin of the syndrome.

We propose an extension of classical DLs that can handle
uncertainty through multi-valued semantics. In our approach
we consider a finite number of truth values, organized in a lat-
tice extended with a negation operator. The semantics of this

logic is a standard generalization from classical DLs in the
sense that concepts (classically interpreted as sets) are now
interpreted as multi-valued sets over the background lattice.
The semantics of the concept constructors is also generalized
from Boolean to lattice operators.

A previous approach combining DLs with multi-valued se-
mantics based on lattices was presented in [Straccia, 2006],
but can only deal with acyclic terminologies containing crisp
axioms. Thus, it is unable to express cyclic relations neces-
sary for representing, e.g. hereditary diseases: a patient hav-
ing a relative with drepanocytosis is likely, but not certain, to
exhibit this disorder as well. In this paper we develop rea-
soning procedures that are able to handle general concept in-
clusion axioms, which may themselves include a degree of
uncertainty. We can then reason over cyclic axioms like1

〈∃relative.Drepanocytosis v Drepanocytosis, likely〉 ,

which expresses the fact that drepanocytosis is a hereditary
disease, i.e. a patient having a relative with drepanocytosis is
likely, but not certain, to exhibit this disorder as well.

In order to present the main ideas of our approach, we re-
strict ourselves to ALCL, the multi-valued variant of ALC
over the lattice L. It should be clear, however, that the same
ideas can be transferred to more expressive DLs. We then
describe an exponential-time procedure for reasoning in this
logic, which is EXPTIME-hard.

In Section 2 we present some basic notions of lattice theory
and the logic ALCL with its main reasoning problems. We
then show how to reason in this logic on the assumption that
it has the witnessed model property. In Section 4 we prove
that the witnessed model property may not hold in general,
but the algorithm, with minor modifications, remains correct.
Finally, in Section 5, we give an overview of the wide range of
approaches that have been proposed to deal with uncertainty
and imprecision in DL, and compare them to our own. Due
to a lack of space we only sketch the proofs of our results.

2 A Multi-valued Description Logic
In this section we first introduce some basic notions of lattice
theory and then define the lattice-based multi-valued descrip-
tion logic ALCL.

1The semantics of this expression can be found in Definition 3.
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Figure 1: The De Morgan lattice L3.

2.1 Lattices
A lattice is an algebraic structure (L,⊕,⊗) consisting of a
carrier set L and two binary operations supremum ⊕ and in-
fimum ⊗ that are commutative and associative, and satisfy
the absorption laws ` ⊕ (` ⊗ m) = ` = ` ⊗ (` ⊕ m) for
all `,m ∈ L.2 The order ≤ on L is defined by ` ≤ m iff
` ⊗ m = ` for all `,m ∈ L. A lattice is called distribu-
tive if ⊕ and ⊗ distribute over each other, finite if L is finite,
and bounded if it has a minimum and a maximum element,
denoted as 0 and 1, respectively. Every finite lattice is also
bounded. In a finite lattice, we may use the notation

⊕
t∈T t

(
⊗

t∈T t) for the supremum (infimum) of a set T ⊆ L. When-
ever it is clear from the context, we will simply use the carrier
set L to represent the lattice (L,⊕,⊗).

A De Morgan lattice is a bounded distributive lattice ex-
tended with an involutive unary operation	, called negation,
that satisfies De Morgan’s laws 	(`⊕m) = 	 `⊗	m and
	(` ⊗ m) = 	 ` ⊕ 	m for all `,m ∈ L. The negation is
an anti-monotone bijection on the lattice. Figure 1 shows a
simple De Morgan lattice.

The operators of a De Morgan lattice can be seen as the
natural generalization of the logical operators ∨,∧, and ¬.
Based on this intuition, we define the implication of two ele-
ments in the lattice as `⇒ m := 	 `⊕m.

For the rest of this paper, we assume that L is an arbitrary,
but fixed, finite De Morgan lattice. The elements of this lat-
tice will describe the certainty of assertions. For instance,
one could use values in a total order (e.g. unlikely, likely, very
likely, sure) or use several dimensions to express incompara-
ble values of uncertainty (e.g. subjective measurements made
by different sources).

2.2 Multi-valued ALC
The multi-valued description logic ALCL is a generalization
of the crisp DL ALC that allows the use of the elements of a
De Morgan lattice as truth values, instead of just the Boolean
values true and false. The syntax of concept descriptions in
ALCL is the same as in ALC.

Definition 1 (syntax of ALCL). Let NC and NR be two dis-
joint sets of concept names and role names, respectively.
ALCL concept descriptions are built through the following
syntactic rule:

C ::= A | C1 u C2 | C1 t C2 | ¬C | ∃r.C | ∀r.C | > | ⊥

2See [Grätzer, 1998] for a more detailed introduction to lattices.

where A ∈ NC, r ∈ NR, and C,C1, C2 are ALCL concept
descriptions.

The semantics of this logic is given by an interpretation
function that not simply describes whether an element of the
domain belongs to a concept, but gives a lattice value describ-
ing the certainty with which the element satisfies this concept;
in other words, the semantics is based on multi-valued sets.
Definition 2 (semantics of ALCL). An interpretation is a
pair I = (∆I , ·I) where ∆I is a non-empty domain and ·I
is a function that assigns to every concept name A and every
role name r functionsAI : ∆I → L and rI : ∆I×∆I → L,
respectively. The function ·I is extended to ALCL concept
descriptions as follows:
• (C uD)I(x) = CI(x)⊗DI(x),
• (C tD)I(x) = CI(x)⊕DI(x),
• (¬C)I(x) = 	CI(x),
• (∃r.C)I(x) =

⊕
y∈∆I rI(x, y)⊗ CI(y),

• (∀r.C)I(x) =
⊗

y∈∆I rI(x, y)⇒ CI(y),

• >I(x) = 1,⊥I(x) = 0.
for every x ∈ ∆I .

Notice that the existential and universal quantifiers are
dual, i.e. ¬∃r.C and ∀r.¬C have the same semantics for ev-
ery ALCL concept description C and every role name r.

The knowledge of a domain is usually stored in an ontol-
ogy, which is a collection of axioms. In this paper, we restrict
to terminological knowledge, given by a so-called TBox.
Definition 3 (TBox). A TBox is a finite set of (labeled) gen-
eral concept inclusions (GCIs) of the form 〈C v D, `〉, where
C,D are ALCL concept descriptions and ` ∈ L.

An interpretation I is a model of the TBox T if it satisfies
all axioms in T , i.e. if for every axiom 〈C v D, `〉 ∈ T it
holds that

⊗
x∈∆I CI(x)⇒ DI(x) ≥ `.

We emphasize here that ALC is a special case of ALCL,
where the underlying lattice contains only the elements 0
and 1, which may be interpreted as false and true, respec-
tively. Accordingly, one can think of generalizing the rea-
soning problems for ALC to the use of other lattices. The
standard reasoning problems for crisp DLs are satisfiability
and subsumption of concepts. In our setting, we are further
interested in the degree of certainty with which these proper-
ties hold.
Definition 4 (satisfiability, subsumption). LetC,D beALCL
concept descriptions, T a TBox and ` ∈ L. C is `-satisfiable
w.r.t. T if there is a model I of T with

⊕
x∈∆I CI(x) ≥ `.

The best satisfiability degree for C w.r.t. T is the largest `
such that C is `-satisfiable w.r.t. T .
C is `-subsumed by D w.r.t. T if every model I of T is

also a model of 〈C v D, `〉. The best subsumption degree for
C and D is the largest ` ∈ L such that C is `-subsumed by D
w.r.t. T .

Notice that if C is `-satisfiable and `′-satisfiable w.r.t. T ,
then C is also `⊕ `′-satisfiable. Likewise for `-subsumption.
Hence, the notions of best satisfiability and best subsumption
degrees are well defined. Moreover, as the following lemma



shows, it is sufficient to develop an algorithm for finding the
best satisfiability degree of a concept.

Lemma 5. Let C,D be two concept descriptions, T a TBox,
and ` ∈ L. The best satisfiability degree for C u ¬D is ` iff
the best subsumption degree for C and D is 	 `.

The best satisfiability degree of a concept is important for
medical applications, where a doctor may want to find out
how likely a given pathology is. For example, the best satisfi-
ability degree of Male uHepatomegalia u Anemia expresses
the likelihood of finding an hepatomegalic male with anemia.
In some cases, however, this notion of satisfiability turns out
to be too weak, since a concept C may be `-satisfiable even if
no element of the domain may ever belong to C with a value
greater or equal to `.

Example 6. We use the latticeL3 from Figure 1. The concept
A is 1-satisfiable w.r.t. the TBox T having the axioms

〈A v ¬B, `b〉 , 〈A v B,1〉

since I0 = ({x1, x2}, ·I0) with AI0(x1) = BI0(x2) = `a,
BI0(x1) = AI0(x2) = `c is a model of T and `a ⊕ `c = 1.
However, there is no model I of T where AI(x) = 1 for
some x ∈ ∆I . If such I and x existed, then the first axiom
would restrict BI(x) to be ≤ 	 `b (either 	 `b or 0), while
the second axiom would force this value to be 1.

For this reason, we consider a stronger notion of satisfi-
ability that requires at least one element of the domain to
satisfy the concept with the given value. A concept C is
strongly `-satisfiable w.r.t. a TBox T if there is a model I
of T and an x ∈ ∆I such that CI(x) ≥ `. Obviously,
strong `-satisfiability implies `-satisfiability. As shown in Ex-
ample 6, the converse does not hold. However, satisfiability
can be reduced to strong satisfiability by means of the follow-
ing lemma.

Lemma 7. The best satisfiability degree for C w.r.t. T is the
supremum of all ` such that C is strongly `-satisfiable.

Proof Sketch. If C is strongly `- and strongly `′-satisfiable,
there exist two models I, I ′ of T and x ∈ ∆, x′ ∈ ∆′ with
CI(x) ≥ ` and CI

′
(x′) ≥ `′. The disjoint union of I and I ′

gives a model J where
⊕

y∈∆J CJ (y) ≥ `⊕ `′.

We can then find out whether C is `-satisfiable by compar-
ing ` to the best satisfiability degree of C. We will thus focus
on developing an algorithm for finding all the lattice elements
that witness the strong satisfiability of a given concept. As we
will show, this reasoning problem is not harder than deciding
satisfiability of crisp ALC concepts.

3 Deciding Strong Satisfiability
We now present an automata-based algorithm for deciding the
strong satisfiability of a concept. To simplify the construc-
tion, we first consider reasoning over witnessed models only
(see Definition 8). We later show (in Section 4) that this re-
striction is not necessary for the correctness of the algorithm.

Definition 8 (witnessed model). Let η ∈ N. A model I of a
TBox T is called η-witnessed if for every x ∈ ∆I and every

concept description of the form ∃r.C there are η elements
x1, . . . , xη ∈ ∆I such that

(∃r.C)I(x) =

η⊕
i=1

rI(x, xi)⊗ CI(xi),

and analogously for the universal restrictions ∀r.C. In partic-
ular, if η = 1, then the suprema and infima from the semantics
of ∃r.C and ∀r.C become maxima and minima, respectively.
In this case, we simply say that I is witnessed.

We will present a procedure to check strong satisfiabil-
ity w.r.t. witnessed models which is based on the emptiness
check of finite automata working on infinite trees. But first,
we give a brief introduction to this kind of automata.

As input structure we consider the infinite k-ary tree K∗
for K := {1, . . . , k} with k ∈ N. The positions of the nodes
in this tree are represented through words in K∗ in the usual
way: the empty word ε represents the root node, and ui rep-
resents the i-th successor of the node u.

Definition 9 (looping automaton). A looping automaton (LA)
is a tuple (Q, I,∆) consisting of a finite set Q of states, a set
I ⊆ Q of initial states and a transition relation ∆ ⊆ Q×Qk.

A run of this automaton is a mapping r : K∗ → Q that
assigns states to each node of K∗ such that (i) r(ε) ∈ I and
(ii) for every u ∈ K∗, (r(u), r(u1), . . . , r(uk)) ∈ ∆.

The emptiness problem for LA is to decide whether a given
LA has a run.

The emptiness problem for LA can be solved by the fol-
lowing procedure in polynomial time. The idea is to incre-
mentally build the set of all states that cannot appear in any
run; we will call these bad states. All states without tran-
sitions are clearly bad states, and hence the set is initialized
with those states. On each iteration, we add to this set all
states that only have transitions leading to bad states. This set
becomes stable after at most |Q| iterations. The automaton
has a run iff there is an initial state that is not bad. It is worth
to point out that, as a side-effect, this procedure computes the
set of all non-bad initial states without additional effort.

We now return to the problem of deciding strong `-
satisfiability of ALCL concept descriptions. Our automata-
based approach relies on the fact that a concept is strongly `-
satisfiable iff it has a well-structured tree model, called a Hin-
tikka tree. Intuitively, Hintikka trees are abstract representa-
tions of tree models, that express the membership value of all
“relevant” concept descriptions. The automaton will have ex-
actly these Hintikka trees as its runs. Strong `-satisfiability is
thus reduced to the emptiness test of an automaton.

In the following we assume that all concept descriptions
are in negation normal form (NNF); that is, negation appears
only in front of concept names. Any ALCL concept descrip-
tion can be transformed to NNF using the De Morgan rules,
duality of quantifiers, and elimination of double negations.
We denote the NNF of C by nnf(C) and nnf(¬C) by v C.
The concept description nnf(C) always has the same seman-
tics as C, since we are using a De Morgan lattice and existen-
tial and universal restrictions are dual to each other.

We denote as sub(C, T ) the set of all subconcepts ofC and
of the concept descriptions v D t E for 〈D v E, `〉 ∈ T .



The states of the automaton will be so-called Hintikka sets.
Strictly speaking, these are multi-valued sets: every element
has an associated membership value from the lattice L. Their
domain is the set sub(C, T ), together with an arbitrary ele-
ment ρ.

Definition 10 (Hintikka set). A function H : sub(C, T ) ∪
{ρ} → L is called a (multi-valued) Hintikka set for C, T if
it satisfies the conditions (i) H(D u E) = H(D) ⊗ H(E),
(ii) H(D tE) = H(D)⊕H(E), and (iii) for every concept
name A, H(¬A) = 	H(A).

The Hintikka setH is compatible with the GCI 〈D v E, `〉
if H(vD t E) ≥ `.

The arity k of our automaton is determined by the number
of existential and universal restrictions, i.e. concept descrip-
tions of the form ∃r.D or ∀r.D, contained in sub(C, T ). In-
tuitively, each successor acts as the witness for one of these
restrictions. The additional domain element ρ is used to
express the degree with which the role relation to the par-
ent node holds. To know which successor in the tree cor-
responds to which restriction, we fix an arbitrary bijection
ϕ : {E | E ∈ sub(C, T ) is of the form ∃r.D or ∀r.D} → K.
The following Hintikka conditions define the transitions of
our automaton.

Definition 11 (Hintikka condition). The tuple of Hintikka
sets (H0, H1, . . . ,Hk) for C, T satisfies the Hintikka condi-
tion if: (i) for every existential restriction ∃r.D, H0(∃r.D) =
Hϕ(∃r.D)(ρ) ⊗ Hϕ(∃r.D)(D) and additionally for every re-
striction F of the form ∃r.E or ∀r.E, it holds H0(∃r.D) ≥
Hϕ(F )(ρ) ⊗ Hϕ(F )(D); and (ii) for every universal restric-
tion ∀r.D, H0(∀r.D) = Hϕ(∀r.D)(ρ) ⇒ Hϕ(∀r.D)(D) and
additionally for every restriction F of the form ∃r.E or ∀r.E,
it holds H0(∀r.D) ≤ Hϕ(F )(ρ)⇒ Hϕ(F )(D).

A Hintikka tree for C, T is an infinite k-ary tree T la-
beled with Hintikka sets that are compatible with every
GCI in T where, for every node u ∈ K∗, the tuple
(T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condition.
The compatibility condition ensures that all axioms are satis-
fied at any node of the Hintikka tree, while the Hintikka con-
dition makes sure that the tree is in fact a witnessed model.

Recall that for now we are only considering reasoning w.r.t.
witnessed models, namely, decide whether there is a wit-
nessed model I such that CI(x) ≥ ` for some x ∈ ∆I .
The proof of the following theorem uses arguments similar to
those in [Baader et al., 2008].

Theorem 12. Let C be a concept description and T a TBox.
ThenC is strongly `-satisfiable w.r.t. T (in a witnessed model)
iff there is a Hintikka tree T for C, T such that T(ε)(C) ≥ `.

Proof Sketch. A Hintikka tree can be seen as a witnessed
model with domain K∗ and interpretation function given by
the Hintikka sets. Thus, any Hintikka tree T for C, T with
T(ε)(C) ≥ ` entails strong `-satisfiability of C w.r.t. T .

On the other hand, every witnessed model I with a domain
element x ∈ ∆I for which CI(x) ≥ ` holds can be unrav-
eled into a Hintikka tree T for C, T as follows. We start by
labeling the root node by the Hintikka set that records the
membership values of x for each concept from sub(C, T ).

We then create successors of the root by considering every
element of sub(C, T ) of the form ∃r.D or ∀r.D and finding
the witness y ∈ ∆I for this restriction. We create a new node
for y which is an r-successor of the root node with degree
rI(x, y). By continuing this process, we construct a Hintikka
tree T for C, T for which T(ε)(C) ≥ ` holds.

Thus, in order to decide strong `-satisfiability w.r.t. wit-
nessed models, we only need to decide emptiness of the fol-
lowing automaton.

Definition 13 (Hintikka automaton). LetC be anALCL con-
cept description, T a TBox, and ` ∈ L. The Hintikka au-
tomaton for C, T , ` is the LA AC,T ,` = (Q, I,∆) where Q
is the set of all compatible Hintikka sets for C, T , I contains
all Hintikka sets H with H(C) ≥ `, and ∆ is the set of all
(k + 1)-tuples of compatible Hintikka sets that satisfy the
Hintikka condition.

The runs of AC,T ,` are exactly the Hintikka trees T hav-
ing T(ε)(C) ≥ `. Thus, C is strongly `-satisfiable w.r.t.
T iff AC,T ,` is non-empty. Since the automaton AC,T ,` is
exponential in C, T , and the emptiness test for looping au-
tomata is polynomial in the size of the automaton, overall we
obtain an exponential time decision procedure for strong `-
satisfiability. This bound is optimal, because concept satisfi-
ability is already EXPTIME-hard for crisp ALC with general
concept inclusions [Baader et al., 2003].

Theorem 14. The problem of deciding strong `-satisfiability
(w.r.t. witnessed models) of an ALCL concept description C
w.r.t. a TBox T is EXPTIME-complete.

Furthermore, the emptiness test described before can be
used to compute the set of all Hintikka sets that may appear
at the root of a Hintikka tree. From this we can extract the set
of all values ` such that T(ε)(C) ≥ ` for some Hintikka tree
T. From Lemma 7 it then follows that the best satisfiability
degree for C w.r.t. T can also be computed in exponential
time. By Lemma 5, all of the reasoning problems defined in
this paper are EXPTIME-complete.

We emphasize here that this complexity analysis does not
consider the underlying lattice L as part of the input. This is
a reasonable assumption as, for any given application, the lat-
tice will never be modified, and hence all the lattice-based op-
erations can be hardcoded to be performed in constant time.
However, if the size of the lattice is measured as the num-
ber of its elements, then the algorithm is also exponential in
this value, since all the lattice operations can be performed in
polynomial time in this size.

4 Dealing With More Witnesses
The use of the Hintikka automata from Definition 13 for
deciding strong `-satisfiability is only correct if ALCL has
the witnessed model property, i.e. every strongly `-satisfiable
concept is also strongly `-satisfiable w.r.t. witnessed models.
However, this property does not hold in general.

Example 15. Consider the lattice L3 and the TBox T from
Example 6. If we extend the interpretation I0 from the same
example such that rI0(x1, x1) = rI0(x1, x2) = 1, then
we see that ∃r.A is strongly 1-satisfiable. However, in any



witnessed model I, the strong 1-satisfiability of this con-
cept would imply the existence of an individual x such that
AI(x) = 1, which was shown to be impossible in Example 6.

Nonetheless, there is always a constant η ∈ N, depending
only on the underlying lattice L, such that ALCL has the η-
witnessed model property; i.e. strong `-satisfiability is equiv-
alent to strong `-satisfiability w.r.t. η-witnessed models. The
number η depends on the compactness degree of L.
Definition 16 (compactness). Let η ∈ N. A lattice L is called
η-compact if for every A ⊆ L there is a subset B ⊆ A with
at most η elements such that

⊕
B =

⊕
A. The compactness

degree of L is the smallest η for which L is η-compact.
The following lemma states that the compactness degree

yields a bound on the number of successors that witness any
existential and universal restriction. It is an easy consequence
of Definitions 8 and 16.
Lemma 17. Let L be a finite De Morgan lattice and η ∈
N. If L is η-compact, then ALCL has the η-witnessed model
property.

Moreover, the compactness degree of a given lattice L is
bounded by the width of L, i.e. the cardinality of the longest
antichain of L.
Lemma 18. If L has width η ∈ N, then L is η-compact.

Proof. If a set A ⊆ L contains two comparable elements,
then we can always remove one of them without affecting the
supremum of A.

This implies thatALCL always has the η-witnessed model
property for some η ∈ N, since we assumed L to be fi-
nite. From Lemma 18 we deduce that every total order is
1-compact. Consequently, if L is a finite total order with De
Morgan negation, then ALCL has the witnessed model prop-
erty. This is the case, e.g. for fuzzy ALC based on the Zadeh
fuzzy operations [Straccia, 2001].

The constructions of the previous section can easily be
adapted for η-witnessed models. We can introduce the no-
tion of η-witnessed Hintikka trees and construct looping au-
tomata Aη,C,T ,` such that the following are equivalent: (i) C
is strongly `-satisfiable w.r.t. T (in an η-witnessed model),
(ii) there is an η-witnessed Hintikka tree T for C, T such that
T(ε)(C) ≥ `, and (iii) the LA Aη,C,T ,` is non-empty. The
main difference lies in the arity k of the Hintikka trees. Thus,
a similar algorithm can be applied even if the logic does not
have the witnessed model property.
Theorem 19. The problem of deciding strong `-satisfiability
of an ALCL concept description C w.r.t. a TBox T is
EXPTIME-complete.

As before, the complexity of this problem does not change
if we do not view the lattice L as fixed, but measure its size
as the number of its elements.

5 Related Work
Several different formalisms have so far been suggested for
dealing with uncertainty or vagueness in DL ontologies.

In [Straccia, 2006], a similar approach to the one presented
here was taken. The description logic ALC is augmented by

multi-valued interpretations over a De Morgan lattice. The
difference to our approach lies in the treatment of axioms. In
[Straccia, 2006], the TBox axiom C v D is satisfied by an
interpretation I if CI(x) ≤ DI(x) holds for all x ∈ ∆I .
Additionally, only acyclic TBoxes are allowed, and thus, all
defined concepts can be expanded beforehand. This elimi-
nates the need to deal with the TBox in the algorithm that
checks satisfiability. Consequently, the presented tableaux
algorithm only checks ABox consistency in ALCL w.r.t. an
empty TBox. Our approach using automata allows us to deal
with arbitrary TBox axioms expressing, e.g. hereditary dis-
eases; on the other hand, we do not consider ABox axioms.
[Jiang et al., 2010] extend the work of [Straccia, 2006] to the
more expressive DL SHIN . However, they limit the expres-
sivity of the terminological axioms in the same way.

Fuzzy DLs are another way to deal with uncertainty in on-
tologies [Yen, 1991; Lukasiewicz and Straccia, 2008]. These
formalisms apply the ideas of fuzzy sets [Zadeh, 1965] to de-
scription logics. Concepts are interpreted as mappings from
the domain into the unit interval [0, 1]. Depending on the
underlying logical operators, the logics differ in the interpre-
tation of the concept constructors. However, the total order
[0, 1] does not allow for incomparable degrees of uncertainty
as our approach does.

Our definition ofALCL includes the fuzzy DL with Zadeh
semantics and Kleene-Dienes-implication [Straccia, 2001;
Stoilos et al., 2007]. In this case, the semantics is as that
of ALCL for the De Morgan lattice L = ([0, 1],max,min)
with negation x 7→ 1 − x. Although this lattice is not finite,
once the TBox is fixed we can restrict ourselves w.l.o.g. to a
finite subset of [0, 1], as max and min create no new values.
The tableau algorithm that was developed for reasoning in
fuzzyALC with Zadeh semantics and general TBoxes gener-
alizes the well-known algorithm for crisp ALC and may thus
require non-deterministic exponential time in the worst case.
Our algorithm improves on this by giving an EXPTIME up-
per bound, thus proving EXPTIME-completeness of the prob-
lem for the first time. Since our approach satisfies desirable
properties such as idempotency of conjunction and duality of
quantifiers, it is unable to treat more complex t-norm based
semantics [Bobillo and Straccia, 2009a].

A different way to enrich DLs with uncertainty is to follow
the approach of rough set theory [Pawlak, 1982]. The basic
idea of rough DLs [Schlobach et al., 2007; Keet, 2010] is
that some concepts cannot be described precisely, but only by
some lower and upper approximation. The semantics of this
logic requires, in addition to the interpretation of the different
concepts, an equivalence relation, called indiscernibility, on
the elements of the domain, which is used to formalize these
approximations. This formalism assumes that one can spec-
ify a global indiscernibility relation on the domain, whereas
the idea behind multi-valued DLs is that one is able to locally
specify a membership degree for each individual. The authors
show that the rough set semantics can be translated to clas-
sical DL. This is predicated on the existence of transitivity,
symmetry and reflexivity axioms for roles, which do not exist
inALC. In any DL that includes these axioms, one can easily
translate the indiscernibility equivalence relation of rough set
theory into a special role without adding to the complexity of



reasoning. However, for ALC this reduction yields a strict
increase in complexity. Efforts have also been made to com-
bine the approaches of rough set theory and fuzzy logic into
a single description logic [Bobillo and Straccia, 2009b].

6 Conclusions

We presented a general framework for reasoning under uncer-
tainty based on the description logicALC. We considered the
reasoning tasks of deciding `-satisfiability and `-subsumption
as well as computing the best satisfiability and subsumption
degrees w.r.t. general TBoxes. It turns out that these reason-
ing tasks are in the same complexity class as for the crisp DL
ALC. In [Straccia, 2006] it was shown that satisfiability w.r.t.
crisp acyclic TBoxes is PSPACE-complete.

To our knowledge, this is the first time that automata-
based techniques were used to analyze reasoning in DLs aug-
mented by De Morgan lattices. This enabled us to treat
the case of general concept inclusions instead of the sim-
pler acyclic TBoxes. Although we did not consider reasoning
w.r.t. ABoxes, it is clear that a preprocessing method simi-
lar to the one presented in [Hollunder, 1996], combining the
tableaux algorithm developed in [Straccia, 2006] with this
automata-based approach, would allow for the simultaneous
treatment of ABoxes and general TBoxes. We also plan to
extend our approach to more expressive DLs, as was already
done for reasoning w.r.t. crisp TBoxes in [Jiang et al., 2010].
Considering the close relationship between the automaton de-
ciding satisfiability inALC and our approach, we believe that
a similar argument can be used to show that multi-valued
SI is PSPACE-complete with acyclic TBoxes and EXPTIME-
complete with general TBoxes [Baader et al., 2008].

It would also be interesting to see whether concept mod-
ifiers (e.g. (very)Tall) can be treated in this framework.
Additionally, one may consider an implication different from
the one we used here, e.g. the residuum of the infimum ⊗.

The advantage of description logics over more expressive
logical formalism has always been the feasibility for imple-
mentation. Regarding the treatment of uncertainty, there are
several possible ways to implement reasoning procedures.
One could implement a completely new system or augment
an existing system like RACER3 or FaCT++4 to deal with
multi-valued instead of crisp semantics.

Furthermore, it may be possible to reduce reasoning in
ALCL to reasoning in ALC. This has already been done
for fuzzy DLs [Straccia, 2004] and multi-valued DLs based
on linear orders [Straccia, 2006]. The advantage of this ap-
proach is that one can reuse existing optimized reasoners for
crisp DLs. However, it remains to be seen whether this is fea-
sible for arbitrary De Morgan lattices. Finally, one could also
use a straightforward translation ofALCL into a multi-valued
first order language and use existing reasoners for these more
expressive formalisms, e.g. 3T

AP .5

3http://www.racer-systems.com/
4http://owl.man.ac.uk/factplusplus
5http://i12www.ira.uka.de/threetap
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