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Abstract. We examine the enumeration problem for essential closed
sets of a formal context. Essential closed sets are sets that can be writ-
ten as the closure of a pseudo-intent. The results for enumeration of
essential closed sets are similar to existing results for pseudo-intents, al-
beit some differences exist. For example, while it is possible to compute
the lectically first pseudo-intent in polynomial time, we show that it is
not possible to compute the lectically first essential closed set in poly-
nomial time unless P = NP. This also proves that essential closed sets
cannot be enumerated in the lectic order with polynomial delay unless
P = NP. We also look at minimal essential closed sets and show that
they cannot be enumerated in output polynomial time unless P = NP.

1 Introduction

The analysis of dependencies between attributes, so-called implications, is an
important area of research within Formal Concept Analysis (FCA). Already in
[7] it has been shown how a complete set of implications with minimal cardi-
nality can be obtained from a formal context. This set is now commonly known
as the Duquenne-Guigues-Base of a context. Since its discovery many results
and algorithms in FCA, such as Attribute Exploration, have made use of the
Duquenne-Guigues-Base.

Not surprisingly, a lot of effort has been directed at finding efficient algo-
rithms to compute it. One of the earliest, and probably most well-known al-
gorithms is Next-Closure-Algorithm [5]. It produces all concept intents and all
pseudo-intents of a given formal context in a lexicographic order (called the lectic
order). During the last decade, newer algorithms have been developed [9, 11].

It is known that the Duquenne-Guigues base cannot be computed in polyno-
mial time in the size of the input, since the base itself can be exponentially large
in the size of the input [8]. This leaves the question whether it can be enumer-
ated in output-polynomial time. Until now, no output-polynomial algorithm has
been found, and it is also not known whether such an algorithm exists. Recently,
a lot of progress has been made with respect to this question. It has been shown
that the implications from the Duquenne-Guigues Base cannot be enumerated
in output-polynomial time unless the transversal hypergraph problem (cf. [4])
is in P [12, 13]. In [2] a connection between the boolean satisfiability problem



(SAT) and enumeration problems from FCA has been established. In particular,
it has been shown using a reduction from SAT that the Duquenne-Guigues-Base
cannot be enumerated with polynomial delay in the lectic order unless P = NP.
A reduction from SAT has also been used in [1] to show that the problem of
verifying whether a given set of attributes is a pseudo-intent, i. e. whether it
occurs as the left-hand side of an implication in the Duquenne-Guigues Base,
is coNP-complete. In the same paper it is also shown that pseudo-intents can-
not be enumerated in the reverse lectical order with polynomial delay. Other
works related to enumeration algorithms for pseudo-intents include [6] where
optimizations based on hidden dependencies within the Duquenne-Guigues Base
are considered. In [10] it is shown that the problem of counting pseudo-intents
is #P-hard.

Previous work has mainly considered the pseudo-intents, i. e. the left-hand
sides of the implications. In this paper we look at the right-hand sides, which are
commonly called essential closed sets. In [1] it is shown that verifying whether
a given set of attributes of a context is a pseudo-intent is as hard as verifying
whether it is an essential closed set, i. e. it is coNP-complete. Unfortunately, a
similar connection cannot be easily obtained for the decision problems considered
in [2]. We therefore present yet another reduction from SAT which yields several
complexity results about essential closed sets. Most of these results are similar
to the ones for pseudo-intents. The main part of this paper is a reduction from
SAT which proves that the problem of verifying whether a given set of attributes
contains an essential closed set is NP-complete (Section 3). In Section 4 several
other results are obtained using the same reduction. In particular, it is shown
that the lectically first essential closed set cannot be computed in polynomial
time unless P = NP, that essential closed sets cannot be enumerated in the
lectic order with polynomial delay unless P = NP, and that minimal essential
closed sets cannot be enumerated in output polynomial time unless P = NP.

2 Preliminaries

A formal context is a tuple (G,M, I) where G and M are finite sets and I ⊆
G×M is a binary relation. The elements of G are called objects and elements of
M are called attributes. For a set of objects A ⊆ G its derivation A′ is defined
as

A′ = {m ∈M | ∀g ∈ A : gIm}.

Analogously, for a set B ⊆M its derivation B′ is defined as

B′ = {g ∈ G | ∀m ∈ B : gIm}.

Applying the two derivation operators successively yields the closure operators
·′′. Whenever we speak of a closed set in this work, we mean a set of attributes
B ⊆ M that is closed with respect to ·′′, i. e. that satisfies B′′ = B. Sets of
attributes that can be written as {g}′ for some g ∈ G are called object intents.
The following result is common knowledge in FCA.



Proposition 1. A set of attributes B ⊆ M is closed if and only if it can be
written as an intersection of object intents, i. e. there is a set A ⊆ G such that

B =
⋂
g∈A
{g}′.

A relevant research area in FCA are dependencies between sets of attributes.
The simplest form of such a dependency is an implication A → B, A,B ⊆ M .
A set of attributes D ⊆ M respects A → B if A 6⊆ D or B ⊆ D. A → B holds
in the context (G,M, I) if all object intents respect A→ B.

Let L be a set of implications. We say that A→ B follows semantically from
L if and only if each subset D ⊆ M that respects all implications from L also
respects A→ B. L is an implicational base for (G,M, I) if it is

– sound, i. e. all implications from L hold in (G,M, I), and
– complete, i. e. all implications that hold in (G,M, I) follow from L.

In [7] a minimum cardinality base, which is called the Duquenne-Guigues-Base,
has been introduced. The left-hand sides of the implications in the Duquenne-
Guigues-Base are called pseudo-intents. P ⊆ M is a pseudo-intent of K if P is
not closed and Q′′ ⊆ P holds for every pseudo-intent Q that is a proper subset
of P . The Duquenne-Guigues-Base consists of all implications P → P ′′, where
P is a pseudo-intent. A set R ⊆ M is an essential closed set (of K) if there is
a pseudo-intent P of K satisfying P ′′ = Q. Hence, the essential closed sets of a
context are exactly those sets that occur as the right-hand side of an implication
in the Duquenne-Guigues-Base. The following result is also common knowledge
from FCA.

Proposition 2. Let K be a formal context and let Q ⊆M be a set of attributes.
If Q is not closed then Q contains a pseudo-intent of K.

The most well-known algorithm for computing the Duquenne-Guigues-Base
is Next-Closure. It computes the set of all closed sets and all pseudo-intents of
a context K in a special order, called the lectic order. Let < be a total order on
the elements of M . Then we say that A ⊆M is lectically smaller than B ⊆M if
the smallest element with respect to < that distinguishes A and B is contained
in B. Formally, we write

A < B :⇔ ∃x ∈ B \A : ∀y < x : (y ∈ A⇔ y ∈ B).

Notice that the lectic order extends the subset order, i. e. A ( B implies A < B.

3 Main Reduction

In this section we prove that the following auxiliary problem is NP-hard. All
other results will be based on this reduction and can be found in Section 4.



Problem 1 (Essential Closed Subset (ECS)). Input: A formal context K = (G,M, I)
and a set B ⊆M .
Question: Does an essential closed set Q ⊆ B of K exist?

We prove NP-hardness using a reduction from SAT.

Problem 2 (SAT). Input: A boolean CNF-formula f(p1, . . . , pn) = C1∧· · ·∧Cm,
where Ci = (xi1 ∨ · · · ∨ xili) and xij ∈ {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} for all
i ∈ {1, . . . ,m} and all j ∈ {1, . . . , li}.
Question: Is f satisfiable?

SAT remains NP-complete if we impose the additional condition that for
every literal l ∈ {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} there is a clause Ci in which l
does not occur (otherwise we could simply add a new variable pn+1 and a new
clause Cm+1 = (pn+1) without changing satisfiability of the formula).

Let an instance of SAT, i. e. a formula f(p1, . . . , pn) = C1 ∧ · · · ∧Cm, where
Ci = (xi1∨· · ·∨xili) and xij ∈ {p1, . . . , pn}∪{¬p1, . . . ,¬pn} for all i ∈ {1, . . . ,m}
and all j ∈ {1, . . . , li}, be given. We construct an instance of ECS. We define

M = {α1, . . . , αn} ∪ {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β} (1)

For every r ∈ {1, . . . , n} we define sets Tr and Fr.

Tr = M \ {¬pr, αr}
Fr = M \ {pr, αr}

(2)

Finally, for every i ∈ {1, . . . ,m} we define a set

Ai = M \ {β}
\ {pr | r ∈ {1, . . . , n}, the positive literal pr occurs in Ci}
\ {¬pr | r ∈ {1, . . . , n}, the negative literal ¬pr occurs in Ci}
\ {αr | r ∈ {1, . . . , n}, pr or ¬pr occurs in Ci}

(3)

We construct a context Kf = (G,M, I) whose attribute set M is defined as in
(1), whose set of objects is

G = {gA1
, . . . , gAm

} ∪ {gT1
, . . . , gTn

} ∪ {gF1
, . . . , gFn

} ∪ {gQ1
, . . . , gQn

},

and whose incidence relation I is such that

{gAi
}′ = Ai, {gTr

}′ = Tr, {gFr
}′ = Fr, {gQr

}′ = {αr, pr,¬pr}

for all r ∈ {1, . . . , n} and all i ∈ {1, . . . ,m}. This context is shown in Table 1.
Our eventual objective is to reduce SAT to ECS by proving that f is satis-

fiable if and only if there exists a subset of

B = M \ {α1, . . . , αn}



Table 1. Context Kf

α1 . . . αn p1 . . . pn ¬p1 . . . ¬pn β
gA1 · · · A1 · · ·
...

...
gAm · · · Am · · ·
gT1 · · · T1 · · ·
...

...
gTn · · · Tn · · ·
gF1 · · · F1 · · ·
...

...
gFn · · · Fn · · ·
gQ1 × × ×
...

. . .
. . .

. . .

gQn × × ×

that is an essential closed set of Kf . We need several technical results.
Let φ : {p1, . . . , pn} → {true, false} be an assignment that assigns truth

values to all variables. There is a natural correspondence between φ and a set of
attributes Sφ. We define

Sφ := {pr | φ(pr) = true} ∪ {¬pr | φ(pr) = false}. (4)

The following result motivates our choice of the object intents {gAi}′ = Ai,
i ∈ {1, . . . ,m}.

Lemma 1. Let φ be an assignment of truth values. Then φ makes f true if and
only if Sφ 6⊆ Ai holds for all i ∈ {1, . . . ,m}.

Proof. Since f is in conjunctive normal form, φ makes f true if and only if φ
makes every clause Ci, i ∈ {1, . . . ,m}, of f true. For every i ∈ {1, . . . ,m} the
assignment φ makes the clause Ci true if and only if one of the literals in Ci
evaluates to true, i. e.

– there is some pr satisfying φ(pr) = true, where the positive literal pr occurs
in Ci, or

– there is some pr satisfying φ(pr) = false, where the negative literal ¬pr
occurs in Ci.

According to (3) and (4) this is equivalent to saying that

– there is some pr ∈ Sφ, where pr /∈ Ai, or
– there is some ¬pr ∈ Sφ, where ¬pr /∈ Ai.

This is equivalent to Sφ 6⊆ Ai. Thus we have shown that φ makes f true if and
only if Sφ 6⊆ Ai holds for all i ∈ {1, . . . ,m}.



The following proposition follows immediately from (2) and (4).

Proposition 3. Let φ be an assignment of truth values and X ⊆ Sφ a set of
attributes. Then

X ∪ {β} =
⋂

¬pr /∈X

Tr ∩
⋂
pr /∈X

Fr (5)

holds. Since for all r ∈ {1, . . . , n} the sets Tr and Fr are object intents this
proves that X ∪ {β} is closed.

Proposition 4. Let φ be an assignment of truth values and X ⊆ Sφ a set of
attributes. X is closed if and only if there is some i ∈ {1, . . . ,m} such that
X ⊆ Ai holds.

Proof. (⇐) We already know from Proposition 3 that X ∪ {β} =
⋂

¬pr /∈X Tr ∩⋂
pr /∈X Fr holds for X. Since X ⊆ Ai and β /∈ Ai it follows that

X = Ai ∩
(
X ∪ {β}

)
= Ai ∩

⋂
¬pr /∈X

Tr ∩
⋂
pr /∈X

Fr.

Since Tr and Fr, r ∈ {1, . . . , n}, and Ai are object intents Proposition 1 proves
that X ∪ {β} is closed.

(⇒) The case where X = ∅ is trivial. Let X = {l} be a singleton set. We have
required that for every literal there is a clause in which it does not occur. Hence,
there is a clause Ci in which l does not occur, and therefore X = {l} ⊆ Ai holds.
The case where X contains at least two elements remains. Since X ⊆ Sφ holds, X
cannot contain {pr,¬pr} or {αr} for any r ∈ {1, . . . , n}. We obtain that if X has
at least two elements then it cannot be a subset of {αr, pr,¬pr} = {gQr}′ for any
r ∈ {1, . . . , n}. Assume that X 6⊆ Ai = {gAi

}′ holds for all i ∈ {1, . . . ,m}. Then
the only object intents that contain X are of the form {gTr

}′ or {gFr
}′. All object

intents of the form {gTr
}′ or {gFr

}′ contain β, which yields β ∈ X ′′. Because
β /∈ Sφ ⊇ X this is a contradiction to the fact that X is closed. Therefore, the
assumption that X 6⊆ Ai holds for all i ∈ {1, . . . ,m} must be false, i. e. there
must be some i ∈ {1, . . . ,m} satisfying X ⊆ Ai.

Lemma 2. For every r ∈ {1, . . . , n} it holds that

{αr}′′ = {pr,¬pr}′′ = {αr, pr,¬pr}.

Proof. We have defined Kf in such a way that every object intent that con-
tains {pr,¬pr} also contains {αr}. Conversely, every object intent that con-
tains {αr} also contains {pr,¬pr}. This proves {αr, pr,¬pr} ⊆ {pr,¬pr}′′ and
{αr, pr,¬pr} ⊆ {αr}′′. On the other hand, we know that {αr, pr,¬pr} = {gQr

}′
is closed since it is an object intent. This yields {αr, pr,¬pr} = {pr,¬pr}′′ =
{αr}′′.

Theorem 1. Define B = {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β}. There is an es-
sential closed set Q ⊆ B if and only if f is satisfiable.



Proof. (⇒) Assume that Q contains both pr and ¬pr for some r ∈ {1, . . . , n}.
Lemma 2 yields αr ∈ Q′′. This contradicts the fact that Q is a closed subset
of B. Therefore, the assumption that Q contains both pr and ¬pr for some
r ∈ {1, . . . , n} must be false. Thus, Q must be a subset of Sφ ∪ {β} for some
assignment φ. Since Q is an essential closed set there must be a pseudo-intent
P ⊆ Q ⊆ Sφ ∪ {β}. If P contains β then Proposition 3 yields that P is closed.
This contradicts the fact that P is a pseudo-intent. Hence, P cannot contain
β, i. e. P ⊆ Sφ holds. Since P is a pseudo-intent and therefore not closed we
obtain from Proposition 4 that there is no i ∈ {1, . . . ,m} such that P ⊆ Ai.
P ⊆ Sφ yields that there is no i ∈ {1, . . . ,m} such that Sφ ⊆ Ai. It follows from
Lemma 1 that φ makes f true.

(⇐) Let φ be an assignment that makes f true. Lemma 1 implies Sφ 6⊆ Ai for
all i ∈ {1, . . . ,m}. Proposition 4 shows that Sφ is not closed. Let X be minimal
among all subsets of Sφ that are not closed. Then in particular all subsets of X
are closed. Since X is not closed, but all of its subsets are closed, X must be a
pseudo-intent of Kf . Proposition 3 states that X ∪ {β} is closed, and therefore
X ′′ = X ∪ {β} holds. This shows that X ∪ {β} is an essential closed set. Since
X ∪ {β} is also a subset of B this proves the initial claim.

Corollary 1. ECS is NP-hard.

Proof. Every boolean formula f can be converted into an instance of ECS,
namely the context Kf and the set B = {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β},
in polynomial time. Theorem 1 states that f is a “Yes”-instance of SAT if and
only if Kf and B are a “Yes”-instance of ECS.

We have thus shown that the problem of deciding whether a given set of
attributes B in a context K contains an essential closed set, is NP-hard. Sur-
prisingly, the problem becomes easier if we require B to be closed. If all subsets
of B are closed then B cannot contain a pseudo-intent, and thus it does not
contain an essential closed set. On the other hand, if B contains a set S that is
not closed, then there must be a pseudo-intent P ⊆ S because of Proposition 2.
We obtain P ′′ ⊆ S′′ ⊆ B′′ = B. Therefore B contains the essential closed set P ′′.
This proves that checking whether a closed set B contains an essential closed set
is equivalent to checking whether all subsets of B are closed. It is well known
that the latter can be done in polynomial time.

4 Further Results

Let K = (G,M, I) be a formal context. We call a set Q is a minimal essential
closed set (of K) if Q is minimal with respect to set inclusion among all essential
closed sets of K. It is known from [1] that the problem of deciding whether a
given set of attributes is an essential closed set is coNP-hard. We first show
that the problem becomes easier for minimal essential closed sets: it is possible
to decide in polynomial time whether a given set is a minimal essential closed
set. This result is required for later proofs.



Proposition 5. Q is a minimal essential closed set if and only if

– Q is closed, and
– not every subset of Q is closed, and
– every closed set R ( Q satisfies

∀S ⊆ R : S′′ = S. (6)

Proof. (⇒) As an essential closed set, Q is obviously closed. As an essential
closed set, Q must contain a pseudo-intent P1, which is not closed. Hence, not
all subsets of Q are closed. Assume that there is a strict subset R ( Q that is
closed and a set S ⊆ R that is not closed. By Proposition 2 S contains a pseudo-
intent P2 ⊆ S ⊆ R. Since R is closed it follows that P ′′

2 ⊆ R ( Q. Hence, P ′′
2 is

an essential closed set and a strict subset of Q, which contradicts minimality of
Q. Thus the assumption that such a set S exists must be false.

(⇐) Since not all subsets of Q are closed there must be a pseudo-intent
P ⊆ Q by Proposition 2. Since Q is closed we obtain P ′′ ⊆ Q. P ′′ cannot be a
strict subset of Q, because otherwise (6) would imply that P is closed. Therefore,
P ′′ = Q holds, and thus Q is an essential closed set. No strict subset of Q can
be an essential closed set because of (6). Thus Q is a minimal essential closed
set.

Notice that in order to decide whether a given set Q satisfies (6) for all closed
sets R ( Q it suffices to check whether (6) holds for all sets R that are maximal
with respect to set inclusion among the closed strict subsets of Q. If Q is itself
closed then these are of the form Q∩{g}′, where g ∈ G and Q 6⊆ {g}′. Hence, it
suffices to check (6) for at most |G| strict subsets of Q. It has been established
in previous works [2] that one can decide in polynomial time whether all subsets
of a given set of attributes are closed. Hence, all conditions from Propostion 5
can be tested in polynomial time.

Corollary 2. Let K be a formal context and Q ⊆ M a set of attributes. It is
possible to decide in time polynomial in the size of the context K and the size of
Q whether Q is a minimal essential closed set.

This gives us the containment result corresponding to the hardness result
from Corollary 1. Clearly, for a formal context K = (G,M, I) and a set B ⊆
M there is an essential closed set Q ⊆ B if and only if there is a minimal
essential closed set R ⊆ B. In order to decide in non-deterministic polynomial
time whether B contains an essential closed set we can non-deterministically
guess a subset of B and decide using Corollary 2 whether it is a minimal essential
closed set. This proves that ECS is contained in NP. Together with the previous
hardness result we obtain NP-completeness.

Theorem 2. ECS is NP-complete.

We want to take a closer look at the enumeration problem for essential closed
sets. But first we consider the following decision problem.



Problem 3 (Lectically Smaller Essential Closed Set (LS-ECS)). Input: A formal
context K = (G,M, I) and a set B ⊆M .
Question: Is there an essential closed set Q of K which is lectically smaller that
B?

Theorem 3. LS-ECS is NP-complete.

Proof. Containment: Since the lectic order extends the subset order there is
an essential closed set that is lectically smaller than B if and only if there is a
minimal essential closed set that is lectically smaller than B. This can be verified
by non-deterministically guessing a subset of B and checking in polynomial time
whether it is a minimal essential closed set.

Hardness: Given an instance f of SAT we can construct an instance of LS-
ECS consisting of the context Kf and the set B = {p1, . . . , pn}∪{¬p1, . . . ,¬pn}∪
{β} using the same reduction as in Section 3. We define the order on the set of
attributes as follows

α1 < · · · < αn < p1 < · · · < pn < ¬p1 < · · · < ¬pn < β.

Then the sets that are lectically smaller than B are exactly the subsets of B.
The correctness of the reduction therefore follows from Theorem 1.

This result has consequences for the problem of enumeration of essential
closed sets in the lectic order. If it were possible to compute the lectically first
essential closed set of a context K in polynomial time then we could decide
LS-ECS in polynomial time as follows. We would simply compute the lectically
first essential closed set of K and check whether it is lectically smaller than B.
Because of Theorem 3 it is not possible to decide LS-ECS in polynomial time
unless P = NP.

Corollary 3. Let K be a formal context. It is not possible to compute the lecti-
cally first essential closed set of K in polynomial time unless P = NP.

In this respect, the computational behaviour of essential closed sets is worse
than that of pseudo-intents, since the lectically first pseudo-intent can be com-
puted in polynomial time [3]. Because not even the lectically first essential closed
set can be computed in polynomial time it is obviously not possible to enumerate
essential closed sets in the lectic order with polynomial delay.

Corollary 4. It is not possible to enumerate essential closed sets in the lectic
order with polynomial delay.

Finally, we consider the problem of enumeration of minimal essential closed
sets.

Problem 4 (All Minimal Essential Closed Sets (All-MECS)). Input: A formal
context K = (G,M, I) and sets Q1, . . . , Qk ⊆M .
Question: Are Q1, . . . , Qk all minimal essential closed sets of K?



Lemma 3. Let f be a boolean CNF-formula and Kf the formal context con-
structed as in Section 3. Then Q1 = {α1, p1,¬p1}, . . . , Qn = {αn, pn,¬pn} are
all the minimal essential closed sets of Kf if and only if there is no essential
closed set Q ⊆ B = {p1, . . . , pn} ∪ {¬p1, . . . ,¬pn} ∪ {β}.

Proof. (⇒) Assume that there is an essential closed set Q ⊆ B. Then Q contains
a minimal essential closed set R. For all r ∈ {1, . . . , n} since B does not contain
αr the set R cannot contain αr, either. Thus R 6= Qr holds for all r ∈ {1, . . . , n},
which contradicts the fact that Q1, . . . , Qn are all the minimal essential closed
sets of K. Hence, the assumption must be false, i. e. an essential closed set Q ⊆ B
cannot exist.

(⇒) By Lemma 2 every closed set that contains αr for some r ∈ {1, . . . , n}
must also contain {pr,¬pr}. Therefore, Qr = {αr, pr,¬pr} is the only minimal
essential closed set of Kf that contains αr. Thus, every essential closed set that
is different from Q1, . . . , Qn must be a subset of B. The hypothesis states that
such a set does not exist. Hence, Q1, . . . , Qn are all the minimal essential closed
sets of K.

Theorem 4. All-MECS is coNP-complete.

Proof. To prove hardness using a reduction from SAT from a given formula f
we construct a context Kf as in Section 3 and sets Q1, . . . , Qn as in Lemma 3.
Lemma 3 and Theorem 1 show that Q1, . . . , Qn are all the minimal essential
closed sets of K if and only if f is not satisfiable. This proves that All-MECS
is coNP-hard. Containment can be shown using Corollary 2: Given an instance
of All-MECS consisting of a context K = (G,M, I) and sets Q1, . . . , Qn we
can verify in polynomial time using Corollary 2 that all sets Q1, . . . , Qn are
minimal essential closed sets. Subsequently, we non-deterministically guess a set
S ⊆ M and check in polynomial time whether it is a minimal essential closed
set that is different from Q1, . . . , Qn.

If there were an algorithmA that enumerates the minimal essential closed sets
of a context in output polynomial time, then we could construct an algorithm
A′ that decides All-MECS as follows: Since A can enumerate the minimal
essential closed sets of a context K in output polynomial time there must be a
polynomial p(k, n) that serves as an upper bound for the runtime of A, where k
is the size of the input context K and n is the number of minimal essential closed
sets of K. To decide All-MECS for a context K and sets Q1, . . . , Qn we let A
run on K and stop it after time p(|K|, n). Then we compare its output (if any) to
Q1, . . . , Qn. Q1, . . . , Qn are not all the minimal essential closed sets of K iff the
outputs differ or A does not terminate within p(|K|, n) steps. Since All-MECS
cannot be decided in polynomial time unless P = NP such an algorithm cannot
exist unless P = NP.

Corollary 5. Minimal essential closed sets cannot be enumerated in output
polynomial time unless P = NP.



5 Conclusion

Using a new reduction from SAT we have shown several complexity results
about essential closed sets. Most of these results closely resemble those for
pseudo-intents. Essential closed sets cannot be enumerated in the lectic order
with polynomial delay unless P = NP, and minimal essential closed sets cannot
be enumerated in output polynomial time unless P = NP. The same holds for
pseudo-intents [2].

Essential closed sets differ from pseudo-intents computationally with respect
to the following problems. For an arbitrary set of attributes it is NP-hard to
verify whether it contains an essential closed set. By contrast, it is easy to check
whether a given set of attributes contains a pseudo-intent, because this simply
means checking for closedness. It is impossible to compute the lectically first
essential closed set unless P = NP. The lectically first pseudo-intent can be
computed in polynomial time [3].

These results are, of course, only a minor contribution to the question whether
the Duquenne-Guigues Base can be enumerated efficiently. This important ques-
tion remains open and should be part of future work.
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Sébastien Ferré and Sebastian Rudolph, editors, Proc. of the 7th Int. Conf. on
Formal Concept Analysis, (ICFCA 2009), volume 5548 of Lecture Notes in Artifi-
cial Intelligence, pages 130–145. Springer Verlag, 2009.
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