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Abstract. We present methods that compute generalizations of concepts or indi-
viduals described in ontologies written in the DescriptionLogicEL. These gener-
alizations are the basis of methods for ontology design and are the core of concept
similarity measures. The reasoning service least common subsumer (lcs) gener-
alizes a set of concepts. Similarly, the most specific concept (msc) generalizes
an individual into a concept description. ForEL with generalEL-TBoxes, the lcs
and the msc may not exist. However, it is possible to find a concept description
that is the lcs (msc) up to a certain role-depth.
In this paper we present a practical approach for computing the lcs and msc with
a bounded depth, based on the polynomial-time completion algorithm forEL and
describe its implementation.

1 Introduction

Ontologies have become a commonly used means to describe controlled vocabularies,
most prominently, in life sciences. Categories that form these vocabularies are some-
times only described in terms of specializations, i.e. by the “is-a” relation. Since the
standardization of the web ontology language OWL [25], moreapplications have be-
gun using this richer modeling language for describing notions from their domain in a
more precise and detailed way. The formalism underlying OWLare Description Logics
(DLs) [3], which are a family of logics with formal semantics. The formal semantics
of DLs are the basis for the definition of reasoning services such assubsumptionor
instance checking. Subsumption tests whether a sub- / super-concept relationship holds
between a pair of concept descriptions. Instance checking answers the question whether
it follows from the ontology that a given individual must belong to a concept. The rea-
soning algorithms for these reasoning services are well-investigated for a range of DLs
and implemented in powerful reasoner systems. In this paperwe want to devise com-
putation methods for inferences that can be employed to derive generalizations. These
inferences turn out to be useful for range of ontology-basedapplications such as e.g.
the life sciences [21, 9] or context-aware systems [22].

The newest version of the OWL standard [25] offers severalOWL profiles, which
correspond to DLs with varying expressivity. We are interested in the OWL EL profile,
which corresponds to the DLEL++, an extension of the DLEL where reasoning is
still tractable.EL-concept descriptions are composed from conjunctions or existential
restrictions. Despite its limited expressivity,EL has turned out to be useful to model



notions from life science applications. Most prominently,the medical ontology SnoMed
[21] and the Gene Ontology [9] are written inEL. For instance, it is possible to express
by

Myocarditis ⊑ inflammation ⊓ ∃has−location.heart

that myocarditis is a kind of inflammation that is located in the heart.
In fact, medical and context-aware applications deal with very large ontologies,

which are oftenlight-weight, in the sense that they can be formulated inEL or one of its
extensions from the so-calledEL-family. Members of theEL-family allow for reasoning
in polynomial time [2]. In particular, subsumption and instance checking are tractable
for EL andEL++, which was the main reason to standardize it in an own OWL 2 profile
[25]. The reasoning algorithms for theEL-family are based on a completion method
and have been implemented in optimized reasoners such as CEL [16].

We investigate here two inferences that generalize different entities from DL knowl-
edge bases. The first one is theleast common subsumer(lcs) [7], which generalizes a
collection of concept descriptions into a single concept description that is the least w.r.t.
subsumption. Intuitively, the lcs yields a new (complex) concept description that cap-
tures all the commonalities of the input concept descriptions. The second inference
is themost specific concept(msc) [4], which generalizes an individual into a concept
description. Intuitively, the msc delivers the most specific concept description that is
capable of describing the individual.

Applying Generalization Inferences

In the following we describe some of the most prominent applications of the lcs and the
msc.

Similarity measures.Concept similarity measures compute, given a pair of concept
descriptions, a numerical value between 0 and 1 that lies closer to 1 the more simi-
lar the concepts are. Similarity measures are an important means to discover, for in-
stance, functional similarities of genes modeled in ontologies. In [13] and, more re-
cently, in [19] several similarity measures were evaluatedfor the Gene Ontology and
it was concluded that the similarity measure from Resnik [20] performed well, if not
best. This similarity measure is an edge-based approach, which finds the most specific
common ancestor (msa)1 of the concepts to be compared in the concept hierarchy and
computes a similarity value based on the number of edges between the concepts in ques-
tion and their msa. Clearly, the msa can only yield a named concept from the TBox and
thus captures possibly onlysomeof the commonalities of the concepts to be compared.
The lcs, in contrast, capturesall commonalities and is thus a more faithful starting point
for a similarity measure. In fact, the lcs was employed for similarity measures for DLs
in [6] already. In a similar fashion a similarity measure forcomparing individuals can
be based on the msc [10]

1 Sometimes also calledleast common ancestor(lca)



Building ontologies.In [11] it was observed that users working with biological ontolo-
gies would like to develop the description of the application categories in an example-
driven way. More precisely, users would like to start by modeling individuals which are
then generalized into a concept description. In fact, in thebottom-up approach for the
construction of knowledge bases [4], a collection of individuals is selected for which
a new concept definition is to be introduced in the ontology. Such a definition can be
generated automatically by first generalizing each selected individual into a concept de-
scription (by computing the msc for each of them) and then applying the lcs to these
concept descriptions.

The lcs can also be employed to enrich unbalanced concept hierarchies by adding
new intermediate concepts [23].

Reconciling heterogeneous sources.The bottom-up procedure sketched before can also
be employed in applications that face the problem that different information sources
provide differing observations for the same state of affairs. For instance, in context-
aware systems a GPS sensor or a video camera can provide differing information on a
the location of a user. Alternatively, in medical applications, different diagnosing meth-
ods may yield differing results. It can be determined what the different sources agree
on by representing this information as distinct ABox individuals and then by finding a
common generalization of them by the bottom-up approach.

Information retrieval. The msc inference can be employed to obtain a query concept
from an individual to search for other, similar individualsin an ontology [15, 8].

In order to support all these ontology services for practical applications automati-
cally, computation algorithms for the generalization inferences inEL are needed. Un-
fortunately, the lcs inEL does not always exist, when computed w.r.t. cyclic TBoxes
[1]. Similarly, the msc inEL does not always exist, if the ABox is cyclic [12], mainly
because cyclic structures cannot be captured inEL-concept descriptions. In [12] the
authors propose to use an approximation of the msc by limiting the role-depth of the
concept description computed. We pursue this approach herefor the lcs and the msc
and thus would obtain only “common subsumers” and “specific concepts” that are still
generalizations of the input, but not necessarily the leastones w.r.t. subsumption. How-
ever, by our proposed method we obtainthe lcs or the msc w.r.t. the given role depth
bound. We argue that such approximations are still useful inpractice.

Recently, a different approach for obtaining the lcs (or themsc) in presence of cyclic
knowledge bases was proposed in [14] by extendingEL with concept constructors for
greatest fixpoints. In the so obtained DLELν reasoning stays polynomial and the lcs
and msc w.r.t. cyclic knowledge bases can be computed. However, the DL obtained by
adding constructors for greatest fixpoints is possibly not easy to comprehend for naive
users of ontologies.

For medical or context-aware applications knowledge basescan typically grow very
large in practice. Thus, in order to support the computationof the (role-depth bounded)
lsc or the msc for such applications, efficient computation of these generalizations for
EL is desirable. Our computation methods build directly on thecompletion method for
subsumption and instance checking forEL [2] for which optimizations already exists



and are employed in modern reasoner systems. This enables the implementation of the
role-depth bounded lcs and msc on top of existing reasoner systems. More precisely,
in our completion-based approach, we obtain the role-depthbounded lcs by traversing
the data-structures built during the computation of the subsumption hierarchy of the
ontology. The role-depth bounded msc can be obtained from the data-structures gener-
ated during the computation of all instance relations for the knowledge base. We have
recently implemented the completion-based computation ofthe role-depth bounded lcs
and msc in our system GEL.

This paper is structured as follows: after introducing basic notions of DLs, we dis-
cuss the completion algorithms for classification and instance checking inEL in Sec-
tion 3. We extend these methods to computation algorithms for the role-depth bounded
lcs in Section 4.1 and for the role-depth bounded msc in Section 4.2 and we describe
our initial implementation of the presented methods in Section 5. We conclude the paper
with an outline of possible future work.

2 Preliminaries

We now formally introduce the DLEL. Let NI , NC andNR be disjoint sets ofindi-
vidual names, concept namesandrole names, respectively.EL-concept descriptionsare
built according to the syntax rule

C ::= ⊤ | A | C ⊓D | ∃r.C

whereA ∈ NC , andr ∈ NR.
A general concept inclusion(GCI) is a statement of the formC ⊑ D, whereC,D

areEL- concept descriptions. AnEL-TBoxis a finite set of GCIs. Observe that TBoxes
can be cyclic and allow for multiple inheritance. AnEL-ABoxis a set of assertions of the
form C(a), or r(a, b), whereC is anEL-concept description,r ∈ NR, anda, b ∈ NI .
An ontologyor knowledge baseK = (T ,A) consists of a TBoxT and an ABoxA.

The semantics ofEL is defined by means of interpretationsI = (∆I , ·I) consisting
of a non-emptydomain∆I and aninterpretation function·I that assigns binary rela-
tions on∆I to role names, subsets of∆I to concepts and elements of∆I to individual
names. The interpretation function·I is extended to concept descriptions in the usual
way. For a more detailed description of the semantic of DLs see [3].

An interpretationI satisfiesa concept inclusionC ⊑ D, denoted asI |= C ⊑ D if
CI ⊆ DI ; it satisfiesan assertionC(a) (or r(a, b)), denoted asI |= C(a) (I |= r(a, b),
resp.) ifaI ∈ CI ((aI , bI) ∈ rI , resp.). An interpretationI is amodelof a knowledge
baseK = (T ,A) if it satisfies all GCIs inT and all assertions inA.

We say thatC is subsumedby D w.r.t. T (writtenC ⊑T D) if for every modelI
of T it holds thatI |= C ⊑ D. The computation of the subsumption hierarchy of all
named concepts in a TBox is calledclassification.

Finally, an individuala ∈ NI is an instanceof a concept descriptionC w.r.t. K
(writtenK |= C(a)) if I |= C(a) for all modelsI of K. ABox realizationis the task of
computing, for each individuala in A, the set of named concepts fromK that havea as
an instance and that are least (w.r.t.⊑).



In this paper we are interested in computing generalizations by least common sub-
sumers and most specific concepts, which we now formally define. Notice that our
definition is general for any DL and not necessarily specific for EL.

Definition 1 (least common subsumer).LetL be a DL,K = (T , A) be aL-KB. The
least common subsumer(lcs) w.r.t. T of a collection of conceptsC1, . . . , Cn is the
L-concept descriptionC such that

1. Ci ⊑T C for all 1 ≤ i ≤ n, and
2. for eachL-concept descriptionD holds: if Ci ⊑T D for all 1 ≤ i ≤ n, then

C ⊑T D.

We will mostly consider the DLEL in this paper. Although defined as ann-ary opera-
tion, we will often write the lcs as a binary operation in the remainder of the paper for
simplicity.

Definition 2 (most specific concept).LetL be a DL,K = (T , A) be aL-KB. Themost
specific concept(msc) w.r.t.K of an individuala fromA is theL-concept description
C such that

1. K |= C(a), and
2. for eachL-concept descriptionD holds:K |= D(a) impliesC ⊑T D.

Both inferences depend on the DL in use. For the DLs with conjunction as concept
constructor the lcs and msc are, if exist, unique up to equivalence. Thus it is justified to
speak ofthe lcs or themsc. Our computation methods for generalizations are basedon
the completion method, which we introduce in the following section.

3 Completion Algorithms for EL

In principle, completion algorithms try to construct minimal models of the knowledge
base. In case of classification algorithms such a model is constructed for the TBox and
in case of ABox realization for the whole knowledge base. We describe the completion
algorithm for ABox realization inEL, originally described in [2], which can be easily
restricted to obtain algorithms for classification. While the former is the basis for com-
puting the role-depth bounded msc, the latter is used to obtain the role-depth bounded
lcs.

For anEL-KB K = (T ,A) we want to test whetherK |= D(a) holds. The comple-
tion algorithm first adds toK a concept name for the complex concept descriptionD

used in the instance check, i.e.,K = (T ∪ {Aq ≡ D},A), whereAq is a fresh concept
name inK. The instance checking algorithm forEL normalizes the knowledge base
in two steps: first the ABox is transformed into a simple ABox.An ABox is asimple
ABox, if it only contains concept names in concept assertions. AnEL-ABox A can be
transformed into a simple ABox by first replacing each complex assertionC(A) in A
byA(a) with a fresh nameA and, second, introduceA ≡ C in the TBox.

To describe the second normalization step, we need some notation. Let X be a
concept description, a TBox, an ABox or a knowledge base.CN(X) denotes the set



NF1 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A,C ⊓A ⊑ E }

NF2 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A,∃r.A ⊑ D }

NF3 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A,A ⊑ D̂ }

NF4 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A,A ⊑ Ĉ }

NF5 B ⊑ C ⊓D −→ { B ⊑ C,B ⊑ D }

whereĈ, D̂ 6∈ CN(T ) ∪ {⊤} andA is a new concept name.

Fig. 1.EL normalization rules

of all concept names andRN(X) denotes the set of all role names that appear inX .
The signature ofX (denotedsig(X)) is thenCN(X) ∪ RN(X). Now, anEL-TBox
T is in normal form if all concept axioms have one of the following forms, where
C1, C2 ∈ sig(T ) andD ∈ sig(T ) ∪ {⊥}:

C1 ⊑ D, C1 ⊓ C2 ⊑ D, C1 ⊑ ∃r.C2 or ∃r.C1 ⊑ D.

Any EL-TBox can be transformed into normal form by introducing newconcept names
and by simply applying the normalization rules displayed inFigure 1 exhaustively.
These rules replace the GCI on the left-hand side of the ruleswith the set of GCIs
on the right-hand side.

Clearly, for a KBK = (T ,A) the signature ofA may be changed only during the
first of the two normalization steps and the signature ofT may be extended during both
of the normalization steps. The normalization of the KB can be done in linear time.

The completion algorithm for instance checking is based on the one for classifying
EL-TBoxes introduced in [2]. LetK =(T ,A) be a normalizedEL-KB, i.e., with a simple
ABox A and a TBoxT in normal form. The completion algorithm works on four kinds
of completion sets: S(a), S(a, r), S(C) andS(C, r) for eacha ∈ IN(A), eachC ∈
CN(K), and eachr ∈ RN(K). The sets of the kindS(a) andS(a, r) contain individuals
and concept names. The completion algorithm for classification uses only the latter
two kinds of completion sets:S(C) andS(C, r), which contain only concept names
fromCN(K). Intuitively, the completion rules make implicit subsumption and instance
relationships explicit in the following sense:

– D ∈ S(C) implies thatC ⊑T D,
– D ∈ S(C, r) implies thatC ⊑T ∃r.D.
– D ∈ S(a) implies thata is an instance ofD w.r.t.K,
– D ∈ S(a, r) implies thata is an instance of∃r.D w.r.t.K.

SK denotes the set of all completion sets of a normalizedK. The completion sets are
initialized for eachC ∈ CN(K), eachr ∈ RN(K), and eacha ∈ IN(A) as follows:

– S(C) := {C,⊤}
– S(C, r) := ∅
– S(a) := {C ∈ CN(A) | C(a) appears inA} ∪ {⊤}
– S(a, r) := {b ∈ IN(A) | r(a, b) appears inA}.



CR1 If C ∈ S(X), C ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR2 If C1, C2 ∈ S(X), C1 ⊓ C2 ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR3 If C ∈ S(X), C ⊑ ∃r.D ∈ T , andD 6∈ S(X, r)
thenS(X, r) := S(X, r) ∪ {D}

CR4 If Y ∈ S(X, r), C ∈ S(Y ), ∃r.C ⊑ D ∈ T , and
D 6∈ S(X) thenS(X) := S(X) ∪ {D}

Fig. 2.EL completion rules

Then these sets are extended by applying the completion rules shown in Figure 2 until
no more rule applies. In these rulesC,C1, C2 andD are concept names andr is a role
name, whileX andY can refer to concept or individual names in the algorithm for
instance checking. In the algorithm for classification,X andY refer to concept names.
After the completion has terminated, the following relations hold between an individual
a, a roler and named conceptsA andB:

– subsumption relation betweenA andB fromK holds iffB ∈ S(A)
– instance relation betweena andB fromK holds iffB ∈ S(a),

which has been shown in [2].
To decide the initial query:K |= D(a), one has to test now, whetherAq appears in

S(a). In fact, instance queries for all individuals and all namedconcepts from the KB
can be answered now; the completion algorithm does not only perform one instance
check, but complete ABox realization. The completion algorithm for EL runs in poly-
nomial time in size of the knowledge base.

4 Computing Role-depth Bounded Generalizations

We employ the completion method now to compute first the role-depth bounded lcs and
then the role-depth bounded msc inEL.

4.1 Computing the Role-depth Bounded LCS

As mentioned in the introduction, the lcs does not need to exist for cyclic TBoxes.
Consider the TBoxT = {A ⊑ ∃r.A ⊓C, B ⊑ ∃r.B ⊓C}. The lcs ofA andB is then

C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ · · ·

and cannot be expressed by a finite concept description. To avoid such infinite nestings,
we limit the role-depth of the concept description to be computed. Therole-depthof a
concept descriptionC (denotedrd(C)) is the maximal number of nested quantifiers of
C. Now we can define the lcs with limited role-depth.



Definition 3 (Role-depth boundedL-lcs). Let T be anL-TBox andC1, . . . , Cn L-
concept descriptions andk ∈ IN. Then theL-concept descriptionC is therole-depth
boundedL-least common subsumerof C1, . . . , Cn w.r.t. T and role-depthk (written
k-lcs(C1, . . . , Cn)) iff

1. rd(C) ≤ k,
2. Ci ⊑T C for all 1 ≤ i ≤ n, and
3. for eachL-concept descriptionsD with rd(D) ≤ k it holds that,

Ci ⊑T D for all 1 ≤ i ≤ n impliesC ⊑T D.

The computation algorithm for the role-depth bounded lcs w.r.t. generalEL-TBoxes,
constructs the concept description from the set of completion sets. More precisely, it
combines and intersects the completion sets in the same fashion as in the cross-product
computation in the lcs algorithm forEL-concept descriptions (without TBoxes) from
[4]. The method we present here to compute the role-depth bounded lcs was described
in [17].

However, the completion sets may contain concept names thatwere introduced dur-
ing normalization. The returned lcs-concept description should only contain concept
names that appear in the initial TBox, thus we need to “de-normalize” the concept de-
scriptions obtained from the completion sets. However, theextension of the signature
by normalization according to the normalization rules fromFigure 1 does not affect
subsumption tests forEL-concept descriptions formulated w.r.t. the initial signature of
T . The following Lemma has been shown in [17].

Lemma 1. Let T be anEL-TBox andT ′ the TBox obtained fromT by applying the
EL normalization rules,C, D beEL-concept descriptions withsig(C) ⊆ sig(T ) and
sig(D) ⊆ sig(T ′) andD′ be the concept description obtained by replacing all names
A ∈ sig(T ′) \ sig(T ) fromD with ⊤. ThenC ⊑T ′ D iff C ⊑T D′.

Lemma 1 guarantees that subsumption relations w.r.t. the normalized TBoxT ′ between
C andD, also hold w.r.t. the original TBoxT for C andD′, which is basically obtained
fromD by removing the names introduced by normalization, i.e., concept names from
sig(T ′) \ sig(T ).

We assume that the role-depth of each input concept of the lcshas a role-depth less
or equal tok. This assumption is motivated by the applications of the lcson the one hand
and on the other by the simplicity of presentation, rather than a technical necessity. The
algorithm for computing the role-depth bounded lcs of twoEL-concept descriptions is
depicted in Algorithm 1.

The procedurek-lcs first adds concept definitions for the input concept descriptions
to (a copy of) the TBox and transforms this TBox into the normalized TBoxT ′. Next,
it calls the procedureapply-completion-rules, which applies theEL completion rules
exhaustively to the TBoxT ′, and stores the obtained set of completion sets inS. Then
it calls the functionk-lcs-r with the concept namesA andB for the input concepts, the
set of completion setsS, and the role-depth limitk. The result is then de-normalized
and returned (lines 4 to 6). More precisely, in case a complexconcept description is
returned fromk-lcs-r, the procedureremove-normalization-names removes concept
names that were added during the normalization of the TBox.



Algorithm 1 Computation of a role-depth boundedEL-lcs.
Procedurek-lcs (C,D, T , k)
Input: C,D: EL-concept descriptions;T : EL-TBox; k: natural number
Output: k-lcs(C,D): role-depth boundedEL-lcs ofC andD w.r.t T andk.

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: ST ′ := apply-completion-rules(T ′)
3: L := k-lcs-r (A,B,ST ′ , k)
4: if L = A then return C

5: else if L = B then return D

6: else return remove-normalization-names(L)
7: end if

Procedurek-lcs-r (A, B, S, k)
Input: A,B: concept names;S: set of completion sets;k: natural number
Output: k-lcs(A,B): role-depth boundedEL-lcs ofA andB w.r.t T andk.

1: if B ∈ S(A) then return B

2: else ifA ∈ S(B) then return A

3: end if
4: common-names := S(A) ∩ S(B)

5: if k = 0 then return
d

P∈common−names

P

6: else return
d

P∈common−names

P ⊓

d

r∈RN(T )

( d

(E,F ) ∈ S(A,r)×S(B,r)

∃r. k-lcs-r (E,F,S, k − 1)
)

7: end if

The functionk-lcs-r gets a pair of concept names, a set of completion sets and a
natural number as inputs. First, it tests whether one of the input concepts subsumes the
other w.r.t.T ′. In that case the name of the subsuming concept is returned. Otherwise
the set of concept names that appear in the completion sets ofboth input concepts is
stored incommon-names (line 4).2 In case the role-depth bound is reached (k = 0),
the conjunction of the elements incommon-names is returned. Otherwise, the ele-
ments incommon-names are conjoined with a conjunction over all rolesr ∈ RN(T ),
where for eachr and each element of the cross-product over ther-successors of the
currentA andB a recursive call tok-lcs-r is made with the role-depth bound reduced
by 1 (line 6). This conjunction is then returned tok-lcs.

ForL = k-lcs(C,D, T , k) it holds by construction thatrd(L) ≤ k.3 We now show
that the result of the functionk-lcs is a common subsumer of the input concept de-
scriptions. It was shown in [17] that all conditions of Definition 3 are fulfilled fork-
lcs(C,D, T , k).

Theorem 1. Let C andD be EL-concept descriptions,T an EL-TBox,k ∈ IN, then
k-lcs(C,D, T , k) ≡ k-lcs(C,D).

2 Note, that the intersectionS(A) ∩ S(B) is never empty, since both sets contain⊤.
3 Recall our assumption: the role-depth of each input conceptis less or equal tok.



For cases wherek-lcs returns a concept description with role-depth of less thank we
conjecture that it is the exact lcs.

The complexity of the overall method is exponential. However, if a compact repre-
sentation of the lcs with structure sharing is used, the lcs-concept descriptions can be
represented polynomially.

If a k-lcs is too general and a bigger role depth of thek-lcs is desired, the comple-
tion of the TBox does not have to be redone for a second computation. The completion
sets can simply be “traversed” further.

4.2 Computing the Role-depth Bounded MSC

The msc was first investigated forEL-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [12]. Similar to the lcs, the msc does not need to exist,
since cyclic structures cannot be expressed byEL-concept descriptions. Now we can
define the msc with limited role-depth.

Definition 4 (role-depth boundedL-msc).LetK =(T , A) be aL-KB anda an indi-
vidual inA andk ∈ IN. Then theL-concept descriptionC is therole-depth bounded
EL-most specific conceptof a w.r.t.K and role-depthk (writtenk-mscK(a)) iff

1. rd(C) ≤ k,
2. K |= C(a), and
3. for eachEL-concept descriptionD with rd(D) ≤ k holds:K |= D(a) implies

C ⊑T D.

In case the exact msc has a role-depth less thank the role-depth bounded msc is the
exact msc.

Again, we construct the msc by traversing the completion sets to “collect” the msc.
More precisely, the set of completion sets encodes a graph structure, where the sets
S(X) are the nodes and the setsS(X, r) encode the edges. Traversing this graph struc-
ture, one can construct anEL-concept. To obtain a finite concept in the presence of
cyclic ABoxes or TBoxes one has to limit the role-depth of theconcept to be obtained.

Definition 5 (traversal concept).LetK be anEL-KB,K′′ be its normalized form,SK
the completion set obtained fromK andk ∈ IN. Then thetraversal concept of a named
conceptA (denotedk-CSK

(A)) with sig(A) ⊆ sig(K′′) is the concept obtained from
executing the procedure calltraversal-concept-c(A, SK, k) shown in Algorithm 2.

Thetraversal concept of an individuala (denotedk-CSK
(a)) with a ⊆ sig(K) is the

concept description obtained from executing the procedurecall traversal-concept-i(a,
SK, k) shown in Algorithm 2.

The idea is that the traversal concept of an individual yields its msc. However, the traver-
sal concept contains names that were introduced during normalization. The returned
msc should be formulated w.r.t. the signature of the original KB, thus the normalization
names need to be removed or replaced.



Algorithm 2 Computation of a role-depth boundedEL-msc.

Procedurek-msc (a,K, k)
Input: a: individual fromK; K =(T , A) anEL-KB; k ∈ IN
Output: role-depth boundedEL-msc ofa w.r.t.K andk.

1: (T ′, A′) := simplify-ABox(T , A)
2: K′′ := (normalize(T ′), A′)
3: SK := apply-completion-rules(K)
4: return Remove-normalization-names ( traversal-concept-i(a,SK, k))

Proceduretraversal-concept-i (a, S, k)
Input: a: individual name fromK; S: set of completion sets;k ∈ IN
Output: role-depth traversal concept (w.r.t.K) andk.

1: if k = 0 then return
d

A ∈ S(a) A

2: else return
d

A ∈ S(a) A ⊓
d

r∈RN(K′′)

d

A ∈ CN(K′′)∩S(a,r)

∃r. traversal-concept-c (A,S, k − 1) ⊓

d

r∈RN(K′′)

d

b ∈ IN(K′′)∩S(a,r)

∃r. traversal-concept-i (b,S, k − 1)

3: end if

Proceduretraversal-concept-c (A, S, k)
Input: A: concept name fromK′′; S: set of completion sets;k ∈ IN
Output: role-depth bounded traversal concept.

1: if k = 0 then return
d

B∈S(A) B

2: else return
d

B∈S(A)

B ⊓
d

r∈RN(K′′)

d

B∈S(A,r)

∃r.traversal-concept-c (B,S, k − 1)

3: end if

Lemma 2. LetK be anEL-KB,K′′ its normalized version,SK be the set of completion
sets obtained forK, k ∈ IN a natural number anda ∈ IN(K). Furthermore letC = k-
CSK

(a) andĈ be obtained fromC by removing the normalization names. Then

K′′ |= C(a) iff K |= Ĉ(a).

This lemma guarantees that removing the normalization names from the traversal con-
cept preserves the instance relationships. Intuitively, this lemma holds since the con-
struction of the traversal concept conjoins exhaustively all named subsumers and all
subsuming existential restrictions to a normalization name up to the role-depth bound.
Thus removing the normalization name does not change the extension of the conjunc-
tion. The proof can be found in [18]. We are now ready to devisea computation algo-
rithm for the role-depth bounded msc: procedurek-msc as displayed in Algorithm 2.

The procedurek-msc has an individuala from a knowledge baseK, the knowledge
baseK itself and numberk for the role depth-bound as parameter. It first performs the
two normalization steps onK, then applies the completion rules from Figure 2 to the
normalized KBK′′ and stores the set of completion sets inSK. Afterwards it computes
the traversal-concept ofa from SK w.r.t. role-depth boundk. In a post-processing step
it appliesRemove-normalization-names to the traversal concept.



Obviously, the concept description returned from the procedurek-msc has a role-
depth less or equal tok. The other conditions of Definition 4 are fulfilled as well, which
has been shown in [18] yielding the correctness of the overall procedure.

Theorem 2. LetK = (T ,A) be anEL-KB anda an individual inA andk ∈ IN.
Thenk-msc(a,K, k) ≡ k-mscK(a).

Thek-msc can grow exponential in the size of the knowledge base.

5 Implementation of GEL

The completion algorithm for classifyingEL TBoxes was first implemented in the CEL

reasoner [5]. We used its successor systemJCEL [16] as a starting point for our imple-
mentation for the computation of the role-depth bounded lcsand msc. The implemen-
tation was done in Java and provides a simple GUI for the ontology editor PROTÉGÉ as
can be seen in the screen-shot in Figure 3.

Fig. 3. LCS plugin

Our implementation of the methods presented here accesses the internal data struc-
tures ofJCEL directly, providing a full integration of GEL into JCEL. The reasoning
methods in GEL are in this first version realized in a naive way and are still in need of
optimizations in order to handle the large knowledge bases that can be encountered in
practice.

The concept descriptions returned by the lcs and the msc can grow exponentially
in the worst case. On top of that, the returned concept descriptions are quite redundant
in our current implementation, which might be acceptable ifused as an input for a



similarity measure, but surely not if presented to a human reader. It is future work to
investigate methods for minimal rewritings of concept descriptions w.r.t. a generalEL
knowledge base in order to be able to present redundancy-freeconcept descriptions. Our
tool will be made available as a plug-in for the ontology editor PROTÉGÉ and an API
for thek-limited lcs and -msc is planned. The former system sonic [24] implemented
the lcs and msc as well, but allowed only for acyclic, unfoldable TBoxes.

6 Conclusions

In this paper we have presented a practical method for computing the role-depth bounded
lcs and the role-depth bounded msc ofEL-concepts w.r.t. a general TBox. We have ar-
gued that such generalization inferences are useful for ontology-based applications in
many ways. Our approach for computing (approximations of) these inferences is based
on the completion sets that are computed during classification of a TBox or realization
of an ABox. Thus, any of the available implementations of theEL completion algorithm
can be easily extended to an implementation of the two generalization inferences con-
sidered here. The same idea can be adapted for the computation of generalizations in
the probabilistic DL Prob-EL01

c [17, 18].
These theoretical results complete the (approximative) bottom-up approach for gen-

eralEL- (and Prob-EL01

c -) KBs. Continuing on the theoretical side, we want to inves-
tigate the bottom-up constructions (i.e. lcs and msc computations) in more expressive
members of theEL-family. We want to extend the approximative methods toEL++,
which extendsEL, for example, by transitive roles and role hierarchies. Such an exten-
sion would enable generalization reasoning services for the OWL 2 EL profile. Another
interesting extension is to allow for more expressive meansfor probabilities.

Although a non-redundant representation of the concept descriptions obtained by
the approximative lcs and msc is desirable when presented toa human reader, it is not
clear whether a minimal representation of the obtained concept descriptions is favorable
in every case. It might depend on the similarity measures employed whether a redundant
representation of a concept is preferable over a compact one.

On the practical side, our future work will include evaluations of the usefulness
of the offered reasoning services for biomedical applications and the development and
testing of optimizations regarding the performance of the implementation.

Acknowledgments:We would like to thank Andreas Ecke and Julian Mendez for their
implementation effort.
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