
Extending Unification in EL towards General TBoxes∗

Franz Baader and Stefan Borgwardt and Barbara Morawska
Theoretical Computer Science, TU Dresden, Germany

{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract

Unification in Description Logics (DLs) has been proposed
as an inference service that can, for example, be used to de-
tect redundancies in ontologies. The inexpressive Descrip-
tion Logic EL is of particular interest in this context since,
on the one hand, several large biomedical ontologies are de-
fined using EL. On the other hand, unification in EL has
recently been shown to be NP-complete, and thus of signifi-
cantly lower complexity than unification in other DLs of sim-
ilarly restricted expressive power. However, the unification
algorithms for EL developed so far cannot deal with general
concept inclusion axioms (GCIs). This paper makes a consid-
erable step towards addressing this problem, but the GCIs our
new unification algorithm can deal with still need to satisfy a
certain cycle restriction.

1 Introduction
The DL EL, which offers the constructors conjunction (u),
existential restriction (∃r.C), and the top concept (>), has
recently drawn considerable attention since, on the one
hand, important inference problems such as the subsump-
tion problem are polynomial in EL, even in the presence of
GCIs (Brandt 2004; Baader, Brandt, and Lutz 2005). On
the other hand, though quite inexpressive, EL can be used
to define biomedical ontologies, such as the large medical
ontology SNOMED CT.1

Unification in DLs has been proposed in (Baader and
Narendran 2001) (for the DL FL0, which differs from EL
by offering value restrictions (∀r.C) in place of existential
restrictions) as a novel inference service that can, for in-
stance, be used to detect redundancies in ontologies. For
example, assume that one developer of a medical ontology
defines the concept of a finding of severe head injury as

∃finding.(Head injury u ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe injury u ∃finding site.Head). (2)

These two concept descriptions are not equivalent, but they
are nevertheless meant to represent the same concept. They

∗Supported by DFG under grant BA 1122/14-1
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1see http://www.ihtsdo.org/snomed-ct/

can obviously be made equivalent by treating the concept
names Head injury and Severe injury as variables, and sub-
stituting the first one by Injury u ∃finding site.Head and
the second one by Injury u ∃severity.Severe. In this case,
we say that the descriptions are unifiable, and call the sub-
stitution that makes them equivalent a unifier. Intuitively,
such a unifier proposes definitions for the concept names
that are used as variables: in our example, we know that,
if we define Head injury as Injury u ∃finding site.Head and
Severe injury as Injuryu∃severity.Severe, then the two con-
cept descriptions (1) and (2) are equivalent w.r.t. these defi-
nitions. Here equivalence holds without additional GCIs.

To motivate our interest in unification w.r.t. GCIs, assume
that the second developer uses the description

∃status.Emergency u (3)
∃finding.(Severe injury u ∃finding site.Head)

instead of (2). The descriptions (1) and (3) are not unifi-
able without additional GCIs, but they are unifiable, with
the same unifier as above, if the GCI

∃finding.∃severity.Severe v ∃status.Emergency

is present in a background ontology.
In (Baader and Morawska 2009), we were able to show

that unification in EL is of considerably lower complexity
than in FL0: the decision problem in EL is NP-complete
rather than EXPTIME-complete in FL0. In addition to
a brute-force “guess and then test” NP-algorithm (Baader
and Morawska 2009), we were able to develop a goal-
oriented unification algorithm for EL, in which nondeter-
ministic decisions are only made if they are triggered by
“unsolved parts” of the unification problem (Baader and
Morawska 2010b), and an algorithm that is based on a re-
duction to satisfiability in propositional logic (SAT) (Baader
and Morawska 2010a), which enables the use of highly-
optimized SAT solvers. In (Baader and Morawska 2010b)
it was also shown that the approaches for unification of EL-
concept descriptions (without any background ontology) can
easily be extended to the case of an acyclic TBox as back-
ground ontology without really changing the algorithms or
increasing their complexity. Basically, by viewing defined
concepts as variables, an acyclic TBox can be turned into
a unification problem that has as its unique unifier the sub-
stitution that replaces the defined concepts by unfolded ver-



Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top-concept > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restr. ∃r.C (∃r.C)I = {x | ∃y :
(x, y) ∈ rI ∧ y ∈ CI}

GCI C v D CI ⊆ DI

Table 1: Syntax and semantics of EL.

sions of their definitions. For GCIs, this simple trick is not
possible.

In the present paper, we extend the brute-force “guess
and then test” NP-algorithm from (Baader and Morawska
2009) to the case of GCIs, which requires the development
of a new characterization of subsumption w.r.t. GCIs in EL.
Unfortunately, the algorithm is complete only for general
TBoxes (i.e., finite sets of GCIs) that satisfy a certain re-
striction on cycles, which, however, does not prevent all cy-
cles. For example, the cyclic GCI ∃child.Human v Human
satisfies this restriction, whereas the cyclic GCI Human v
∃parent.Human does not.

Due to space constraints, we cannot present and prove all
our results in detail here. Full proofs and a goal-oriented
algorithm for unification in ELw.r.t. cycle-restricted general
TBoxes can be found in (Baader, Borgwardt, and Morawska
2011).

2 The Description Logic EL
Starting with a finite set NC of concept names and a finite
set NR of role names, EL-concept descriptions are built us-
ing the concept constructors top-concept (>), conjunction
(CuD), and existential restriction (∃r.C for every r ∈ NR).
Nested existential restrictions ∃r1.∃r2. · · · ∃rn.C will some-
times also be written as ∃r1r2 . . . rn.C, where r1r2 . . . rn is
viewed as a word over the alphabet of role names, i.e., an
element of N∗R.

An interpretation I = (∆I , ·I) consists of a nonempty
domain ∆I and an interpretation function ·I that assigns bi-
nary relations on ∆I to role names and subsets of ∆I to
concept descriptions, as shown in the semantics column of
Table 1.

A general concept inclusion (GCI) is of the form C v
D for concept descriptions C,D, and a general TBox is a
finite set of GCIs. An interpretation I satisfies such a GCI
if CI ⊆ DI , and it is a model of the general TBox T if it
satisfies all GCIs in T .

Subsumption asks whether a given GCI C v D follows
from a general TBox T , i.e. whether every model of T sat-
isfies C v D. In this case we say C is subsumed by D w.r.t.
T and write C vT D. Subsumption in EL w.r.t. a general
TBox is known to be decidable in polynomial time (Brandt
2004). Our unification algorithm will use a polynomial-time
subsumption algorithm as a subprocedure. In order to de-
velop the unification algorithm itself, however, we need a

structural characterization of subsumption w.r.t. a general
TBox. Before we can present this characterization, we need
to introduce some new notions.

An EL-concept description is an atom if it is an existential
restriction or a concept name. The atoms of an EL-concept
description C are the subdescriptions of C that are atoms,
and the top-level atoms of C are the atoms occurring in the
top-level conjunction of C. Obviously, any EL-concept de-
scription is the conjunction of its top-level atoms, where the
empty conjunction corresponds to >. The atoms of a gen-
eral TBox T are the atoms of all the concept descriptions
occurring in T .

We say that a subsumption between two atoms is struc-
tural if their top-level structure is compatible. To be more
precise, we define structural subsumption between atoms as
follows: the atom C is structurally subsumed by the atomD
w.r.t. T (C vs

T D) iff either
• C = D is a concept name, or
• C = ∃r.C ′, D = ∃r.D′, and C ′ vT D′.
It is easy to see that subsumption w.r.t. ∅ between two atoms
implies structural subsumption w.r.t. T , which in turn im-
plies subsumption w.r.t. T . The unification algorithm pre-
sented in this paper crucially depends on the following char-
acterization of subsumption w.r.t. general TBoxes:
Lemma 1. Let T be a general TBox and C1, . . . , Cn,
D1, . . . , Dm atoms. Then C1u · · ·uCn vT D1u · · ·uDm

iff for every j ∈ {1, . . . ,m}
1. there is an index i ∈ {1, . . . , n} such that Ci vs

T Dj , or
2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that

a) A1 u · · · uAk vT B,
b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with

Ci vs
T Aη , and

c) B vs
T Dj .

Our proof of this lemma in (Baader, Borgwardt, and
Morawska 2011) is based on a new Gentzen-style proof cal-
culus for subsumption w.r.t. a general TBox, which is simi-
lar to the one developed in (Hofmann 2005) for subsumption
w.r.t. cyclic and general TBoxes.

As mentioned in the introduction, our unification algo-
rithm is complete only for general TBoxes that satisfy a cer-
tain restriction on cycles.
Definition 2. The general TBox T is called cycle-restricted
iff there is no nonempty word w ∈ N+

R and EL-concept
description C such that C vT ∃w.C.

In (Baader, Borgwardt, and Morawska 2011) we show
that a given general TBox can easily be tested for cycle-
restrictedness. The main idea is that it is sufficient to con-
sider the cases where C is a concept name or >.
Lemma 3. Let T be a general TBox. It can be decided
in time polynomial in the size of T whether T is cycle-
restricted or not.

3 Unification in EL w.r.t. General TBoxes
We partition the set NC of concepts names into a set Nv
of concept variables (which may be replaced by substitu-
tions) and a set Nc of concept constants (which must not



be replaced by substitutions). A substitution σ maps every
concept variable to an EL-concept description. It can be ex-
tended to concept descriptions in the usual way:

• σ(A) := A for all A ∈ Nc ∪ {>},
• σ(C uD) := σ(C) u σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept description C is ground if it does not con-
tain variables. Obviously, a ground concept description is
not modified by applying a substitution. A general TBox is
ground if it does not contain variables.

Definition 4. Let T be a general TBox that is ground. An
EL-unification problem w.r.t. T is a finite set Γ = {C1 v?

D1, . . . , Cn v? Dn} of subsumptions between EL-concept
descriptions. A substitution σ is a unifier of Γ w.r.t. T
if σ solves all the subsumptions in Γ, i.e., if σ(C1) vT
σ(D1), . . . , σ(Cn) vT σ(Dn). We say that Γ is unifiable
w.r.t. T if it has a unifier.

Two remarks regarding this definition are in order. First,
note that the previous papers on unification in DLs used
equivalences C ≡? D instead of subsumptions C v? D.
This difference is, however, irrelevant since C ≡? D can be
seen as a shorthand for the two subsumptions C v? D and
D v? C, andC v? D has the same unifiers asCuD ≡? C.

Second, note that we have restricted the background gen-
eral TBox T to be ground. This is not without loss of gen-
erality. In fact, if T contained variables, then we would
need to apply the substitution also to its GCIs, and instead
of requiring σ(Ci) vT σ(Di) we would thus need to re-
quire σ(Ci) vσ(T ) σ(Di), which would change the nature
of the problem considerably. The treatment of unification
w.r.t. acyclic TBoxes in (Baader and Morawska 2010b) ac-
tually considers a more general setting, where some of the
primitive concepts occurring in the TBox may be variables.
The restriction to ground general TBoxes is, however, appro-
priate for the application scenario sketched in the introduc-
tion. In this scenario, there is a fixed background ontology,
given by a general TBox, which is extended with definitions
of new concepts by several knowledge engineers. Unifica-
tion w.r.t. the background ontology is used to check whether
some of these new definitions actually are redundant, i.e.,
define the same intuitive concept. Here, some of the primi-
tive concepts newly introduced by one knowledge engineer
may be further defined by another one, but we assume that
the knowledge engineers use the vocabulary from the back-
ground ontology unchanged, i.e., they define new concepts
rather than adding definitions for concepts that already oc-
cur in the background ontology. An instance of this scenario
can, e.g., be found in (Campbell et al. 2007), where different
extensions of SNOMED CT are checked for overlaps, albeit
not by using unification, but by simply testing for equiva-
lence.

In the remainder of this section we will show that EL-
unification w.r.t. cycle-restricted TBoxes is NP-complete.
NP-hardness is an immediate consequence of the fact
that EL-unification is NP-complete w.r.t. the empty TBox
(Baader and Morawska 2009). Thus, it is enough to
show that EL-unification is still in NP w.r.t. cycle-restricted
TBoxes.

Preprocessing To simplify the description of the NP-
algorithm, it is convenient to first normalize the TBox and
the unification problem appropriately.

An atom is called flat if it is a concept name or an existen-
tial restriction of the form ∃r.A for a concept name A. The
general TBox T is called flat if it contains only GCIs of the
form A u B v C, where A,B are flat atoms or > and C is
a flat atom. The unification problem Γ is called flat if it con-
tains only flat subsumptions of the formC1u· · ·uCn v? D,
where n ≥ 0 and C1, . . . , Cn, D are flat atoms.2

Let Γ be a unification problem and T a general TBox.
By introducing auxiliary variables and concept names, re-
spectively, Γ and T can be transformed in polynomial time
into a flat unification problem Γ′ and a flat general TBox T ′
such that the unifiability status remains unchanged, i.e., Γ
has a unifier w.r.t. T iff Γ′ has a unifier w.r.t. T ′. In addi-
tion, if T was cycle-restricted, then so is T ′ (see (Baader,
Borgwardt, and Morawska 2011) for details). Thus, we can
assume without loss of generality that the input unification
problem and general TBox are flat.

Local Unifiers The main idea underlying the “in NP” re-
sult in (Baader and Morawska 2009) is to show that any EL-
unification problem that is unifiable w.r.t. the empty TBox
has a so-called local unifier. Here, we generalize the no-
tion of a local unifier to the case of unification w.r.t. cycle-
restricted TBoxes, and show that a similar locality result
holds in this case.

Let T be a flat cycle-restricted TBox and Γ a flat unifi-
cation problem. The atoms of Γ are the atoms of all the
concept descriptions occurring in Γ. We define

At := {C | C is an atom of T or of Γ} and
Atnv := At \Nv (non-variable atoms).

Every assignment S of subsets SX of Atnv to the variables
X in Nv induces the following relation >S on Nv: >S is
the transitive closure of

{(X,Y ) ∈ Nv ×Nv | Y occurs in an element of SX}.

We call the assignment S acyclic if >S is irreflexive (and
thus a strict partial order). Any acyclic assignment S induces
a unique substitution σS , which can be defined by induction
along >S :

• If X is a minimal element of Nv w.r.t. >S , then we define
σS(X) :=

d
D∈SX D.

• Assume that σ(Y ) is already defined for all Y such that
X >S Y . Then we define σS(X) :=

d
D∈SX σS(D).

We call a substitution σ local if it is of this form, i.e., if there
is an acyclic assignment S such that σ = σS . If the unifier
σ of Γ w.r.t. T is a local substitution, then we call it a local
unifier of Γ w.r.t. T .

Theorem 5. Let T be a flat cycle-restricted TBox and Γ a
flat unification problem. If Γ has a unifier w.r.t. T , then it
also has a local unifier w.r.t. T .

2If n = 0, then we have an empty conjunction on the left-hand
side, which as usual stands for >.



This theorem immediately implies that unification in EL
w.r.t. cycle-restricted TBoxes is decidable within NP. In fact,
one can guess an acyclic assignment S in polynomial time.
To check whether the induced local substitution σS is a uni-
fier of Γ w.r.t. T , we build the general TBox

TS := {X v
l

D∈SX

D,
l

D∈SX

D v X | X ∈ Nv},

and then check in polynomial time whether C vT ∪TS D
holds for all C v? D ∈ Γ. It is easy to show that this is the
case iff σS(C) vT σS(D) for all C v? D ∈ Γ.

Corollary 6. Unification in EL w.r.t. cycle-restricted
TBoxes is in NP.

Proof of Theorem 5 Assume that γ is a unifier of Γ w.r.t.
T . We define the assignment Sγ induced by γ as

SγX := {D ∈ Atnv | γ(X) vT γ(D)}.

The following lemma is the only place in the proof of The-
orem 5 where cycle-restrictedness of T is needed. Later we
will give an example (Example 9) that demonstrates that the
theorem actually does not hold if this restriction is removed.

Lemma 7. The assignment Sγ is acyclic.

Proof. Assume that Sγ is cyclic. Then there are variables
X1, . . . , Xn and role names r1, . . . , rn−1 (n ≥ 2) such that
X1 = Xn and ∃ri.Xi+1 ∈ Sγ(Xi) (i = 1, . . . , n − 1).
But then we have γ(Xi) vT ∃ri.γ(Xi+1) for
i = 1, . . . , n − 1, which yields γ(X1) vT ∃r1.γ(X2) vT
∃r1.∃r2.γ(X3) vT · · · vT ∃r1. · · · ∃rn−1.γ(Xn). Since
X1 = Xn and n ≥ 2, this contradicts our assumption that
T is cycle-restricted. Thus, Sγ must be acyclic.

Since Sγ is acyclic, it induces a substitution σSγ . To sim-
plify the notation, we call this substitution in the following
σγ . The following lemma implies that σγ is a unifier of Γ
w.r.t. T , and thus proves Theorem 5.

Lemma 8. Let C1, . . . , Cn, D ∈ At. Then γ(C1) u . . . u
γ(Cn) vT γ(D) implies σγ(C1) u . . . u σγ(Cn) vT
σγ(D).
Proof. We prove the lemma by induction over

max{rd(σγ(E)) | E ∈ {C1, . . . , Cn, D} ∧ E not ground},

where the role depth rd(C) of a concept description C is
defined as follows: rd(A) = rd(>) = 0 for A ∈ NC ,
rd(CuD) = max{rd(C), rd(D)}, rd(∃r.C) = 1+rd(C).

First, assume that D = Y ∈ Nv , and let SγY =
{D1, . . . , Dm}. By the definition of Sγ , this implies
γ(Y ) vT γ(D1) u . . . u γ(Dm), and thus

γ(C1) u . . . u γ(Cn) vT γ(D1) u . . . u γ(Dm).

We apply Lemma 1 to this subsumption. Consider γ(Dj)
for some j, 1 ≤ j ≤ m. Since Dj is a non-variable atom,
γ(Dj) is an atom, and thus the first or the second case of the
lemma holds.

1. In the first case, there is an i, 1 ≤ i ≤ n, such that one of
the following two cases holds:

(i) Ci is a non-variable atom and γ(Ci) vsT γ(Dj).
By the definition of vsT , there are two possible cases.
Either both concept descriptions are the same concept
nameA, or both are existential restrictions for the same
role name r. In the first case, Ci = A = Dj , and
thus σγ(Ci) = A = σγ(Dj). In the second case,
Ci = ∃r.C ′i, Dj = ∃r.D′j , and γ(C ′i) vT γ(D′j).
Both C ′i and D′j are elements of At. The role depth
of σγ(C ′i) is obviously smaller than the role depth of
σγ(Ci). For the same reason, the role depth of σγ(D′j)
is smaller that the one of σγ(Dj). Since σγ(Dj) is a
top-level conjunct in σγ(D), the role depth of σγ(D′j)
is also smaller than the one of σγ(D). Consequently, if
Ci or Dj is non-ground, induction yields σγ(C ′i) vT
σγ(D′j), and thus also σγ(Ci) = ∃r.σγ(C ′i) vT
∃r.σγ(D′j) = σγ(Dj). If Ci, Dj are both ground, then
σγ(Ci) = Ci = γ(Ci) vT γ(Dj) = Dj = σγ(Dj).

(ii) Ci = X is a variable and the top-level conjunction of
γ(X) contains an atom E such that E vsT γ(Dj).
Then we have γ(X) vT E vT γ(Dj), and thus Dj ∈
SγX . By the definition of σγ , this implies σγ(Ci) =
σγ(X) vT σγ(Dj).

Both (i) and (ii) yield σγ(C1)u. . .uσγ(Cn) vT σγ(Dj).

2. In the second case, there are atoms A1, . . . , Ak, B of T
such that

a) A1 u . . . uAk vT B,
b) for every η, 1 ≤ η ≤ k, there is i, 1 ≤ i ≤ n, such that

one of the following two cases holds:
(i) Ci is a non-variable atom and γ(Ci) vsT Aη ,

(ii) Ci = X is a variable and the top-level conjunction of
γ(X) contains an atom E such that E vsT Aη;

c) B vsT γ(Dj).

In case (i) we have that either Ci = A = Aη is a concept
name, or both concept descriptions are existential restric-
tionsCi = ∃r.C ′i andAη = ∃r.A′η with γ(C ′i) vT A′η . In
the first case, we have σγ(Ci) = A = Aη . In the second
case, the case where Ci is ground is again trivial. Other-
wise, we can apply induction since C ′i, A

′
η ∈ At, the role

depth of σγ(C ′i) is smaller than the one of σγ(Ci), and the
role depth of A′η is not counted since it is ground. Thus,
we have σγ(C ′i) vT A′η , which yields σγ(Ci) vT Aη .
In case (ii), we again have γ(X) vT E vT Aη , and thus
Aη ∈ SγX . This yields σγ(Ci) = σγ(X) vT Aη .
For similar reasons as before, we can again show that
B vsT γ(Dj) implies B vT σγ(Dj).
To sum up, we thus have also in this case σγ(C1) u . . . u
σγ(Cn) vT A1 u . . . uAk vT B vT σγ(Dj).

Hence, we have shown that, for all j, 1 ≤ j ≤ m, we have
σγ(C1)u . . .uσγ(Cn) vT σγ(Dj), which yields σγ(C1)u
. . . u σγ(Cn) vT σγ(D1) u . . . u σγ(Dm) = σ(D). The
last identity holds since D = Y and SγY = {D1, . . . , Dm}.

It remains to consider the case where D is a non-variable
atom. But then we have

γ(C1) u . . . u γ(Cn) vT γ(D),



and γ(D) is an atom. As for γ(Dj) above, we can use
Lemma 1 to show that this implies σγ(C1) u . . . u σγ(Cn)
vT σγ(D).

Example 9 (Cycle-restrictedness is needed). We show that
Theorem 5 does not hold for arbitrary general TBoxes.
To this purpose, consider the general TBox T = {B v
∃s.D, D v B}, which is not cycle-restricted, and the unifi-
cation problem

Γ = {A1 uB ≡? Y1, A2 uB ≡? Y2, ∃s.Y1 v? X,
∃s.Y2 v? X, X v? ∃s.X}.

This problem has the unifier γ := {Y1 7→ A1 u B, Y2 7→
A2 u B,X 7→ ∃s.B}. However, the induced assignment
Sγ is cyclic since γ(X) = ∃s.B vT ∃s.∃s.B = γ(∃s.X)
yields ∃s.X ∈ SγX . Thus, γ does not induce a local unifier.

We claim that Γ actually does not have any local unifier
w.r.t. T . Assume to the contrary that σ is a local unifier of Γ
w.r.t. T . Then σ(X) cannot be > since > 6vT ∃s.>. Thus,
σ(X) must contain a top-level atom of the form σ(E) for
E ∈ Atnv. This atom cannot be σ(∃s.Yi) ≡T ∃s.(Ai u B)
for i ∈ {1, 2} since then σ(∃s.Yj) vT σ(E) for j ∈
{1, 2} \ {i} would not hold, contradicting the assumption
that σ solves ∃s.Yj v? X w.r.t. T . Since local unifiers are
induced by acyclic assignments, E cannot be σ(∃s.X), and
thus E must be an atom of T . However, none of the atoms
B,D,∃s.D subsume ∃s.(AjuB) w.r.t. T , again contradict-
ing the assumption that σ solves ∃s.Yj v? X w.r.t. T .

4 Conclusions
We have shown that unification in EL stays in NP in the
presence of a cycle-restricted general TBox, by giving a
brute-force NP-algorithm that tries to guess a local unifier.
This algorithm is interesting since it provides a quite sim-
ple, self-contained proof for the complexity upper-bound.
Indeed, it is much simpler than the original proof (Baader
and Morawska 2009; 2010b) of the NP-upper bound for EL
without TBoxes.

In (Baader, Borgwardt, and Morawska 2011), we also in-
troduce a goal-oriented algorithm for unification in EL in the
presence of a cycle-restricted TBox, in which nondetermin-
istic decisions are only made if they are triggered by “un-
solved parts” of the unification problem. Another advantage
of the goal-oriented algorithm is that it only generates sub-
stitutions that are unifiers, whereas the brute-force algorithm
generates all local substitutions, and requires a subsequent
test of whether this substitution is a unifier. Nevertheless,
this algorithms still requires a considerable amount of addi-
tional optimization work to be useful in practice.

On the theoretical side, the main topic for future research
is to consider unification w.r.t. unrestricted general TBoxes.
In order to generalize the brute-force algorithm in this direc-
tion, we need to find a more general notion of locality. Start-
ing with the goal-oriented algorithm (Baader, Borgwardt,
and Morawska 2011), the idea would be not to fail when
a cyclic assignment is generated, but rather to add rules that
can break such cycles, similar to what is done in procedures
for general E-unification (Morawska 2007).

References
Baader, F., and Morawska, B. 2009. Unification in the de-
scription logic EL. In Treinen, R., ed., Proc. of the 20th
Int. Conf. on Rewriting Techniques and Applications (RTA
2009), volume 5595 of Lecture Notes in Computer Science,
350–364. Springer-Verlag.
Baader, F., and Morawska, B. 2010a. SAT encoding of uni-
fication in EL. In Fermüller, C. G., and Voronkov, A., eds.,
Proc. of the 17th Int. Conf. on Logic for Programming, Ar-
tifical Intelligence, and Reasoning (LPAR-17), volume 6397
of Lecture Notes in Computer Science, 97–111. Springer-
Verlag.
Baader, F., and Morawska, B. 2010b. Unification in the
description logic EL. Logical Methods in Computer Science
6(3). Special Issue: 20th Int. Conf. on Rewriting Techniques
and Applications (RTA’09).
Baader, F., and Narendran, P. 2001. Unification of con-
cept terms in description logics. J. of Symbolic Computation
31(3):277–305.
Baader, F.; Borgwardt, S.; and Morawska, B. 2011. Uni-
fication in the description logic EL w.r.t. cycle-restricted
TBoxes. LTCS-Report 11-05, Chair of Automata Theory,
Institute of Theoretical Computer Science, Technische Uni-
versität Dresden, Dresden, Germany. See http://lat.inf.tu-
dresden.de/research/reports.html.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the
EL envelope. In Kaelbling, L. P., and Saffiotti, A., eds.,
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), 364–369. Morgan-Kaufmann Publishers.
Brandt, S. 2004. Polynomial time reasoning in a description
logic with existential restrictions, GCI axioms, and—what
else? In de Mántaras, R. L., and Saitta, L., eds., Proc. of
the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004),
298–302. IOS Press.
Campbell, J. R.; Lopez Osornio, A.; de Quiros, F.; Luna,
D.; and Reynoso, G. 2007. Semantic interoperability and
SNOMED CT: A case study in clinical problem lists. In
Kuhn, K.; Warren, J.; and Leong, T.-Y., eds., Proc. of
the 12th World Congress on Health (Medical) Informatics
(MEDINFO 2007), 2401–2402. IOS Press.
Hofmann, M. 2005. Proof-theoretic approach to description-
logic. In Proc. of the 20th IEEE Symp. on Logic in Computer
Science (LICS 2005), 229–237.
Morawska, B. 2007. General E-unification with eager vari-
able elimination and a nice cycle rule. J. of Automated Rea-
soning 39(1):77–106.


