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Abstract. Fuzzy Description Logics (DLs) with t-norm semantics have
been studied as a means for representing and reasoning with vague knowl-
edge. Recent work has shown that even fairly inexpressive fuzzy DLs be-
come undecidable for a wide variety of t-norms. We complement those
results by providing a class of t-norms and an expressive fuzzy DL for
which ontology consistency is linearly reducible to crisp reasoning, and
thus has its same complexity. Surprisingly, in these same logics crisp
models are insufficient for deciding fuzzy subsumption.

1 Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representation
formalisms, which can be used to represent the knowledge of an application
domain in a formal way. In particular, they have been successfully used for the
representation of medical knowledge in large-scale ontologies like Snomed CT1

and Galen.2 However, in their standard form DLs are not suited for dealing
with imprecise or vague knowledge. For example, in the medical domain a high
body temperature is often a symptom for a disease. When trying to represent
this knowledge, it is not possible to give a precise characterization of the concept
HighTemperature: one cannot define a point where a temperature becomes high.
However, 37◦C should belong “less” to this concept than, say 39◦C.

Fuzzy variants of description logics have been proposed as a formalism for
modeling this kind of imprecise knowledge, by providing a degree of membership
of individuals to concepts—typically a number from the interval [0, 1]. One could
thus express that 36◦C and 39◦C belong to HighTemperature with degrees 0.7
and 0.9, respectively. A more thorough description of the use of fuzzy semantics
in medical applications can be found in [20].

A great variety of fuzzy DLs can be found in the literature (for two rele-
vant surveys see [18,12]). In fact, fuzzy DLs have several degrees of freedom for
defining their expressiveness. In addition to the choice of concept constructors
(e.g. conjunction u or existential restriction ∃), and the type of axioms allowed
(like acyclic concept definitions or general concept inclusions), which define the
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underlying logical language, one must also decide how to interpret the different
constructors, through a choice of functions over the domain of fuzzy values [0, 1].
As in mathematical fuzzy logic [13], these functions are typically determined by
a continuous t-norm that interprets conjunction.

Research in fuzzy DLs has focused on three specific t-norms, namely the
Gödel, Łukasiewicz, and product t-norms. However, there are uncountably many
continuous t-norms, each with different properties. For example, under the prod-
uct t-norm semantics, existential restrictions (∃) and value restrictions (∀) are
not interdefinable, while under the Łukasiewicz t-norm they are. Even after fixing
the t-norm, one can still choose whether to interpret negation by the involutive
negation operator, or using the residual negation, which need not be involutive.
An additional level of liberty comes from selecting the class of models over which
reasoning is considered: either all models, or so-called witnessed models only [14].

The majority of the reasoning algorithms available have been developed for
the Gödel semantics, either by a reduction to crisp reasoning [6], or by a simple
adaptation of the known algorithms for crisp DLs [23,24,25,27]. However, meth-
ods capable of dealing with other t-norms have also been explored [7,8,9,26,22].
Usually, these algorithms reason w.r.t. witnessed models.3

Very recently, it was shown that the tableaux-based algorithms for logics
with semantics based on t-norms other than the Gödel t-norm and allowing
general concept inclusions were incorrect [2,5]. This raised doubts about the
decidability of the reasoning problems in these logics, and eventually led to a
plethora of undecidability results for fuzzy DLs [2,3,4,11]. These undecidability
results were then extended to a wide variety of fuzzy DLs in [10]. In fact, it has
been shown that for a large class of t-norms ontology consistency easily becomes
undecidable. More precisely, for every t-norm that “starts” with the Łukasiewicz
t-norm, consistency of crisp ontologies is undecidable for any fuzzy DL that can
express conjunction, existential restrictions and the residual negation.

In this paper we counterbalance these undecidability results by considering
continuous t-norms not starting with the Łukasiewicz t-norm—in particular, the
Gödel and product t-norms are of this kind. We show that consistency of fuzzy
ontologies is again decidable, even for the very expressive DL SHOI, which al-
lows for nominals and transitive and inverse roles, if negation is interpreted using
residual negation. Moreover, for any of these t-norms, an ontology is consistent
w.r.t. fuzzy semantics iff it is consistent w.r.t. to crisp semantics. Thus, ontology
consistency in fuzzy SHOI is ExpTime-complete for every t-norm not starting
with the Łukasiewicz t-norm; for all other t-norms, or if the involutive negation
is used, this problem is undecidable [10].

To some extent, the fact that fuzzy ontology consistency can be reduced to
crisp reasoning is not very surprising, since fuzzy logics are not, nor should they
be considered to be, a formalism for dealing with inconsistencies. Yet, it shines a
negative light on the capacity of fuzzy DLs for dealing with imprecise knowledge:
the decidable fuzzy DLs considered in this paper are not fuzzy, but mere syntactic
extensions of classical DLs. However, there are other DL reasoning problems for

3 In fact, witnessed models were introduced in [14] to correct the algorithm from [27].



which this is not true: we show that crisp reasoning is insufficient for deciding
subsumption or instance checking. Thus, even for the logics considered in this
paper, where satisfiability is “crisp”, reasoning in general is fuzzy.

In the next section, we introduce some basic notions from t-norms and fuzzy
description logics. Section 3 shows some properties of t-norms that do not start
with the Łukasiewicz t-norm. In Sections 4 and 5 we prove that consistency and
satisfiability w.r.t. these t-norms are essentially crisp reasoning problems. In the
end we provide an example that shows that crisp reasoning is insufficient for de-
ciding subsumption or instance checking. Specifically, we provide a subsumption
relation that holds in every crisp and finite model, but does not hold in general.

2 Preliminaries

We first recall the basic notions of t-norms and mathematical fuzzy logic [17,13],
which we then use to define the semantics of fuzzy DLs.

2.1 Mathematical Fuzzy Logic

Mathematical fuzzy logic generalizes classical logic by replacing true and false by
a larger set of truth values. Here, we use the real interval [0, 1] as truth values and
generalize propositional conjunction ∧ by a t-norm: an associative, commutative,
and monotone binary operator on [0, 1] that has 1 as its unit element. Classical
implication is then generalized by the residuum ⇒ of the t-norm, if it exists.
The residuum is a binary operator on [0, 1] that satisfies x⊗ y ≤ z iff y ≤ x⇒ z
for all x, y, z ∈ [0, 1]. A consequence of this definition is that, for all x, y ∈ [0, 1],
– 1⇒ x = x and
– x ≤ y iff x⇒ y = 1.

A t-norm is called continuous if it is continuous as a function from [0, 1]2 to
[0, 1]. In this paper, we consider only continuous t-norms and often call them
simply t-norms. Any continuous t-norm ⊗ has a unique residuum ⇒ given by
x ⇒ y = sup{z ∈ [0, 1] | x ⊗ z ≤ y}. Based on the residuum, one can define a
unary residual negation by 	x = x⇒ 0. To generalize disjunction, the t-conorm
⊕ defined as x ⊕ y = 1 − ((1 − x) ⊗ (1 − y)) can be used. Notice that 0 is the
unit of the t-conorm, and hence

x⊕ y = 0 iff x = 0 and y = 0. (1)

Three important continuous t-norms, together with their t-conorms and residua,
are depicted in Table 1. These are fundamental in the sense that every continuous
t-norm can be constructed from these three as follows.

Definition 1 (ordinal sum). Let I be a set and for each i ∈ I let ⊗i be a
continuous t-norm and ai, bi ∈ [0, 1] such that ai < bi and the intervals (ai, bi)
are pairwise disjoint. The ordinal sum of the t-norms ⊗i is the t-norm ⊗ with

x⊗ y =

{
ai + (bi − ai)

(
x−ai
bi−ai ⊗i

y−ai
bi−ai

)
if x, y ∈ [ai, bi] for some i ∈ I,

min{x, y} otherwise.



Name t-norm (x⊗ y) t-conorm (x⊕ y) residuum (x⇒ y)

Gödel min{x, y} max{x, y}

{
1 if x ≤ y

y otherwise

product x · y x+ y − x · y

{
1 if x ≤ y

y/x otherwise
Łukasiewicz max{x+ y − 1, 0} min{x+ y, 1} min{1− x+ y, 1}

Table 1. The three fundamental continuous t-norms.

The ordinal sum of a class of continuous t-norms is itself a continuous t-norm,
and its residuum is given by

x⇒ y =


1 if x ≤ y,
ai + (bi − ai)

(
x−ai
bi−ai ⇒i

y−ai
bi−ai

)
if ai ≤ y < x ≤ bi for some i ∈ I,

y otherwise,

where ⇒i is the residuum of ⊗i, for each i ∈ I. Intuitively, this means that
the t-norm ⊗ and its residuum “behave like” ⊗i and its residuum in each of the
intervals [ai, bi], and like the Gödel t-norm and residuum everywhere else.

Theorem 2 ([21]). Every continuous t-norm is isomorphic to the ordinal sum
of copies of the Łukasiewicz and product t-norms.

Motivated by this representation as an ordinal sum, we say that a continuous
t-norm ⊗ starts with the Łukasiewicz t-norm if in its representation as ordinal
sum there is an i ∈ I such that ai = 0 and ⊗i is isomorphic to the Łukasiewicz
t-norm.

An element x ∈ (0, 1) is called a zero divisor for ⊗ if there is a z ∈ (0, 1)
such that x ⊗ z = 0. Of the three fundamental continuous t-norms, only the
Łukasiewicz t-norm has zero divisors. In fact, every element in the interval (0, 1)
is a zero divisor for this t-norm. A continuous t-norm can only have zero divisors
if it starts with the Łukasiewicz t-norm.

Lemma 3 ([17]). A continuous t-norm has zero divisors iff it starts with the
Łukasiewicz t-norm.

2.2 The Fuzzy Description Logic ⊗-SHOI
A fuzzy description logic usually inherits its syntax from the underlying crisp
description logic. In this paper, we consider the constructors of SHOI with the
addition of →, which in the crisp case can be expressed by t and ¬.

Definition 4 (syntax). Let NC, NR, and NI, be disjoint sets of concept, role,
and individual names, respectively, and N+

R ⊆ NR be a set of transitive role
names. The set of (complex) roles is NR ∪ {r− | r ∈ NR}. The set of (complex)
concepts is defined by the following syntax rule:

C ::= A | > | ⊥ | {a} | ¬C | C u C | C t C | C → C | ∃s.C | ∀s.C,

where A is a concept name, a is an individual name, and s is a complex role.



The inverse of a complex role s (denoted by s) is s− if s ∈ NR and r if s = r−.
A role s is transitive if either s or s belongs to N+

R .
Let now ⊗ be a continuous t-norm. As a generalization of SHOI, where con-

cepts are interpreted by subsets of a domain, in the fuzzy DL ⊗-SHOI they are
interpreted by fuzzy sets, which are functions specifying the membership degree
of each domain element to the concept. The interpretation of the constructors
is based on the t-norm ⊗ and the induced operators ⊕, ⇒, and 	.

Definition 5 (semantics). An interpretation is a pair I = (∆I , ·I), where the
domain ∆I is a non-empty set and ·I is a function that assigns to every concept
name A a function AI : ∆I → [0, 1], to every individual name a an element
aI ∈ ∆I , and to every role name r a function rI : ∆I ×∆I → [0, 1] such that
rI(x, y) ⊗ rI(y, z) ≤ rI(x, z) holds for all x, y, z ∈ ∆I if r ∈ N+

R . The function
·I is extended to complex roles and concepts as follows for every x, y ∈ ∆I ,

– (r−)I(x, y) = rI(y, x),
– >I(x) = 1, ⊥I(x) = 0,
– {a}I(x) = 1 if aI = x and 0 otherwise,
– (¬C)I(x) = 	CI(x),
– (C1 u C2)I(x) = CI1 (x)⊗ CI2 (x),
– (C1 t C2)I(x) = CI1 (x)⊕ CI2 (x),
– (C1 → C2)I(x) = CI1 (x)⇒ CI2 (x),
– (∃s.C)I(x) = supz∈∆I sI(x, z)⊗ CI(z), and
– (∀s.C)I(x) = infz∈∆I sI(x, z)⇒ CI(z).

An interpretation I is called finite if its domain ∆I is finite, and crisp if
AI(x), rI(x, y) ∈ {0, 1} for all A ∈ NC, r ∈ NR, and x, y ∈ ∆I .

Knowledge is encoded using DL axioms, which restrict the class of interpreta-
tions that are considered. The fuzzy DL ⊗-SHOI extends the axioms of SHOI
by specifying a degree to which the restrictions should hold.

Definition 6 (axioms). An axiom is either an assertion of the form 〈a :C, `〉
or 〈(a, b):s, `〉, a general concept inclusion (GCI) of the form 〈C v D, `〉, or a
role inclusion of the form 〈s v t, `〉, where C and D are concepts, a, b ∈ NI, s, t
are complex roles, and ` ∈ (0, 1]. An axiom is called crisp if ` = 1.

An interpretation I satisfies an assertion 〈a :C, `〉 if CI(aI) ≥ ` and an
assertion 〈(a, b):s, `〉 if sI(aI , bI) ≥ `. It satisfies the GCI 〈C v D, `〉 if
CI(x)⇒ DI(x) ≥ ` holds for all x ∈ ∆I . It satisfies a role inclusion 〈s v t, `〉
if sI(x, y)⇒ tI(x, y) ≥ ` holds for all x, y ∈ ∆I .

An ontology (A, T ,R) consists of a finite set A of assertions (ABox), a finite
set T of GCIs (TBox), and a finite set R of role inclusions (RBox). It is crisp
if every axiom in A, T , and R is crisp. An interpretation I is a model of this
ontology if it satisfies all its axioms.

The combination of axioms in an ontology may entail some knowledge of the
domain that is not explicitly represented. Reasoning can then be used to make
this knowledge explicit. We consider the standard reasoning problems of crisp
SHOI, extended with a degree to which they hold.



Definition 7 (reasoning problems). Let O be an ontology, C,D be concepts,
a an individual, and ` ∈ [0, 1]. O is called consistent if it has a model.

C is `-satisfiable w.r.t. O if there is a model I of O and x ∈ ∆I such that
CI(x) ≥ `. C is `-subsumed by D w.r.t. O with ` ∈ [0, 1] if every model of O
satisfies the GCI 〈C v D, `〉. The individual a is an `-instance of C w.r.t. O if
every model of O satisfies the assertion 〈a :C, `〉.

The best satisfiability (subsumption, instance) degree of C (C and D, a and
C) w.r.t. O is the supremum of all ` ∈ [0, 1] such that C is `-satisfiable (C is
`-subsumed by D, a is an `-instance of C) w.r.t. O.

Recall that the semantics of the quantifiers require the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. As is standard in the fuzzy DL community, we restrict
reasoning to a special kind of models, called witnessed models [14]. For exam-
ple, consider the axiom 〈> v ∃r.>, 1〉. There are models where an individual
has infinitely many r-successors with role degree smaller than 1, as long as the
supremum of the role degrees is 1. Witnessed models prevent these situations
and ensure that there actually exists an r-successor with degree 1.

Definition 8 (witnessed). An interpretation I is called witnessed if for every
x ∈ ∆I , every role s and every concept C there are y1, y2 ∈ ∆I such that

(∃s.C)I(x) = sI(x, y1)⊗ CI(y1), (∀s.C)I(x) = sI(x, y2)⇒ CI(y2).

We will show that, if the t-norm⊗ has no zero divisors, then consistency w.r.t.
witnessed models in ⊗-SHOI is effectively the same problem as consistency
in crisp SHOI. Moreover, the precise values appearing in the axioms in the
ontology are then irrelevant. The same is not true, however, for subsumption
or instance checking. To obtain these results, we exploit some properties those
t-norms.

3 Properties of t-norms without Zero Divisors

By Lemma 3, continuous t-norms without zero divisors are exactly those that
do not start with the Łukasiewicz t-norm. In particular, this includes the two
other basic continuous t-norms, the Gödel and product t-norms.

Proposition 9. For any t-norm ⊗ without zero divisors and every x ∈ [0, 1],

1. x⇒ y = 0 iff x > 0 and y = 0, and
2. 	x = 0 iff x > 0.

Proof. We prove the if -direction of the first claim. Assume x > 0 and y = 0.
Then x ⇒ y = x ⇒ 0 = sup{z | z ⊗ x = 0}. Since ⊗ has no zero divisors,
z⊗x > 0 for all z > 0. Therefore {z | z⊗x = 0} = {0} and thus x⇒ y = 0. The
only if -direction holds for all t-norms [17]. The second statement follows from
the first one since 	x = x⇒ 0. ut



The main result of this paper is based on the function 1 that maps fuzzy
truth values to crisp truth values by defining, for all x ∈ [0, 1],

1(x) =

{
1 if x > 0

0 if x = 0.

For a t-norm without zero divisors it follows from Proposition 9 that 1(x) = 		x
for all x ∈ [0, 1]. This function is compatible with negation, the t-norm, the
corresponding t-conorm, implication and suprema. It is also compatible with
minima, provided that they exist.
Lemma 10. Let ⊗ be a t-norm without zero divisors. For all x, y ∈ [0, 1] and
all non-empty sets X ⊆ [0, 1] it holds that
1. 1(	x) = 	1(x),
2. 1(x⊗ y) = 1(x)⊗ 1(y),
3. 1(x⊕ y) = 1(x)⊕ 1(y),
4. 1(x⇒ y) = 1(x)⇒ 1(y),
5. 1 (sup{x | x ∈ X}) = sup{1(x) | x ∈ X}, and
6. if min{x | x ∈ X} exists then 1 (min{x | x ∈ X}) = min{1(x) | x ∈ X}.
Proof. It holds that 1(	x) = 	 	 	x = 	1(x) which proves 1. Since ⊗ does
not have zero divisors it holds that x ⊗ y = 0 iff x = 0 or y = 0. This yields
1(x ⊗ y) = 0 iff 1(x) = 0 or 1(y) = 0. Because there are no zero divisors, this
shows that

1(x⊗ y) = 0 iff 1(x)⊗ 1(y) = 0. (2)
Both 1(x ⊗ y) and 1(x) ⊗ 1(y) can only have the values 0 or 1. Hence, (2) is
sufficient to prove the second statement. Following similar arguments we obtain
from (1) that 1(x⊕ y) = 0 holds iff 1(x)⊕1(y) = 0. This suffices to prove 3. We
use Proposition 9 to prove 4:

1(x⇒ y) =

{
1 iff x = 0 or y > 0

0 iff x > 0 and y = 0
=

{
1 iff 1(x) = 0 or 1(y) = 1

0 iff 1(x) = 1 and 1(y) = 0

= 1(x)⇒ 1(y).

To prove 5, observe that supX = 0 iff X = {0}, which yields

1
(

supX
)

= 0⇔ supX = 0⇔ X = {0}
⇔ {1(x) | x ∈ X} = {0} ⇔ sup{1(x) | x ∈ X} = 0.

Assume now that minX = xmin exists. Then we have

1(minX) = 0⇔ xmin = 0⇔ 0 ∈ {1(x) | x ∈ X} ⇔ min{1(x) | x ∈ X} = 0.

This shows that 1(minX) = 0 iff min{1(x) | x ∈ X} = 0, which proves 6. ut
Notice that in general 1 is not compatible with the infimum. Consider for

example the set X = { 1n | n ∈ N}. Then inf X = 0 and hence 1(inf X) = 0,
but inf{1( 1

n ) | n ∈ N} = inf{1} = 1. This is the main reason why we consider
witnessed models only. In fact, the construction provided in the next section
does not work for general model reasoning.



4 The Crisp Model Property

The existing undecidability results for Fuzzy DLs all rely heavily on the fact that
one can design ontologies that allow only models with infinitely many truth val-
ues. We shall see that for t-norms without zero divisors one cannot construct such
an ontology in ⊗-SHOI. It is even true that all consistent ⊗-SHOI-ontologies
have a crisp (and finite) model.

Definition 11. A fuzzy DL L has the crisp model property if every consistent
L-ontology has a crisp model.

For the rest of this paper we assume that ⊗ is a continuous t-norm that does
not have zero divisors. These t-norms share the useful properties described in
Section 3. In particular, Lemma 10 allows us to construct a crisp interpretation
from a fuzzy interpretation by simply applying the function 1.

Let I be a witnessed fuzzy interpretation for the concept names NC and role
names NR. We construct the interpretation J over the domain ∆J := ∆I by
defining, for all concept names A ∈ NC, all role names r ∈ NR, and all x, y ∈ ∆I ,

AJ (x) = 1
(
AI(x)

)
and rJ (x, y) = 1

(
rI(x, y)

)
.

To show that J is a valid interpretation, we first verify the transitivity condition
for all r ∈ N+

R and all x, y, z ∈ ∆J . From Lemma 10, we obtain

rJ (x, y)⊗ rJ (y, z) = 1
(
rI(x, y)

)
⊗ 1
(
rI(y, z)

)
= 1

(
rI(x, y)⊗ rI(y, z)

)
.

Since I satisfies the transitivity condition and 1 is monotonic, we have

1
(
rI(x, y)⊗ rI(y, z)

)
≤ 1

(
rI(x, z)

)
= rJ (x, z),

and thus rJ (x, y)⊗ rJ (y, z) ≤ rJ (x, z).

Lemma 12. For all complex roles s and x, y ∈ ∆I , sJ (x, y) = 1(sI(x, y)).

Proof. If s is a role name, this follows directly from the definition of J . If s = r−

for some r ∈ NR, then sJ (x, y) = rJ (y, x) = 1(rI(y, x)) = 1(sI(x, y)).

In a similar way, the interpretation J preserves the compatibility of 1 to the
different constructors.

Lemma 13. For all complex concepts C and x ∈ ∆I , CJ (x) = 1
(
CI(x)

)
.

Proof. We use induction over the structure of C. The claim holds trivially for
C = ⊥ and C = >. For C = A ∈ NC it follows immediately from the definition
of J . It also holds for C = {a}, a ∈ NI, because {a}I(x) can only take the values
0 or 1 for all x ∈ ∆I .

Assume now that the concepts D and E satisfy DJ (x) = 1(DI(x)) and
EJ (x) = 1(EI(x)) for all x ∈ ∆I . In the case where C = D u E, Lemma 10
yields that for all x ∈ ∆I

CJ (x) = DJ (x)⊗ EJ (x) = 1
(
DI(x)

)
⊗ 1
(
EI(x)

)
= 1

(
DI(x)⊗ EI(x)

)
= 1

(
CI(x)

)
.



Likewise, the compatibility of 1 with the t-conorm, the residuum, and the nega-
tion entails the result for the cases C = D t E, C = D → E, and C = ¬D.

For C = ∃s.D, where s is a complex role and D is a concept description
satisfying DJ (x) = 1(DI(x)) for all x ∈ ∆I , we obtain

1
(
CI(x)

)
= 1

(
(∃s.D)I(x)

)
= 1

(
sup
y∈∆I

{
sI(x, y)⊗DI(y)

})
= sup
y∈∆I

{
1
(
sI(x, y)

)
⊗ 1
(
DI(y)

)}
(3)

because 1 is compatible with the supremum and the t-norm. Lemma 12 yields

sup
y∈∆I

{
1(rI(x, y))⊗ 1(DI(y))

}
= sup
y∈∆I

{
rJ (x, y)⊗DJ (y)

}
= (∃r.D)J (x). (4)

Equations (3) and (4) prove 1(CI(x)) = CJ (x) for the case where C = ∃r.D. If
C = ∀r.D, we have

1
(
CI(x)

)
= 1

(
inf
y∈∆I

{
rI(x, y)⇒ DI(y)

})
. (5)

Since I is witnessed, there must exist some y0 ∈ ∆I such that

rI(x, y0)⇒ DI(y0) = inf
y∈∆I

{
rI(x, y)⇒ DI(y)

}
;

that is, miny∈∆I
{
rI(x, y) ⇒ DI(y)

}
exists. Thus, Part 6. of Lemma 10 is

applicable and 1(CI(x)) = CJ (x) follows in analogy to the case for existential
restrictions. ut

With the help of this lemma we can show that the crisp interpretation J
satisfies all the axioms that are satisfied by I.
Lemma 14. Let O = (A, T ,R) be a ⊗-SHOI-ontology. If I is a witnessed
model of O, then J is also a witnessed model of O.
Proof. We prove that J satisfies all assertions, GCIs, and role inclusions from
O. Let 〈a :C, `〉, ` ∈ (0, 1], be a concept assertion from A. Since the assertion is
satisfied by I, CI(aI) ≥ ` > 0 holds. Lemma 13 yields CJ (aJ ) = 1 ≥ `. The
same argument can be used for role assertions.

Let now 〈C v D, `〉 be a GCI from T . Let x be an element x ∈ ∆I . As the
GCI is satisfied by I, we get CI(x)⇒ DI(x) ≥ ` > 0. By Lemmata 10 and 13,
we obtain

CJ (x)⇒ DJ (x) = 1(CI(x))⇒ 1(DI(x)) = 1(CI(x)⇒ DI(x)) = 1 ≥ `,

and thus J satisfies the GCI 〈C v D, `〉. A similar argument, using Lemma 12
instead of Lemma 13, shows that J satisfies all role inclusions in R. ut

The previous results show that by applying 1 to the truth degrees we obtain
a crisp model J from any fuzzy model I of a ⊗-SHOI-ontology O.
Theorem 15. ⊗-SHOI has the crisp model property if ⊗ has no zero divisors.

In the next section we will use this result to show that ontology consistency
and concept satisfiability can be decided in exponential time.



5 Consistency and Satisfiability

For a given ⊗-SHOI-ontology O, we define crisp(O) to be the crisp SHOI-
ontology that is obtained from O by replacing all the truth values appearing in
the axioms by 1. For example, for the ontology

O =
{
〈a :C, 0.2〉, 〈(a, b):r, 0.8〉, 〈C v D, 0.5〉, 〈r v s, 0.1〉

}
we obtain

crisp(O) =
{
〈a :C, 1〉, 〈(a, b):r, 1〉, 〈C v D, 1〉, 〈r v s, 1〉

}
.

Lemma 16. Let O be a ⊗-SHOI-ontology and I be a crisp interpretation.
Then I is a model of O iff it is a model of crisp(O).

Proof. Assume that crisp(O) has a model I. Let 〈C v D, `〉, ` > 0, be an axiom
from O. Since I is a model of crisp(O), it must satisfy 〈C v D, 1〉; that is,
CI(x)⇒ DI(x) ≥ 1 ≥ ` holds for all x ∈ ∆I . Thus I satisfies 〈C v D, `〉. The
proof that I satisfies assertions and role inclusions is analogous. Hence I is also
a model of O.

For the other direction, assume that I satisfies 〈C v D, `〉. As I is a crisp
interpretation it holds that CI(x) ⇒ DI(x) ∈ {0, 1} for all x ∈ ∆I . Together
with CI(x) ⇒ DI(x) ≥ ` > 0 we obtain CI(x) ⇒ DI(x) = 1. Thus, I satisfies
the GCI 〈C v D, 1〉. The same argument can be used for role inclusions and
assertions. Thus, I is also a model of crisp(O). ut

In particular, a ⊗-SHOI-ontology O has a crisp model iff crisp(O) has a
crisp model. Together with Theorem 15, this shows that a ⊗-SHOI-ontology
O is consistent iff crisp(O) has a crisp model. Therefore, one can use reasoning
in crisp SHOI to decide consistency of ⊗-SHOI-ontologies. Reasoning in crisp
SHOI is known to be ExpTime-complete [15].

Corollary 17. Deciding consistency in ⊗-SHOI is ExpTime-complete.

Similar arguments show that satisfiability is decidable in ⊗-SHOI. Since
any concept is 0-satisfiable, we can assume in the following that the concept C
is `-satisfiable w.r.t. an ontology O with ` > 0. Then there is a model I of O
satisfying CI(x) ≥ ` > 0. Thus, the model J of O constructed in Section 4
also satisfies CJ (x) = 1 ≥ `. This shows that if C is `-satisfiable w.r.t. O for
some ` > 0, it is also 1-satisfiable w.r.t. O, and in particular 1-satisfiable w.r.t.
crisp(O). Clearly, the implication in the other direction also holds.

Lemma 18. Deciding `-satisfiability in ⊗-SHOI is ExpTime-complete. Fur-
thermore, the best satisfiability degree of a concept C w.r.t. O is either 0 or 1
and can be computed in exponential time.

Lemma 16 and Corollary 15 still hold when we restrict the semantics to the
slightly less expressive logics ⊗-SHO, which does not allow for inverse roles,
or ⊗-SI which does not allow for nominals and role hierarchies. The crisp DLs
SHO and SI are known to have the finite model property [16,19], and ⊗-SI
and ⊗-SHO inherit the finite model property from their crisp ancestors.



Theorem 19. The logics ⊗-SHO and ⊗-SI and their sublogics have the finite
model property.

This theorem contradicts a recent result stating that the sublogic Π-ALC
of ⊗-SHOI, where ⊗ is the product t-norm, does not have the finite model
property [5, Theorem 3.8]. As a matter of fact, the proof from [5] is based on
the erroneous claim that every model I of the assertion 〈a :A, 0.5〉 must be such
that AI(aI) = 0.5. The case of an interpretation with AI(aI) = 1, which also
satisfies this assertion, is not considered in the induction argument.

6 Subsumption and Instance Checking

We now show that, despite the crisp model property, `-subsumption of concepts
w.r.t. ⊗-SHOI-ontologies cannot be decided using crisp reasoning. Moreover,
this holds even if the ontology is restricted to be crisp itself.

Consider first the ontology O1 containing only the GCI 〈> v A, `〉 for some
` ∈ (0, 1). Since ` > 0, for every crisp model I of O1 and x ∈ ∆I , AI(x) = 1
holds. Thus, > is 1-subsumed by A w.r.t. O1 when reasoning is restricted to
crisp models. However, the interpretation I1 = ({x}, ·I1 ), where AI1(x) = `,
is also a model of O1, but violates the axiom 〈> v A, 1〉. In fact, the best
subsumption degree of > and A w.r.t. O1 is `, which is smaller than 1. Notice
that this example only assumes that the logic can express concept names, the top
concept, and fuzzy GCIs. Moreover, it is irrelevant which t-norm ⊗ was chosen
for the semantics.

Proposition 20. For every fuzzy DL ⊗-L that allows the top constructor and
fuzzy GCIs, `-subsumption cannot be decided over crisp models only.

If the logic uses a t-norm ⊗ without zero divisors and is able to express the
residual negation, then this proposition holds even if the ontology is crisp. Take
for instance the ontology O2 containing the axiom 〈> v ¬¬A, 1〉. As before,
it is easy to see that every crisp model of O2 also satisfies 〈> v A, 1〉. On the
other hand, the best subsumption degree of > and A w.r.t. O2 is 0.

To show this, we construct a model I2 of O2 that violates 〈> v A, `〉 for
every ` > 0. The interpretation I2 = (N, ·I2) is given by AI2(i) = 1/i for every
i ≥ 1. I2 is indeed a model of O2 since AI2(i) > 0 and hence (¬¬A)I2(i) = 1
for every i ≥ 1. However, for every ` > 0 there is an i ∈ N such that 0 < 1/i < `
and hence I2 violates the axiom 〈> v A, `〉. Thus, the best subsumption degree
of > and A w.r.t. O2 is 0.

Proposition 21. Let ⊗ be a t-norm without zero divisors and ⊗-L be a fuzzy
DL with residual negation. Then `-subsumption cannot be decided over crisp
models only. This holds even for `-subsumption w.r.t. crisp ontologies.

In the special case where ⊗ is the product t-norm, the problem is more
pronounced, since reasoning cannot be restricted to finite models either, as we
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Fig. 1. A model where 〈> v A, `〉 does not hold for any ` > 0.

show next. Consider the ontology

O = {〈> v ¬¬A, 1〉, 〈> v ∃r.>, 1〉, 〈∃r.A v A uA, 1〉}.

We show that every finite model of O also satisfies the GCI 〈> v A, 1〉, but the
best subsumption degree of > and A w.r.t. O is 0.

Let first I be a model of O that violates 〈> v A, 1〉. We show that I
must be infinite. To do this, we show by induction that for every n ≥ 1 there
exist x1, . . . , xn ∈ ∆I such that 1 > AI(x1) > . . . > AI(xn) > 0; since
AI(xi) 6= AI(xj) for every i 6= j, this implies that ∆I must contain infinitely
many individuals.

For the induction base, since I violates 〈> v A, 1〉, there must be an x ∈ ∆I
such that AI(x) < 1. As I satisfies the first axiom of O, it also follows that
AI(x) > 0. Thus, if we set x1 = x, then the claim holds for n = 1. Suppose
now that it holds for n ≥ 1, we show that it also holds for n + 1. Since I is a
witnessed model of O, the second axiom implies that there must exist a y ∈ ∆I
such that rI(xn, y) = rI(xn, y)⊗>(y) = 1. The third axiom then implies that

AI(xn) >
(
AI(xn)

)2 ≥ (∃r.A)I(xn)

≥ rI(xn, y)⊗AI(y) = AI(y).

Since I satisfies the first axiom, it additionally holds that AI(y) > 0. Thus,
setting xn+1 = y yields the result.

It remains only to show that the best subsumption degree of > and A w.r.t.
O is 0. We build a model I0 of O that violates 〈> v A, `〉 for every ` > 0. Let
I0 = ({2i | i ≥ 0}, ·I0) be given by AI0(x) = 2−x, and

rI0(x, y) =

{
1 y = 2x

0 y 6= 2x

for all x, y ∈ ∆I0 (cf. Figure 1).
We verify that I0 is a model of O. First, since 2−i > 0 for every i ≥ 0, it

follows that AI0(x) > 0 for all x ∈ ∆I . Thus, I0 satisfies the first axiom of O.
For every x ∈ ∆I it also holds that

(∃r.>)I0(x) = rI0(x, 2x) = 1 and

(∃r.A)I0(x) = rI0(x, 2x)⊗AI0(2x)

= 2−2x = 2−x · 2−x = AI0(x)⊗AI0(x),



satisfying the remaining two axioms of the ontology. The fact that this model is
witnessed is a trivial consequence of the fact that every individual of the domain
has exactly one r-successor with degree different from 0.

This all means that > is not `-subsumed by A w.r.t. O for any ` > 0, but >
is subsumed by A with degree 1 in every finite model of O. Notice that all the
axioms in O are crisp. We thus have the following result.

Proposition 22. Let ⊗ be the product t-norm and ⊗-L be a fuzzy DL with
conjunction, existential restriction, and residual negation. Then `-subsumption
cannot be decided over finite models only. This holds even for `-subsumption
w.r.t. crisp ontologies.

Notice that the three ontologies O1,O2, and O presented in this section
contain only GCIs. In this case it follows that a concept C is `-subsumed by
D iff any individual a is an `-instance of the concept C → D. Likewise, the
best subsumption degree of C and D is equivalent to the best instance degree
of a and C → D. Thus, if the fuzzy DL allows for the constructor →, then
Propositions 20, 21, and 22 also hold for `-instance checking, i.e. `-instances
cannot be checked by a reduction to crisp reasoning. This is true even if the
ontology is crisp. Moreover, under product t-norm semantics, finite models are
insufficient for instance checking w.r.t. crisp ontologies.

7 Conclusions

We have shown that for every t-norm ⊗ that does not have zero divisors, con-
sistency of ⊗-SHOI ontologies is ExpTime-complete. Indeed, to decide this
problem it suffices to test consistency of the crisp version of the ontology. For all
other t-norms—those having zero divisors—it was previously shown that consis-
tency becomes undecidable already for a fairly inexpressive DL, allowing only
for conjunction, existential restrictions and residual negation.

It is worth pointing out that the correctness of our reduction to crisp rea-
soning strongly depends on the fact that ⊗-SHOI ontologies, as presented in
this paper, cannot express upper bounds for the membership degrees. If one ex-
tends this logic to allow for these upper bounds, either by the introduction of
the involutive negation 1 − x or by axioms of the form 〈α ≤ `〉, then ontology
consistency becomes undecidable for every t-norm except the Gödel t-norm.

In crisp DLs, ontology consistency is the “main” decision problem in the
sense that all other standard problems—like concept satisfiability, subsumption
and instance checking—are polynomially reducible to it. In crisp DLs, a is a
(1-)instance of C w.r.t. an ontology O iff the ontology obtained by adding the
assertion 〈a:¬C, 1〉 to O is inconsistent. However, for any t-norm without zero
divisors, this last axiom only states that aI(C) = 0 must hold in every model,
which is much stronger than the required condition aI(C) < 1. Indeed, despite
⊗-SHOI having the crisp model property, crisp reasoning is insufficient for de-
ciding subsumption and instance checking. Moreover, under the product t-norm



semantics, finite models cannot decide these problems, even for those sublogics
of ⊗-SHOI that have the finite model property.

These results leave open the decidability status of subsumption and instance
checking in fuzzy DLs. This is one of the main problems we intend to examine in
future work. In this respect it is worth to point out that, so far, all the existing
decision procedures for fuzzy DLs depend on crisp- or finite-model reasoning.
This suggests that if, e.g. subsumption turns out to be decidable in these logics,
a different kind of decision procedure would have to be developed.
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