
Finding Finite Herbrand Models

Stefan Borgwardt and Barbara Morawska?

Theoretical Computer Science, TU Dresden, Germany
{stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract. We show that finding finite Herbrand models for a restricted
class of first-order clauses is ExpTime-complete. A Herbrand model is
called finite if it interprets all predicates by finite subsets of the Herbrand
universe. The restricted class of clauses consists of anti-Horn clauses with
monadic predicates and terms constructed over unary function symbols
and constants. The decision procedure can be used as a new goal-oriented
algorithm to solve linear language equations and unification problems
in the description logic FL0. The new algorithm has only worst-case
exponential runtime, in contrast to the previous one which was even
best-case exponential.

1 Introduction

Satisfiability of formulas in First Order Logic (FOL) has always been of interest
for computer science and is an active field of research. The main problem is that
satisfiability of such formulas is not even semi-decidable. Thus, the focus lies
on finding algorithms that decide satisfiability for restricted classes. A possible
approach is to use restrictions on the resolution or superposition calculi to obtain
decision procedures [8,10].

Related to this is the problem of model building that asks for an actual
model witnessing the satisfiability of the given clauses. Additionally, one usually
asks for a finite representation of such a model. For example, the complete-
ness proofs of resolution-style inference systems sometimes explicitly construct
(counter-)models, but there are also other approaches [2,11,16].

Here, we want to study the related problem of finding finite Herbrand models.
We call a Herbrand model finite if each predicate is interpreted by a finite
subset of the Herbrand universe. This problem is semi-decidable since the finite
Herbrand interpretations over a fixed signature can be recursively enumerated.
It has not been studied before and it is unknown whether it is decidable for
arbitrary first-order formulae. The existence of finite Herbrand models implies
the existence of finite models in the usual sense, where the domain is required
to be finite, but the other implication does not hold in general.

We restrict ourselves to finite sets of propagation rules, which are anti-Horn
clauses that use only monadic predicates and function symbols, one constant
symbol, and one variable. In particular, we do not allow the equality predicate.
? The authors are supported by DFG under grant BA 1122/14-1.

These sets of clauses can be seen as skolemized versions of Ackermann formulas,
for which satisfiability is known to be decidable [7,10]. This class of clause sets
is also similar to the decidable Bernays-Schönfinkel class [10], but neither is
actually included in the other.

In this paper, we show that the problem of deciding the existence of a fi-
nite Herbrand model for a finite set of propagation rules is ExpTime-complete.
Our decision procedure is aided by a new computational model that we call
propagation nets. The process of building a model is simulated by the process
of saturating the net with terms. This process terminates iff a finite Herbrand
model exists. We decide this by analyzing the structure of the net.

The problem of finding finite Herbrand models for a set of propagation rules
occurred while designing a new unification procedure for the description logic
FL0. The unification problem in this logic was shown to be ExpTime-complete
in [1]. There, solving unification in FL0 is shown to be equivalent to solving linear
language equations. The problem of solving these equations reduces in a natural
way to the problem of finding finite Herbrand models for propagation rules. In
this reduction, variables become predicates and their finite interpretation in the
Herbrand universe defines a solution to the original language equation.

Our decision procedure thus provides a new way to solve linear language
equations. It is worst-case exponential, but there are cases in which our algorithm
runs in polynomial time. Thus, it has advantages over the previous algorithm [1],
which is always exponential.

We think that this method of finding finite Herbrand models can be gen-
eralized to larger classes of clauses. As detailed above, it has an immediate
application to unification and solving formal language equations.

This paper does not include the formal proofs of our results. These and more
detailed explanations can be found in the technical report [4].

2 Propagation Rules

We first introduce propagation rules, which are clauses over a signature of finitely
many unary predicates P, finitely many unary function symbols F , one constant
a, and one variable x. Every ground term over this signature is of the form
f1(. . . fn(a) . . .), which we will abbreviate as f1 . . . fn(a). A propagation rule
is a clause of the form > → P1(a) ∨ · · · ∨ Pn(a) (positive clause), P0(a) →
P1(a) ∨ · · · ∨ Pn(a), or P0(t0) → P1(t1) ∨ · · · ∨ Pn(tn) for P0, . . . , Pn ∈ P and
non-ground terms t0, . . . , tn over F and x.1

We assume that the reader is familiar with Herbrand interpretations (see,
e.g., [10]). We call a Herbrand interpretation H over the above signature finite
if it interprets every predicate P ∈ P by a finite set PH. The task we are
interested in is to decide the existence of finite Herbrand models for finite sets
of propagation rules. As a first step, we will flatten the propagation rules to get

1 Note that n might be 0, in which case the right-hand side of the clause is ⊥. Positive
clauses must be ground since otherwise no finite Herbrand model could exist.

rid of most terms of depth larger than 0. A finite set C of propagation rules is
called normalized if there is a set D(C) ⊆ P × F such that

– For every (P, f) ∈ D(C), we have P f ∈ P and the clauses P f (x)→ P (f(x))
(increasing clause) and P (f(x))→ P f (x) (decreasing clause) in C.

– All other clauses in C must be flat, i.e., of the form > → P1(a)∨ · · · ∨Pn(a),
P0(a)→ P1(a) ∨ · · · ∨ Pn(a), or P0(x)→ P1(x) ∨ · · · ∨ Pn(x).

For f ∈ F , we denote by Df (C) the set {P ∈ P | (P, f) ∈ D(C)}.
The interesting property of such sets is that in order to check whether a flat

clause P0(x)→ P1(x)∨ · · · ∨Pn(x) is satisfied by a ground term, one only needs
to consider this term. Different terms can only occur in the same instance of a
clause if it is an increasing or a decreasing clause, which only allows a very limited
connection between the terms, i.e., adding and removing the leading function
symbol. The set D(C) acts as an “interface” between terms of different lengths:
A clause can only contain different terms if a predicate P f with (P, f) ∈ D(C)
is involved. The special predicate P f represents those terms in P that have the
prefix f : For any Herbrand model H and any word w ∈ F∗, the term f(w(a)) is
in PH iff w(a) is in P fH.

To transform a finite set C of propagation rules into a normalized set C′, we
introduce auxiliary predicates that allow us to replace arbitrary atoms by flat
ones. For example, the atom P (fg(x)) can be replaced by the equivalent atom
P fg(x) if (P, f) and (P f , g) are added to D(C). In contrast to common flattening
procedures for first-order clauses, we do not use new variables or equality [2].

Lemma 1. For every finite set C of propagation rules, we can construct in poly-
nomial time a normalized set C′ of propagation rules such that C has a finite
Herbrand model iff C′ does.

Example 2. Consider the propagation rules

C1 := {> → P0(a), P0(f(x))→ ⊥, P0(g(x))→ ⊥, P3(a)→ ⊥, P3(f(x))→ ⊥,
P3(g(x))→ P0(x), P0(x)→ P3(g(x)), P0(a)→ P1(a), P1(a)→ P0(a),

P2(x)→ P3(x) ∨ P1(f(x)), P3(x)→ P2(x), P1(f(x))→ P2(x)

P1(x)→ P2(x) ∨ P1(g(x)), P2(x)→ P1(x), P1(g(x))→ P1(x)}.

To construct the normalized set C′1, we first rename P0 to P g
3 and add the

pair (P3, g) to D(C′1). Afterwards, the pairs (P3, f), (P1, f), (P1, g), (P
f
3 , g), and

(P g
3 , g) are added, together with the corresponding increasing and decreasing

clauses. The resulting flat clauses are the following:

> → P g
3 (a), P

gf
3 (x)→ ⊥, P gg

3 (x)→ ⊥, P3(a)→ ⊥, P f
3 (x)→ ⊥,

P g
3 (a)→ P1(a), P1(a)→ P g

3 (a),

P2(x)→ P3(x) ∨ P f
1 (x), P3(x)→ P2(x), P

f
1 (x)→ P2(x),

P1(x)→ P2(x) ∨ P g
1 (x), P2(x)→ P1(x), P

g
1 (x)→ P1(x).

We will use C′1 throughout this paper to illustrate the presented algorithms.

For a flat clause c, the set possibilities(c) contains all predicates occurring
on the right-hand side of c. For a set C = {c1, . . . , cn} of flat clauses, we define
possibilities(C) :={{P1, . . . , Pn} | ∀i ∈ {1, . . . , n} :Pi ∈ possibilities(ci)}.
For example, P1(a) → P2(a) ∨ P3(a) has the possibilities P2 and P3, while
{P1(x)→ P2(x)∨P3(x),> → P0(a)} has the possibilities {P2, P0} and {P3, P0}.

In the following, we assume that any normalized set C of propagation rules
contains at most one positive clause, which is of the form > → A(a), and that the
predicate A otherwise only occurs on the left-hand side of other ground clauses.
If this is not the case, we introduce a new predicate A, add the clause > → A(a)
to C, and replace > by A(a) in every other positive clause. It is easy to see that
this modification does not affect the existence of a finite Herbrand model for C.

For the set C′1 from Example 2, we simply add > → A(a) to C′1 and replace
the propagation rule > → P g

3 (a) by A(a)→ P g
3 (a).

3 Propagation Nets

We now introduce a new computational model, called propagation net , that
will be used to decide the existence of finite Herbrand models for finite sets of
propagation rules. We use notions borrowed from the theory of Petri nets [12,13].

A propagation net consists of places and transitions which are connected by
directed arcs. A computation moves words from places to other places using the
transitions between them. If a place has several outgoing arcs to transitions,
it can choose one of them to fire. This means that a word from this place is
transported to the transition and then distributed to all places reachable from
this transition. An arc from a place to a transition can also change the word by
adding a letter or removing the first letter. An arc from a transition to a place
can filter out words that should not be transported to the place. The firing of
a transition does not remove the word from the place but just deactivates it.
The goal is to find a computation that starts with a given distribution of words
among places and terminates in the sense that all words are deactivated.

Definition 3. A propagation net N = (P, T,Σ,E, I, π, τ) consists of

– a finite set P of places,
– a finite set T of transitions,
– a finite alphabet Σ,
– a set E ⊆ (P × T) ∪ (T × P) of arcs,
– an initial marking I : (P ∪ T)→ P(Σ∗) and Ia : P → P(Σ∗),
– a partial filter function π :

(
E ∩ (T × P)

)
→ Σ ∪ {ε}, and

– a successor function τ :
(
E ∩ (P × T)

)
→ Σ ∪ {f−1|f ∈ Σ} ∪ {ε}.

A token in N is a word over Σ. A marking M of N is a pair of mappings
M : (P ∪ T) → P(Σ∗) and Ma : P → P(Σ∗) assigning to each place and
each transition finite sets of tokens such that Ma(p) ⊆ M(p) for every p ∈ P .
M(p) contains the tokens of a place p ∈ P , while M(t) contains the tokens of a
transition t ∈ T in the marking M . The set Ma(p) contains the active tokens of
p in M . We assume that I is a proper marking in the above sense.

We say that a token w matches the filter π(t, p) of an arc (t, p) ∈ E∩ (T ×P)
if either (i) π(t, p) is undefined (no restriction on w), (ii) π(t, p) = ε and then
w = ε, or (iii) π(t, p) = f ∈ Σ and then w starts with f .

There are two elementary operations on markings. A token w is deactivated
at p ∈ P by removing it from Ma(p), if it is in Ma(p), and adding it to M(p), if
it is not already in M(p). Note that w need not be in M(p) to be deactivated.

A token w is produced at a transition t ∈ T by adding it to M(t). This
operation has the side effect of also producing the token at all places p ∈ P with
(t, p) ∈ E. This secondary operation is executed only if w matches the filter
π(t, p). If this is the case and w /∈ M(p), then w is added to M(p) and Ma(p).
Otherwise, the token w is not added to the marking at p.

A firing in N is a triple f = (p, w, t) ∈ P ×Σ∗ × T such that (p, t) ∈ E and
the concatenation τ(p, t)w is defined, i.e., if τ(p, t) = f−1, then w begins with f .
The result of firing f in a marking M is a new marking M ′ as follows:

1. Initialize M ′ :=M and M ′a :=Ma.
2. Deactivate the token w at p in M ′.
3. Compute the successor token w′ := τ(p, t)w.
4. Produce w′ at t in M ′, thereby also producing w′ at every place reachable

from t by an outgoing arc whose filter matches w′.

If M ′ is the result of the firing f in M , then we write M f−→ M ′. If M(p) =
M ′(p) for all p ∈ P , this firing is called unproductive in M ; otherwise, it is
called productive. An unproductive firing only removes an active token from the
marking, while a productive firing also introduces new active tokens.

Given a marking M0, a firing sequence (starting in M0) is a finite sequence
M0

f1−→ . . .
fm−−→Mm of firings. If the initial marking is not important, we denote

this sequence by f1, . . . , fm. Mm is called the final marking of this sequence. The
sequence is called terminating if Mm is stable, i.e., Mm,a(p) = ∅ for all p ∈ P .
We say that N terminates if it has a terminating firing sequence that starts in
I. Note that such a firing sequence has to end with a nonproductive firing since
otherwise new active tokens would be created. Figures 1 and 2 depict a simple
propagation net and the effect of a firing on the initial marking.

Other Computational Models There are several differences between propa-
gation nets and Petri nets. In propagation nets, tokens are not atomic objects,
but words over an alphabet Σ. Additionally, transitions do not need to be syn-
chronized, i.e., do not require the input token to be present at every input place.

Propagation nets behave much more like two-way alternating automata on
finite words [5,9,3] or trees [14,6], where places are existential states and tran-
sitions are universal states. Contrary to word automata, however, propagation
nets do not read an input word, but rather write several words, i.e., the tokens
that are produced. In finite trees, one can represent all these words simultane-
ously. But then propagation nets would represent automata on finite trees that
can also accept with infinite computations, contrary to the standard definition.

p1

ε

t1 p2

t2 p3

g

t3

f

ε ε f−1

g

f

Fig. 1. A simple propagation net with P = {p1, p2, p3} and T = {t1, t2, t3}. Edge labels
denote the functions π and τ , where filters are depicted as triangles. Filled circles are
the tokens of the initial marking; active tokens have a black background.

p1

ε

t1

f

p2

f

t2 p3

g

t3

f

ε ε f−1

g

f

Fig. 2. The propagation net from Fig. 1 after firing (p1, ε, t1). The token f is produced
at t1 and p2, but not at p3 since f does not match the filter τ(t1, p3) = ε.

From Clauses to Propagation Nets We will now translate any normalized
set C of propagation rules into a propagation net NC . The goal is to express the
finite Herbrand models of C by stable markings of NC . We will represent terms by
tokens, clauses by places, and predicates by transitions. From a clause, a token
can be transferred to any of its possibilities. From a predicate, a token is then
distributed to all clauses with this predicate on their left-hand side. The filter
function allows to discard those terms (tokens) that are irrelevant for satisfying
the clause. The successor function expresses increasing and decreasing clauses by
adding or removing letters, respectively. For a flat clause, the successor function
is ε, i.e., it leaves the term as it is. The initial marking simply consists of the
active token ε at > → A(a) since this is the only clause without precondition.

Definition 4. Let C be a normalized set of propagation rules. The propagation
net NC := (C,P,F , EC , IC , πC , τC) has the following components:

– EC :=
{
(c, Pi) | c = . . .→ P1(t1) ∨ · · · ∨ Pn(tn) ∈ C and i ∈ {1, . . . , n}

}
∪
{
(P0, c) | c = P0(t0)→ · · · ∈ C

}
– IC,a(c) := IC(c) :=

{
{ε} if c = > → A(a)
∅ otherwise

– πC
(
P0, P0(t0)→ . . .

)
:=

 ε if t0 = a
undefined if t0 = x
f if t0 = f(x)

– τC
(
P0(t0)→ P1(t1) ∨ · · · ∨ Pn(tn), Pi

)
:=

f if t0 = x, ti = f(x)
f−1 if t0 = f(x), ti = x
ε otherwise

– τC(> → A(a), A) := ε

In this propagation net, every firing (c, w, P) represents a possibility of c.
Firing sequences can thus be seen as sequences of applying possibilities to to-
kens on the left-hand side of clauses: If w(a) is a term in PH for a Herbrand
interpretation H and we want H to satisfy a clause P (x)→ P1(x)∨ · · · ∨Pn(x),
then we have to find a possibility Pi for which to put w(a) into PHi . If this
process of satisfying clauses stops, we have found a finite Herbrand model of C.

Lemma 5. C has a finite Herbrand model iff NC terminates.

Example 6. Consider the propagation net NC′1 for the rules from Example 2.
Ignoring unproductive firings, the following is a terminating firing sequence:

(> → A(a), ε, A), (A(a)→ P g
3 (a), ε, P

g
3), (P

g
3 (x)→ P3(g(x)), ε, P3),

(P3(x)→ P2(x), g, P2), (P2(x)→ P1(x), g, P1), (P1(g(x))→ P g
1 (x), g, P

g
1),

(P g
1 (x)→ P1(x), ε, P1)

If we abbreviate firings like (P1(x) → P2(x) ∨ P g
1 (x), g, P2) by P1(g) → P2(g)

and join “adjacent” firings, the structure of this sequence becomes apparent:

> A(ε) P g
3 (ε)

P3(g) P2(g) P1(g)

P g
1 (ε) P1(ε)

It is easy to read off the corresponding finite Herbrand model H of C′1:

AH = P gH
1 = P gH

3 = {a}, PH1 = {a, g(a)}, PH2 = PH3 = {g(a)},

P fH
1 = P fH

3 = P gfH
3 = P ggH

3 = ∅.

3.1 Behavior of Propagation Nets

Our goal is to decide termination of propagation nets NC obtained from normal-
ized sets of propagation rules C. We will use these propagation nets to formulate
the ideas behind a decision procedure for the existence of finite Herbrand models
for the clause sets.

Termination of Propagation Nets We first analyze what it means for NC
to have a terminating firing sequence starting in IC . Any such sequence will
start with the token ε at A and gradually distribute it to other predicates, while
sometimes increasing it. There are two reasons why this might not be possible.
First, it may be impossible to avoid a contradiction, i.e., a clause with ⊥ on
the right-hand side, in any firing sequence starting in IC . The other possibility
is that every firing sequence that avoids all contradictions is forced into a cycle
of creating ever longer tokens. Thus, in order for the sequence to terminate,
the length of the produced tokens has to be bounded. To analyze the detailed
structure of terminating firing sequences, we introduce the following notions.

Definition 7. Let P ∈ X ⊆ P and w = fw′ ∈ F+. A (P,X , w)-replacement
sequence is a firing sequence of NC starting in M0 and ending in Mm such that

– M0 only contains the token w at P and the active token w at all clauses with
P (x) or P (f(x)) on the left-hand side,

– Mm only contains tokens with the suffix w,
– w ∈Mm(Q) iff Q ∈ X , and
– if w′ ∈Mm,a(c), then w′ = w and c = Q(f(x))→ Qf (x).

A (P, ε)-replacement sequence is a firing sequence starting in M0 and ending
in Mm such that

– M0 only contains the token ε at P and the active token ε at all clauses with
P (x) or P (a) on the left-hand side, and

– Mm is stable.

The height of a replacement sequence is the maximal number |w′| − |w| for
any token w′ in Mm.

Every terminating firing sequence starting in IC consists of the firing (> →
A(a), ε, A) and an (A, ε)-replacement sequence. Thus, our goal is to decide the
existence of such replacement sequences. If there is an (A, ε)-replacement se-
quence of height 0, then only the token ε is produced in this sequence. Deciding
the existence of such sequences is easy (see Alg. 2). If the height of an (A, ε)-
replacement sequence is larger than 0, it contains other replacement sequences
of smaller height, as explained in the following.

The sequence has to produce a token w = fw′ 6= ε at a predicate P , and
then w is contained in the final marking at all clauses with P (x) or P (f(x)) on
the left-hand side. We can extract a (P,X , w)-replacement sequence as follows:
Starting from the token w at all clauses with P (x) or P (f(x)) on the left-hand
side, we extract all firings that deactivate these tokens and the tokens produced
from these firings, except firings of the form (Q(f(x)) → Qf (x), w,Qf). The
extracted firings form the replacement sequence and the set X consists of all
predicates Q at which w was produced in this sequence.

Example 8. The terminating firing sequence from Example 6 mainly consists of
an (A, ε)-replacement sequence. The firing (P g

3 (x) → P3(g(x)), ε, P3) produces

the token g at all clauses with P3(x) or P3(g(x)) on the left-hand side, which is the
starting point of a replacement sequence. The corresponding (P3, {P3, P2, P1}, g)-
replacement sequence is

(P3(x)→ P2(x), g, P2), (P2(x)→ P1(x), g, P1),

(P2(x)→ P3(x) ∨ P f
1 (x), g, P3), (P1(x)→ P2(x) ∨ P g

1 (x), g, P2).

If a longer token w′ is produced in such a sequence at Q ∈ P, we can use the
same procedure to extract a (Q,Y, w′)-replacement sequence of smaller height.
We continue this until the height of the replacement sequences is 0. Thus, every
terminating firing sequence is decomposed into nested replacement sequences.

To decide termination ofNC , we construct all possible replacement sequences,
starting with height 0. These can be used to build replacement sequences of
increasing heights, until we can construct an (A, ε)-replacement sequence.

Replacement Sequences of Height 0 To construct replacement sequences
of height 0 for a predicate P , we define the set possibilities(P) to contain all
possibilities of the set of all flat clauses with P (x) on the left-hand side. Such a
possibility {Q1, . . . , Qn} represents one way of firing all these flat clauses. After-
wards, we have to consider the possibilities of the reached predicates Q1, . . . , Qn

and repeat this process until no new predicates are reached.
Since we want to find replacement sequences of height 0, we must prevent this

process to reach predicates of the form P f with (P, f) ∈ D(C). Thus, we define
possibilities(P f (x)→ P (f(x))) := ∅ and extend the set possibilities(P f)
to also consider this increasing clause. Thus, possibilities(P f) = ∅, which
indicates that we have no way of dealing with the token w at P f .

Example 9. The (P3, {P3, P2, P1}, g)-replacement sequence from Example 8 can
be constructed as follows: For P3, we have the possibility {P2}, i.e., the firing
(P3(x)→ P2(x), g, P2). P2 has the possibilities {P1, P3} and {P1, P

f
1 }. The first

one yields (P2(x)→ P1(x), g, P1) and (P2(x)→ P3(x)∨P f
1 (x), g, P3). The second

possibility would lead to the active token g at P f
1 , which we disallow. Finally,

for P1 we choose the unproductive firing (P1(x)→ P2(x) ∨ P g
1 (x), g, P2).

It is easy to see that a (P,X , w)-replacement sequence can be changed into a
(P,X , w′)-replacement sequence by substituting the suffix w by w′ in every token
in the sequence. Thus, the token w is not necessary to describe the replacement
sequence. Similarly, it is not important which firings are used to deactivate to-
kens, only which predicates are reached. We are thus only interested in so-called
shortcuts (P,X) with P ∈ X ⊆ P for which a (P,X , w)-replacement sequence
exists. There may be several possibilities for P , and thus several replacement
sequences and several shortcuts (P,X1), (P,X2), . . . representing them.

Example 10. The (P3, {P3, P2, P1}, g)-replacement sequence shown in Example 8
yields the shortcut (P3, {P3, P2, P1}). We can also find replacement sequences for
P1 and P2, represented by the shortcuts (P1, {P1, P2, P3}) and (P2, {P1, P2, P3}).

Replacement Sequences of Larger Height If we have shortcuts for all
replacement sequences of height 0, we can construct replacement sequences of
height 1 as follows. Such a sequence will contain firings of increasing clauses
P f (x)→ P (f(x)) w.r.t. some token w. This firing produces the token fw at all
clauses having P (x) or P (f(x)) on the left-hand side. This is a possible starting
point for a (P,X , fw)-replacement sequence of height 0.

If we have already computed a shortcut (P,X), there is a firing sequence that
deactivates the token fw and distributes it to all predicates of X . This leaves
us to consider the tokens that were created at decreasing clauses. These clauses
must be of the form Q(f(x))→ Qf (x) for Q ∈ X since the token begins with f
and is distributed only to predicates in X . We then simply fire these decreasing
clauses, which gets us back to the original token w.

Thus, when looking for replacement sequences of height 1, we can use short-
cuts as possibilities for the predicates P f . Each shortcut (P,X) yields a pos-
sibility {Qf | Q ∈ X ∩ Df (C)} for the increasing clause P f (x) → P (f(x)). If
there is at least one shortcut (P,X), then possibilities(P f) can now be non-
empty. With this new definition of possibilities, we can compute shortcuts
for replacement sequences of height 1, similar to the construction of replacement
sequences of height 0. These yield more possibilities, which lead to shortcuts for
replacement sequences of height 2, and so on.

The following procedure implements the computation of all possibilities for
a predicate P w.r.t. a set R of previously computed shortcuts.

Algorithm 1 (possibilities(C,R, P)).
Input: a normalized set C of propagation rules, a set R of shortcuts, and a
predicate P

Output: the set of possibilities for P w.r.t. C and R
if P = Qf with (Q, f) ∈ D(C) then
L ← {{Qf

1 , . . . , Q
f
n} | (Q,X) ∈ R, {Q1, . . . , Qn} = X ∩ Df (C)}

else L ← {∅}
for all P (x)→ P1(x) ∨ · · · ∨ Pn(x) ∈ C do
L ← {Y ∪ {Pl} | Y ∈ L, l ∈ {1, . . . , n}}

return L

For example, if we have the shortcut (P1, {P1, P2, P3}) from Example 10,
then possibilities(C′1,R, P

f
1) is {{P

f
1 , P

f
3 , P2}} instead of ∅.

Replacement Sequences for ε To construct a replacement sequence for ε, we
can use the same approach as above, but we also have to consider the ground
clauses of C. Since we only want to decide the existence of such a replacement
sequence, we need not compute any shortcuts.

We call a predicate P ∈ P good if there is a (P, ε)-replacement sequence. All
other predicates are bad. To decide whether A is good, we construct the set B of
all bad predicates using the following procedure. The idea is that a predicate is
bad whenever all its possibilities contain a bad predicate. This is similar to the
emptiness test for looping automata on infinite trees [15].

Algorithm 2 (isTerminating(C,R)).
Input: a normalized set C of propagation rules and a set R of shortcuts
Output: true iff A is good w.r.t. R
B0 ← ∅, k ← 0
repeat
Bk+1 ← Bk
∪ {P ∈ P | ∃P (x)→ P1(x) ∨ · · · ∨ Pn(x) ∈ C : {P1, . . . , Pn} ⊆ Bk}
∪ {P ∈ P | ∃P (a)→ P1(a) ∨ · · · ∨ Pn(a) ∈ C : {P1, . . . , Pn} ⊆ Bk}
∪ {P f ∈ P | (P, f) ∈ D(C), ∀(P,X) ∈ R ∃Q ∈ X ∩ Df (C) : Qf ∈ Bk}

k ← k + 1
until Bk = Bk−1
return A /∈ Bk

Example 11. Consider the set C′1 from Example 2 and assume that no shortcuts
are available. The predicates P f

1 , P
g
1 , P

f
3 , P

g
3 , P

gf
3 , and P gg

3 are immediately
bad. Because of the clause A(a) → P g

3 (a), A is also bad. With the shortcuts
computed in Example 10, the predicates P g

3 and A are no longer bad. This
means that there is an (A, ε)-replacement sequence of height 1, as already seen
in Example 6.

4 Deciding Termination

We can now formulate our main algorithm that decides whether NC terminates.
It computes shortcuts representing replacement sequences of increasing height.
The sets Ri are used to store all shortcuts computed so far. In each iteration, the
algorithm checks whether these shortcuts already suffice to prove termination of
NC using isTerminating(C,Ri) (Alg. 2). If not, shortcuts for the next height
are computed. If there are no new shortcuts, the algorithm stops and returns
false, indicating that NC does not terminate.

Algorithm 3 (Main algorithm).
Input: a normalized set C of propagation rules
Output: true iff NC terminates
R0 ← ∅, i← 0
repeat
if isTerminating(C,Ri) then return true

Ri+1 ← nextShortcuts(C,Ri)
i← i+ 1

until Ri = Ri−1
return false

The procedure nextShortcuts(C,R) implements the computation of the
shortcuts representing replacement sequences of the next height. It uses a set T
of triples of the form (P,RP , VP), where RP is the set of predicates reached so far
starting from P , and VP ⊆ RP contains the predicates that were already visited,

i.e., for which all possibilities have been considered. Visiting Q corresponds to
firing all clauses starting with Q(x).

The computation of shortcuts for P starts with the triple (P, {P}, ∅). In each
step, we choose a triple (P,RP , VP) ∈ T that still contains an unvisited predicate
Q ∈ RP \VP and consider its possibilities. For each Y ∈ possibilities(C,R, Q),
we add (P,RP ∪Y, VP ∪{Q}) to T since the predicates from Y have been reached
and Q has just been visited. The original triple is removed from T .

We continue this process until there are no more unvisited predicates. A triple
(P,RP , RP) then yields the shortcut (P,RP). We restrict the starting triples
(P, {P}, ∅) to satisfy (P, f) ∈ D(C) for some f ∈ F since only such predicates
can be reached by an increasing clause.
Algorithm 4 (nextShortcuts(C,R)).
Input: a normalized set C of propagation rules and a set R of shortcuts
Output: a set R′ of shortcuts for the next height
T ← {(P, {P}, ∅) | r ∈ F , (P, r) ∈ D(C)}
while there is (P,RP , VP) ∈ T with RP \ VP 6= ∅ do
T ← T \ {(P,RP , VP)}
choose Q from RP \ VP
for all Y ∈ possibilities(C,R, Q) do
T ← T ∪ {(P,RP ∪ Y, VP ∪ {Q})}

return {(P,RP) | (P,RP , RP) ∈ T }

Example 12. Consider the set C′1 from Example 2. We describe the computation
of nextShortcuts(C′1, ∅), which was already illustrated in Example 9. It starts
with the triples (P1, {P1}, ∅), (P3, {P3}, ∅), (P f

3 , {P
f
3 }, ∅), and (P g

3 , {P
g
3 }, ∅), but

we consider here only the first one.
The possibilities {P2} and {P g

1 } for P1 yield the triples (P1, {P1, P2}, {P1})
and (P1, {P1, P

g
1 }, {P1}). Since there is no shortcut (P1,X), the set of possi-

bilities for P g
1 is empty and the second triple is removed. P2 has the possi-

bilities {P3, P1} and {P f
1 , P1}. One of the resulting triples is simply removed,

leaving us with (P1, {P1, P2, P3}, {P1, P2}). Finally, P3 is visited, resulting in
(P1, {P1, P2, P3}, {P1, P2, P3}), and thus in the shortcut (P1, {P1, P2, P3}).

In the following, we show that the computed shortcuts actually represent
replacement sequences. More precisely, the shortcuts computed in the i-th iter-
ation of the main loop of Alg. 3 represent all replacement sequences of height at
most i− 1.

Lemma 13. Let i ≥ 1 be such that Ri was computed by Alg. 3, (P,X) ∈ Ri,
and w ∈ F+. Then there is a (P,X , w)-replacement sequence of height ≤ i− 1.

On the other hand, every replacement sequence of NC of height at most i
corresponds to a shortcut computed in the i + 1-th iteration of the algorithm.
However, this shortcut does not need to have the same set X of reached pred-
icates, but only a subset of it. The reason for this is that firings can always
be applied, regardless of whether they are necessary to deactivate some token

or not. This means that replacement sequences might contain irrelevant firings.
However, Alg. 3 computes shortcuts in such a way that only necessary firings
are considered, i.e., only possibilities for predicates that were already reached.

Lemma 14. Consider the variant of Alg. 3 that never returns, but simply com-
putes the sets Ri for all i ≥ 0. Let P ∈ Df (C). If there is a (P,X , fw)-
replacement sequence of height ≤ i, then (P,X ′) ∈ Ri+1 for some X ′ ⊆ X .

These results can be used to show that the algorithm is correct. If Alg. 3
returns true, then Lemma 13 allows us to construct a terminating firing sequence
from the computed shortcuts. On the other hand, if there is such a sequence,
Lemma 14 shows that Alg. 3 computes enough shortcuts to detect its existence.

Theorem 15. Termination of propagation nets of the form NC for normalized
sets C of propagation rules can be decided in time exponential in the size of C.

Proof (Sketch). We have Ri−1 ⊆ Ri after every step of Alg. 3. Since there are
only exponentially many possible shortcuts and nextShortcuts(C,Ri) takes at
most exponential time, the overall runtime is also exponential. ut

Corollary 16. The existence of finite Herbrand models for finite sets of propa-
gation rules can be decided in ExpTime.

Proof. This follows from Theorem 5 and the reductions of Sects. 2 and 3. ut

If all the clauses of C are deterministic, i.e., have at most one possibility, the
propagation net NC is called deterministic. Then all places of NC have at most
one outgoing arc and the algorithm runs in time polynomial in the size of C.
For every additional nondeterministic clause in the set C, the runtime of the
algorithm increases by an exponential factor due to the computation of all possi-
bilities and all shortcuts in possibilities(C,R, P) and nextShortcuts(C,R).

5 Hardness

To conclude the complexity analysis, we present a reduction from linear language
equations to finite sets of propagation rules. The equations are of the form

S0 ∪ S1X1 ∪ · · · ∪ SnXn = T0 ∪ T1X1 ∪ · · · ∪ TnXn

for finite sets S0, . . . , Sn, T0, . . . , Tn of words over an alphabet Σ. A solution
assigns finite sets of words to the variables Xi such that the equation holds.
Deciding whether such an equation has a solution is ExpTime-complete [1].

We can transform such equations into flat linear language inclusions

L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn

for L0, . . . , Ln ⊆ Σ ∪ {ε}. By flat we mean that all coefficients contain only
words of length at most 1. This can be achieved in polynomial time.

Example 17. Consider the equation {rs}∪{s}Y ∪X = {r}Y ∪{s}X∪{ε}.2 If we
abbreviate {r} by r and introduce a new variable Z, we can equivalently write
this problem using the flat equations rZ ∪ sY ∪ X = rY ∪ sX ∪ ε and Z = s.
These are then split into the following flat linear language inclusions:

I1 := {rZ ⊆ rY ∪ sX ∪ ε, sY ⊆ rY ∪ sX ∪ ε, X ⊆ rY ∪ sX ∪ ε, Z ⊆ s
rY ⊆ rZ ∪ sY ∪X, sX ⊆ rZ ∪ sY ∪X, ε ⊆ rZ ∪ sY ∪X, s ⊆ Z}.

To solve a finite set I of such inclusions, we translate I into a finite set CI
of propagation rules that express the same restrictions as the inclusions. We will
treat each r ∈ Σ as a unary function symbol, each variable X occurring in I as
a unary predicate. The intention behind CI is that a finite Herbrand model H
of CI represents a solution θ of I with θ(X) = {w | w(a) ∈ XH}.

To express an inclusion L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn by clauses, we use the
following idea. The clauses have to restrict the interpretation of the variables
such that every word w ∈ Σ∗ occurring on the left-hand side of the inclusion
also occurs on the right-hand side. For each word w occurring in L0X0, we make
a case analysis based on the first letter of w. We create one clause for the case
w = ε, and one clause for every possible first letter of w.

Example 18. Consider the inclusion rZ ⊆ rY ∪ sX ∪ ε from Example 17. Every
word w on its left-hand side has to begin with r, so the case analysis can be
narrowed to one case. The corresponding clause is Z(x)→ Y (x). Note that the
terms sX and ε can never be responsible for this inclusion to be satisfied, and
thus they are not represented in the clause.

Consider now another inclusion X ⊆ rY ∪ sX ∪ ε, which has to be split
according to s, r, and ε. For the case that a word w on the left-hand side begins
with r, we introduce the clause X(r(x)) → Y (x). Similarly, for s we obtain
X(s(x)) → X(x). The case w = ε is expressed by the clause X(a) → A(a),
where A is a special predicate that is always interpreted as {a}.

Theorem 19. Deciding the existence of finite Herbrand models for finite sets
of propagation rules is ExpTime-hard.

6 Summary and Conclusions

Viewed from a different perspective, Alg. 3 and the reduction from Sect. 5 yield
a new ExpTime-algorithm for deciding solvability of linear language equations.
While the original decision procedure [1] constructs a tree automaton of expo-
nential size and uses a linear-time emptiness test, our algorithm constructs a
polynomial-size propagation net and uses an algorithm that is worst-case expo-
nential, but exhibits a better behavior if the constructed set of propagation rules
contains few nondeterministic clauses.
2 This equation is equivalent to the FL0-unification problem ∀r.∀s.A u ∀s.Y uX ≡?

∀r.Y u ∀s.X uA, where A is a constant and X,Y are variables (see [4] for details).

In future work, we want to modify the algorithm to actually compute solu-
tions to the language equations and analyze the usefulness of these solutions; it
may be desirable to output minimal solutions w.r.t. some order. We also want
to implement the algorithm and compare it with an implementation of the naive
tree automaton construction. To this end, we will have to design optimizations
to our algorithm.

Another interesting open question is whether the presented approach can be
applied to finite sets of arbitrary clauses with unary predicates, unary function
symbols and constants. The formalism of propagation nets is certainly powerful
enough to reflect this change, but the decision procedure also has to be adapted.

Acknowledgement We would like to thank Prof. Franz Baader for helpful
discussions and comments.

References

1. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277–305 (2001)

2. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. J. Appl. Log. 7(1), 58–74 (2009)

3. Birget, J.: State-complexity of finite-state devices, state compressibility and in-
compressibility. Math. Syst. Theory 26(3), 237–269 (1993)

4. Borgwardt, S., Morawska, B.: Finding finite Herbrand models. LTCS-Report 11-04,
TU Dresden (2011), see http://lat.inf.tu-dresden.de/research/reports.html.

5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2007)

7. Dreben, B., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantifi-
cational Formulas. Addison-Wesley (1979)

8. Joyner Jr., W.H.: Resolution strategies as decision procedures. J. ACM 23(3), 398–
417 (1976)

9. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack
automata. SIAM J. Comput. 13(1), 135–155 (1984)

10. Leitsch, A.: The Resolution Calculus. Springer (1997)
11. Peltier, N.: Model building with ordered resolution: Extracting models from satu-

rated clause sets. J. Symb. Comput. 36(1-2), 5–48 (2003)
12. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Uni Bonn (1962)
13. Reisig, W.: Petri Nets: An Introduction. Springer (1985)
14. Slutzki, G.: Alternating tree automata. Theor. Comput. Sci. 41, 305–318 (1985)
15. Vardi, M.Y., Wolper, P.: Automata theoretic techniques for modal logics of pro-

grams (extended abstract). In: Proc. STOC’84. pp. 446–456. ACM (1984)
16. Zhang, J.: Constructing finite algebras with FALCON. J. Autom. Reasoning 17,

1–22 (1996)

