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Abstract

Fuzzy description logics (DLs) have been investigated for
over two decades, due to their capacity to formalize and rea-
son with imprecise concepts. Very recently, it has been shown
that for several fuzzy DLs, reasoning becomes undecidable.
Although the proofs of these results differ in the details of
each specific logic considered, they are all based on the same
basic idea.
In this paper, we formalize this idea and provide sufficient
conditions for proving undecidability of a fuzzy DL. We
demonstrate the effectiveness of our approach by strengthen-
ing all previously-known undecidability results and provid-
ing new ones. In particular, we show that undecidability may
arise even if only crisp axioms are considered.

1 Introduction
Description logics (DLs) (Baader et al. 2003) are a family
of logic-based knowledge representation formalisms, which
can be used to represent the knowledge of an application
domain in a formal way. They have been successfully used
for the definition of medical ontologies, like SNOMED CT1

and GALEN,2 but their main breakthrough arguably was the
adoption of the DL-based language OWL (Horrocks, Patel-
Schneider, and van Harmelen 2003) as the standard ontology
language for the semantic web.

Fuzzy variants of description logics have been introduced
to deal with applications where concepts cannot be speci-
fied in a precise way. For example, in the medical domain
a high body temperature is often a symptom for a disease.
When trying to represent this knowledge, it makes sense to
see High as a fuzzy concept: there is no precise point where
a temperature becomes high, but we know that 36◦C belongs
to this concept with a lower membership than 39◦C. A more
detailed description of the use of fuzzy semantics in medical
applications can be found in (Molitor and Tresp 2000).

A great variety of fuzzy DLs can be found in the litera-
ture (see (Lukasiewicz and Straccia 2008; Garcı́a-Cerdaña,
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Armengol, and Esteva 2010) for a survey). In fact, fuzzy
DLs have several degrees of freedom for defining their ex-
pressiveness. In addition to the choice of concept construc-
tors (such as conjunction u or existential restriction ∃), and
the type of axioms allowed (like acyclic concept definitions
or general concept inclusions), one must also decide how
to interpret the different constructors, through a choice of
functions over the domain of fuzzy values [0, 1]. These func-
tions are typically determined by a continuous t-norm (like
Gödel, Łukasiewicz, or product) that interprets conjunction;
there exist uncountably many such t-norms, each with dif-
ferent properties. For example, under the product t-norm
semantics, existential- (∃) and value-restrictions (∀) are not
interdefinable, while under the Łukasiewicz t-norm they are.
Even after fixing the t-norm, one can choose whether to in-
terpret negation by the involutive negation operator, or using
the residual negation. An additional level of liberty comes
from selecting the class of models over which reasoning is
considered: either all models, or so-called witnessed models
only (Hájek 2005).

Most existing reasoning algorithms have been developed
for the Gödel semantics, either by a reduction to crisp rea-
soning (Straccia 2001; Bobillo et al. 2009), or by a simple
adaptation of the known algorithms for crisp DLs (Stoilos
et al. 2005; 2006; Tresp and Molitor 1998). However, meth-
ods based on other t-norms have also been explored (Bobillo
and Straccia 2007; 2008; 2009; Straccia and Bobillo 2007;
Stoilos and Stamou 2009). Usually, these algorithms reason
w.r.t. witnessed models.3

Very recently, it was shown that the tableaux-based algo-
rithms for logics with semantics based on t-norms other than
the Gödel t-norm and allowing general concept inclusions
were incorrect (Baader and Peñaloza 2011a; Bobillo, Bou,
and Straccia 2011). This raised doubts about the decidabil-
ity of these logics, and eventually led to a series of undecid-
ability results for fuzzy DLs (Baader and Peñaloza 2011a;
2011b; 2011c; Cerami and Straccia 2011). All these pa-
pers, except (Baader and Peñaloza 2011c), focus on one
specific fuzzy DL; that is, undecidability is proven for a
specific set of constructors, axioms, and underlying seman-
tics. A small generalization is made in (Baader and Peñaloza

3In fact, witnessed models were introduced in (Hájek 2005) to
correct the algorithm from (Tresp and Molitor 1998).



2011c), where undecidability is shown for a whole family of
t-norms—specifically, all t-norms “starting” with the prod-
uct t-norm—and two variants of witnessed models.

Abstracting from the particularities of each logic, the
proofs of undecidability appearing in (Baader and Peñaloza
2011a; 2011b; 2011c; Cerami and Straccia 2011) follow
similar ideas. The goal of this paper is to formalize this idea
and give a general description of a proof of undecidability,
which can be instantiated to different fuzzy DLs. More pre-
cisely, we describe a general proof method based on a re-
duction from the Post Correspondence Problem and present
sufficient conditions for the applicability of this method to a
given fuzzy DL.

We demonstrate the effectiveness of our approach by pro-
viding several new undecidability results for fuzzy DLs.
In particular, we improve the results from (Baader and
Peñaloza 2011a; Cerami and Straccia 2011) by showing that
a weaker DL suffices for obtaining undecidability, and the
results from (Baader and Peñaloza 2011b; 2011c), by allow-
ing a wider family of t-norms. We also prove the first unde-
cidability results for reasoning w.r.t. general models. An in-
teresting outcome of our study is that, for the product t-norm
and any t-norm “starting” with the Łukasiewicz t-norm, un-
decidability can arise even if only crisp axioms are allowed.

Due to a lack of space, some technical details have been
left out of this paper. Full proofs and details can be found in
the technical report (Borgwardt and Peñaloza 2011c).

2 T-norms and Fuzzy Logic
Fuzzy logics are formalisms introduced to express imprecise
or vague information (Hájek 2001). They extend classical
logic by interpreting predicates as fuzzy sets over an inter-
pretation domain. Given a non-empty domain D, a fuzzy set
is a function F : D → [0, 1] from D into the real unit inter-
val [0, 1], with the intuition that an element δ ∈ D belongs to
F with degree F (δ). The interpretation of the logical con-
structors is based on appropriate truth functions that gener-
alize the properties of the connectives of classical logic to
the interval [0, 1]. The most prominent truth functions used
in the fuzzy logic literature are based on t-norms (Klement,
Mesiar, and Pap 2000).

A t-norm is an associative and commutative binary oper-
ator ⊗ : [0, 1]× [0, 1]→ [0, 1] that has 1 as its unit element,
and is monotonic, i.e., for every x, y, z ∈ [0, 1], if x ≤ y,
then x⊗ z ≤ y ⊗ z. If ⊗ is a continuous t-norm, then there
exists a unique binary operator⇒, called the residuum, that
satisfies z ≤ x ⇒ y iff x ⊗ z ≤ y for every x, y, z ∈ [0, 1].
For every continuous t-norm ⊗ and x, y ∈ [0, 1], we have
(i) x⇒ y = 1 iff x ≤ y and (ii) 1⇒ y = y (Hájek 2001).

Three important continuous t-norms are the Gödel, prod-
uct and Łukasiewicz t-norms, shown in Table 1.

We say that a t-norm ⊗ (a, b)-contains the t-norm ⊗′, for
0 ≤ a < b ≤ 1, if for every x, y ∈ [0, 1] it holds that

(a+ (b− a)x)⊗ (a+ (b− a)y) = a+ (b− a)(x⊗′ y).

In this case, if ⇒ and ⇒′ denote the residua of ⊗ and ⊗′,
respectively, then it also holds that for every x > y,

(a+ (b− a)x)⇒(a+ (b− a)y) = a+ (b− a)(x⇒′ y).

Name t-norm (x⊗ y) Residuum (x⇒ y)

Gödel min{x, y}
{

1 if x ≤ y
y otherwise

product x · y
{

1 if x ≤ y
y/x otherwise

Łukasiewicz max{x+ y − 1, 0} min{1− x+ y, 1}

Table 1: Three t-norms and their residua

Moreover, for every x ∈ [a, b] and y /∈ [a, b], we have that
x ⊗ y = min{x, y}. Intuitively, ⊗ behaves like a scaled-
down version of ⊗′ in the interval [a, b], and as the Gödel
t-norm if exactly one of the arguments belongs to [a, b].

We say that a t-norm contains ⊗′ if it (a, b)-contains ⊗′
for some 0 ≤ a < b ≤ 1. A consequence of the Mostert-
Shields Theorem (Mostert and Shields 1957) is that every
continuous t-norm ⊗ that is not the Gödel t-norm must con-
tain the product or the Łukasiewicz t-norm. Notice that ⊗
may contain both t-norms; in fact, it may even contain in-
finitely many instances of these t-norms over disjoint inter-
vals. For example, the t-norm defined by

x⊗ y =


2xy if x, y ∈ [0, 0.5]

max{x+ y − 1, 0.5} if x, y ∈ [0.5, 1]

min(x, y) otherwise,

(0, 0.5)-contains the product t-norm, and (0.5, 1)-contains
the Łukasiewicz t-norm.

We denote the product and Łukasiewicz t-norms by Π and
Ł, respectively. In general, a continuous t-norm that is not
the Gödel t-norm may contain several instances of the prod-
uct and Łukasiewicz t-norms. In the following, we always
choose and fix a representative, and use the notation Π(a,b)

to express that the t-norm (a, b)-contains the product t-norm,
and similarly for Ł(a,b). Since our constructions differ ac-
cording to the t-norm, it is important to emphasize that the
representative is fixed throughout the whole construction.

Fuzzy logics are sometimes extended with the involutive
negation ∼x := 1 − x (Zadeh 1965; Esteva et al. 2000).
If ⊗ is the Łukasiewicz t-norm, then this operator can be
expressed through the equality ∼x = x ⇒ 0. However, for
any other continuous t-norm∼ is not expressible in terms of
⊗ and its residuum⇒.

3 Fuzzy Description Logics
Just as classical description logics, fuzzy DLs are based on
concepts, which are built from the mutually disjoint sets
NC,NR and NI of concept names, role names, and individual
names, respectively, using different constructors. A wide va-
riety of constructors can be found in the literature. For this
paper, we consider only the constructors > (top), ⊥ (bot-
tom), u (conjunction),→ (implication), ¬ (involutive nega-
tion), � (residual negation), ∃ (existential restriction), and
∀ (value restriction). When restricted to classical semantics,
this set of constructors corresponds to the crisp DL ALC.
Definition 1 (concepts). (Complex) concepts are built in-
ductively from NC and NR as follows:



Name > ⊥ u → ¬ � ∃ ∀
EL

√ √ √

ELC
√ √ √ √

NEL
√ √ √ √

AL
√ √ √ √

ALC
√ √ √ √ √

IAL
√ √ √ √ √ √

Table 2: Some relevant DLs and the constructors they allow.

• every concept name A ∈ NC is a concept
• if C,D are concepts and r ∈ NR, then >, ⊥, C u D,
C → D, ¬C, �C, ∃r.C, and ∀r.C are also concepts.
We will use the expression Cn to denote the n-ary con-

junction of a concept C with itself; formally, C0 := > and
Cn+1 := C u Cn for every n ≥ 0.

Different DLs are determined by the choice of construc-
tors used. The DL EL allows only for the constructors>,u,
and ∃. AL additionally allows value restrictions. Follow-
ing the notation from (Cerami, Garcı́a-Cerdaña, and Esteva
2010), the letters C and I express that the involutive negation
or implication and bottom constructors are allowed, respec-
tively. NEL extends ELwith the residual negation construc-
tor. Table 2 summarizes this nomenclature.

The knowledge of a domain is represented using a set of
axioms that express the relationships between individuals,
roles, and concepts.
Definition 2 (axioms). An axiom is one of the following:
• A general concept inclusion (GCI) is of the form C v D

for concepts C and D.4

• An assertion is of the form 〈e : C . p〉 or 〈(d, e) : r . p〉
for a concept C, r ∈ NR, d, e ∈ NI, and .∈ {≥,=}. This
axiom is called a crisp assertion if p = 1, an inequality
assertion if . is ≥ and an equality assertion if . is =.

• A crisp role axiom is of the form crisp(r) for r ∈ NR.
An ontology is a finite set of axioms. It is called a classical
ontology if it contains only GCIs and crisp assertions.

As with the choice of the constructors, the axioms influ-
ence the expressivity of the logic. Our logics always al-
low at least classical ontologies. Given a DL L, we will
use the subscripts ≥, =, and c to denote that also inequal-
ity assertions, equality assertions, and crisp role axioms are
allowed, respectively. For instance, EL≥,c denotes the logic
EL where ontologies can additionally contain inequality as-
sertions and crisp role axioms, but not equality assertions.

Compared to classical DLs, fuzzy DLs have an additional
degree of freedom in the selection of their semantics since
the interpretation of the constructors depends on the t-norm
chosen. Given a DLL and a continuous t-norm⊗, we obtain
the fuzzy DL ⊗-L with the following semantics.

4One can also consider fuzzy GCIs 〈C v D ≥ p〉 (see, e.g.
(Straccia 1998)). Since our proofs of undecidability do not require
these more general axioms, we do not consider them here.

Definition 3 (semantics). An interpretation I = (DI , ·I)
consists of a non-empty domain DI and an interpretation
function ·I that assigns to every e ∈ NI an element eI ∈ DI ,
to every A ∈ NC a fuzzy set AI : DI → [0, 1], and to every
r ∈ NR a fuzzy binary relation rI : DI ×DI → [0, 1].

This function is extended to concepts as follows:

• >I(x) = 1, ⊥I(x) = 0,
• (C uD)I(x) = CI(x)⊗DI(x),
• (C → D)I(x) = CI(x)⇒ DI(x),
• (¬C)I(x) = 1− CI(x), (�C)I(x) = CI(x)⇒ 0,
• (∃r.C)I(x) = supy∈DI (rI(x, y)⊗ CI(y)),

• (∀r.C)I(x) = infy∈DI (rI(x, y)⇒ CI(y)).

We say that an interpretation I ′ is an extension of I if it
has the same domain as I, agrees with I on the interpreta-
tion of NC, NR, and NI and additionally defines values for
some new concept names not appearing in NC.

The reasoning problem that we consider in this paper is
ontology consistency; that is, deciding whether there is an
interpretation satisfying all the axioms in an ontology.

Definition 4 (consistency). An interpretation I = (DI , ·I)
satisfies the GCI C v D if CI(x) ≤ DI(x) for all x ∈ DI .
It satisfies the assertion 〈e : C . p〉 (resp., 〈(d, e) : r . p〉) if
CI(eI) . p (resp., rI(dI , eI) . p). It satisfies the crisp role
axiom crisp(r) if rI(x, y) ∈ {0, 1} for all x, y ∈ DI . It is a
model of an ontology O if it satisfies all the axioms in O.

An ontology is consistent if it has a model.

Notice that the GCIs C v D and D v C are satisfied iff
CI(x) = DI(x) for every x ∈ DI . It thus makes sense to
abbreviate them through the expression C ≡ D.

In fuzzy DLs, reasoning is often restricted to a spe-
cial kind of models, called witnessed models (Hájek 2005;
Bobillo and Straccia 2009). An interpretation I is called
witnessed if for every concept C, r ∈ NR, and x ∈ DI there
exist y, y′ ∈ DI such that

• (∃r.C)I(x) = rI(x, y)⊗ CI(y), and

• (∀r.C)I(x) = rI(x, y′)⇒ CI(y′).

This means that the suprema and infima in the semantics of
existential and value restrictions are actually maxima and
minima, respectively. Restricting to this kind of models
changes the reasoning problem since there exist consistent
ontologies that have no witnessed models (Hájek 2005).

We also consider a weaker notion of witnessing, where
witnesses are required only for the existential restrictions
∃r.> evaluated to 1. Formally, I is called>-witnessed if for
every r ∈ NR and x ∈ DI such that (∃r.>)I(x) = 1, there
is a y ∈ DI with rI(x, y) = 1. Obviously, every witnessed
interpretation is also >-witnessed. We use the subscripts
w and > to denote that reasoning is restricted to witnessed
and >-witnessed models, respectively. Thus, ⊗w-ELC rep-
resents the logic ⊗-ELC restricted to witnessed models.

In general, a fuzzy DL is determined by three parameters:
the class L of constructors and axioms it allows, the t-norm
⊗ that describes its semantics, and the class of models x over
which reasoning is considered. In the following, we will use
the expression ⊗x-L to denote an arbitrary fuzzy DL.



Before we present our general framework for proving un-
decidability, it is worth to relate the fuzzy DLs introduced
according to their expressive power. For every choice of
constructors L and t-norm ⊗, the inequality concept asser-
tion 〈e : C ≥ q〉 can be expressed in ⊗-L= using the
axioms 〈e : A = q〉, A v C, where A is a new con-
cept name. For every t-norm ⊗, ⊗-NEL is a sublogic of
⊗-IEL since (�C)I(x) = (C → ⊥)I(x). It also holds that
Ł-ELC,Ł-NEL,Ł-IEL,Ł-ALC, and Ł-IAL are all equiv-
alent (Hájek 2001): the residual and involutive negation
are equivalent and can express implication together with
conjunction (C → D)I = ¬(C u ¬D)I , and the dual-
ity between value and existential restrictions (∀r.C)I =
¬(∃r.¬C)I holds. However, in general these logics have
different expressive power; if any t-norm different from
Łukasiewicz is used, then (¬∃r.¬C)I 6= (∀r.C)I .

4 Showing Undecidability
We now describe a general approach for proving that the
consistency problem for a fuzzy DL ⊗x-L is undecidable.
This approach is based on a reduction from the undecidable
Post correspondence problem (Post 1946).

Definition 5 (PCP). Let P = {(v1, w1), . . . , (vn, wn)} be a
finite set of pairs of words over the alphabet Σ = {1, . . . , s}
with s > 1. The Post correspondence problem (PCP) asks
whether there is a finite sequence i1 . . . ik ∈ {1, . . . , n}+
such that vi1 . . . vik = wi1 . . . wik . If this sequence exists, it
is called a solution for P .

We define N := {1, . . . , n} and for ν = i1 . . . ik ∈ N+,
we use the notation vν = vi1 . . . vik and wν = wi1 . . . wik .

Let P = {(v1, w1), . . . , (vn, wn)} be an instance of the
PCP. We can represent P by its search tree, which has one
node for every ν ∈ N ∗, where ε represents the root, and νi
is the i-th successor of ν, i ∈ N . Each node ν in this tree is
labelled with the words vν , wν ∈ Σ∗.

We reduce the PCP to the consistency problem of⊗x-L in
two steps. We first construct an ontology OP that describes
the search tree of P using two designated concept names
V,W . More precisely, we will enforce that for every model
I of OP and every ν ∈ N ∗, there is an xν ∈ DI such
that V I(xν) = enc(vν) and W I(xν) = enc(wν), where
enc : Σ∗ → [0, 1] is an injective function that encodes words
over Σ into the interval [0, 1] (see Section 4.1).

Once we have encoded the words vν and wν using V and
W , we add axioms that restrict every node to satisfy that
V I(xν) 6= W I(xν). This will ensure that P has a solution
iff the ontology is inconsistent (see Section 4.2).

Recall that the alphabet Σ consists of the first s posi-
tive integers. We can thus view every word in Σ∗ as a
natural number represented in base s + 1. On the other
hand, every natural number n has a unique representation
in base s + 1, which can be seen as a word over the alpha-
bet Σ0 := Σ ∪ {0} = {0, . . . , s}. This is not a bijection
since, e.g. the words 001202 and 1202 represent the same
number. However, it is a bijection between the set ΣΣ∗0 and
the positive natural numbers. We will in the following inter-
pret the empty word ε as 0, thereby extending this bijection
to {ε} ∪ ΣΣ∗0 and all non-negative integers.

In the following constructions and proofs, we will view
elements of Σ∗0 both as words and as natural numbers in base
s + 1. To avoid confusion, we will use the notation u to
express that u is seen as a word. Thus, for instance, if s = 3,
then 3 · 22 = 30 (in base 4), but 3 · 22 = 322. Furthermore,
000 is a word of length 3, whereas 000 is simply the number
0. For a word u = α1 · · ·αm with αi ∈ Σ0, 1 ≤ i ≤ m, we
denote as←−u the word αm · · ·α1 ∈ Σ∗0.

Recall that for every p, q ∈ [0, 1], p = q iff p⇒ q = 1 and
q ⇒ p = 1. Thus, P has no solution iff for every ν ∈ N+

either enc(vν)⇒ enc(wν) < 1 or enc(wν)⇒ enc(vν) < 1
holds. Instead of performing this test directly, we will con-
struct a word whose encoding bounds these residua. Clearly,
the precise word and encoding must depend on the t-norm
used. The needed properties are formalized by the follow-
ing definition.
Definition 6 (valid encoding function). enc : Σ∗0 → [0, 1] is
a valid encoding function for⊗ if it is injective on {ε}∪ΣΣ∗0
and there exist two words uε, u+ ∈ Σ∗0 such that for every
ν ∈ N+ it holds that vν 6= wν iff either

enc(vν)⇒ enc(wν) ≤ enc(uε · u+|ν|) or

enc(wν)⇒ enc(vν) ≤ enc(uε · u+|ν|).
For every continuous t-norm ⊗ except the Gödel t-norm,

we give a valid encoding function, which depends on
whether ⊗ contains the product or the Łukasiewicz t-norm.
If ⊗ (a, b)-contains the product t-norm, then we define
enc(u) = a+(b−a)2−u ∈ (a, b] for every u ∈ Σ∗0. If⊗ is of
the form Ł(a,b), then enc(u) = a+(b−a)(1−0.←−u ) ∈ (a, b].
Lemma 7. The functions enc described above are valid en-
coding functions.

Proof. [Π(a,b)] Let v 6= w and assume w.l.o.g. that v < w.
Then v + 1 ≤ w and hence 2−w ≤ 2−(v+1) ≤ 2−v/2. This
implies that

enc(v)⇒ enc(w) = a+ (b− a)2−w/2−v

≤ a+ (b− a)/2 = enc(1) < 1.

Conversely, if v = w, then (enc(v) ⇒ enc(w)) = 1 and
(enc(w) ⇒ enc(v)) = 1. Thus, uε = 1 and u+ = ε satisfy
the condition of Definition 6.

[Ł(a,b)] Let k = max{|vi|, |wi| | i ∈ N} be the maximal
length of a word in P . Then, for every ν ∈ N+, |vν | ≤ |ν|k
and |wν | ≤ |ν|k. If vν 6= wν , these words must differ in one
of the first |ν|k digits. Thus, either

enc(vν)⇒ enc(wν)

= a+ (b− a) min{1, 1 + 0.←−vν − 0.←−wν}
= min{b, a+ (b− a)(1 + 0.←−vν − 0.←−wν)}
≤ a+ (b− a)(1− (s+ 1)−|ν|k)

= enc((s+ 1)|ν|k) < 1

or enc(wν) ⇒ enc(vν) ≤ enc((s + 1)|ν|k).5 If vν = wν ,
then both residua are 1. Thus, uε = 1 and u+ = 0k give the
desired result.

5We have (s+1)|ν|k = 1 ·0|ν|k and (s+1)−|ν|k = 0.0|ν|k ·1.



Variants of the above encoding functions and words
uε, u+ have been used before to show undecidability of
fuzzy description logics based on the product (Baader and
Peñaloza 2011c) and Łukasiewicz (Cerami and Straccia
2011) t-norms. For the rest of this paper, enc represents a
valid encoding function for ⊗.

4.1 Encoding the Search Tree
As a first step for our reduction to the consistency problem
in fuzzy DLs, we simulate the search tree for the instance P
using the concept names V,W . Since we will later use this
construction to decide whether a solution exists, we desig-
nate the concept name M to represent the bound uε · u+|ν|
from Definition 6. We use Vi,Wi,M+ to encode the words
vi, wi, u+, and the role names ri to distinguish the succes-
sors in the search tree. We start by constructing the inter-
pretation IP = (N ∗, ·IP ), where eIP0 = ε and for every
ν ∈ N ∗ and i ∈ N ,
• V IP (ν) = enc(vν), W IP (ν) = enc(wν),

• V IPi (ν) = enc(vi), W IPi (ν) = enc(wi),

• MIP (ν) = enc(uε · u+|ν|), MIP+ (ν) = enc(u+),

• rIPi (ν, νi) = 1 and rIPi (ν, ν′) = 0 if ν′ 6= νi.
Since every element ofN ∗ has exactly one ri-successor with
degree greater than 0, IP is a (>-)witnessed interpretation.

Our aim is to produce an ontology that can only be satis-
fied by interpretations that “include” the interpretation IP ,
as described by the following property.

Canonical model property (P4):
⊗x-L has the canonical model property if there is an on-
tology OP such that for every model I of OP there is a
mapping g : DIP → DI with

AIP (ν) = AI(g(ν)) and rIi (g(ν), g(νi)) = 1

for everyA ∈ {V,W,M,M+}∪
⋃n
j=1{Vj ,Wj}, ν ∈ N ∗

and i ∈ N .

Rather than trying to prove this property directly, we
provide several simpler properties that together imply the
canonical model property. We will often motivate the con-
structions using only V and vν ; however, all the arguments
apply analogously to W,wν and M,uε · u+|ν|.

To ensure that the canonical model property holds, we en-
force the encoding of the search tree in an inductive way.
First, every model I must satisfy that AIP (ε) = AI(eI0 )
for every relevant concept name. This makes sure that the
root ε of the search tree is properly represented at the in-
dividual g(ε) := eI0 . Let now g(ν) be a node where all
relevant concept names are interpreted as in IP , and i ∈ N .
We need to ensure that there is a node g(νi) that also sat-
isfies the property, and rIi (g(ν), g(νi)) = 1. We do this
in three steps: first, we force the existence of an individ-
ual y with rIi (g(ν), y) = 1 and set g(νi) := y. Then,
we compute the value enc(vνvi) from V I(g(ν)) = enc(vν)
and V Ii (g(ν)) = enc(vi). Finally, we “transfer” this value
to the previously created successor; that is, we ensure that

V I(g(νi)) = enc(vνvi). The value V Ij (g(ν)) for every
j ∈ N is also transferred to V Ij (g(νi)).

Since the values of Vi, Wi, and M+ are constant through-
out the search tree, we additionally present an alternative
approach that simply fixes these values for all x ∈ DI . This
has the advantage that the initialization only has to consider
the values enc(vε) = enc(wε) = enc(ε) and enc(uε).

Each step of the construction described above will be en-
sured by a property of the underlying logic. These prop-
erties, which will be used to produce the ontology OP , are
described next. For each of the properties, we give examples
of fuzzy DLs satisfying it. It is important to notice that the
interpretation IP can be extended to a witnessed model of
each of the ontologies that we introduce in the following.

The first property ensures the existence of an r-successor
of degree 1 for every element of the domain.

Successor property (P→):
⊗x-L has the successor property if for every r ∈ NR there
is an ontology O∃r such that for every x-model I of O∃r
and x ∈ DI there is a y ∈ DI with rI(x, y) = 1.

Lemma 8. For every t-norm ⊗, ⊗>-EL and ⊗-ELc satisfy
P→.

Proof. [⊗>-EL] Let O∃r := {> v ∃r.>}. Any model I
of this ontology satisfies (∃r.>)I(x) = 1 for every x ∈ DI .
Since reasoning is restricted to >-witnessed models, there
must be a y ∈ DI with rI(x, y) = 1.

[⊗-ELc] We define O∃r := {> v ∃r.>, crisp(r)}. For
any model I of this ontology and x ∈ DI , we have
(∃r.>)I(x) = 1. If rI(x, y) = 0 for all y ∈ DI , then
(∃r.>)I(x) = supy∈DI r

I(x, y) ⊗ >I(y) = 0 6= 1. Since
r is crisp, there must be a y ∈ DI with rI(x, y) = 1.

Given this property, we create ri-successors for every
node ν ∈ N ∗ with the ontology

OP,→ :=
⋃
i∈N
O∃ri .

The concatenation property is satisfied if it is possible to
compute the encoding of the concatenation u′u from the en-
codings of two words u and u′, where u is constant.

Concatenation property (P◦):
⊗x-L has the concatenation property if for all u ∈ Σ∗0 and
concepts C, Cu, there is an ontologyOC◦u and a concept
name DC◦u such that for every x-model I of OC◦u and
x ∈ DI , if CIu (x) = enc(u) and CI(x) = enc(u′) for
u′ ∈ {ε} ∪ ΣΣ∗0, then DIC◦u(x) = enc(u′u).

Lemma 9. For any continuous t-norm ⊗ different from the
Gödel t-norm, ⊗-EL satisfies P◦.

Proof. The t-norm ⊗ must contain either the product or the
Łukasiewicz t-norm. We divide the proof depending on the
representative chosen for the encoding function.

[Π(a,b)-EL] Since every word in Σ∗0 is seen as a natural num-
ber in base s+ 1, for every u ∈ Σ∗0 and u′ ∈ {ε}∪ΣΣ∗0, we



have u′(s+ 1)|u| + u = u′u. We define the ontology

OC◦u := {DC◦u ≡ C(s+1)|u| u Cu}.
Recall that for every interpretation I and x ∈ DI , if
CI(x) = a+(b−a)p, then (Cm)

I
(x) = a+(b−a)pm. Let

now I be a model of OC◦u, u′ ∈ {ε} ∪ ΣΣ∗0, and x ∈ DI
withCIu (x) = a+(b−a)2−u andCI(x) = a+(b−a)2−u

′
.

Since I satisfies OC◦u, we have

DIC◦u(x) = a+ (b− a)2−(u′(s+1)|u|+u) = enc(u′u).

[Ł(a,b)-EL] We define the ontology

OC◦u := {C ′(s+1)|u| ≡ C, DC◦u ≡ C ′ u Cu}.
Let I be a model of OC◦u, x ∈ DI , and CIu (x) = enc(u)
and CI(x) = enc(u′) for some u′ ∈ {ε} ∪ ΣΣ∗0. From the
first axiom it follows that

(C ′(s+1)|u|)I(x) = CI(x) = a+(b−a)(1−0.
←−
u′ ) ∈ (a, b].

Since ⊗ is monotone and (a, b)-contains the Łukasiewicz t-
norm, it follows that (i) C ′I(x) > a and (ii) C ′I(x) ≥ b iff
CI(x) = b, i.e. if u′ is the empty word. Recall that, when-
ever C ′I(x) ∈ [a, b] for some interpretation I and x ∈ DI ,
then ((C ′)m)

I
(x) = max{a,m

(
C ′I(x)− b

)
+ b} holds.

If CI(x) < b, then C ′I(x) ∈ (a, b) and

a+(b−a)(1−0.
←−
u′ ) = max{a, (s+1)|u|

(
C ′I(x)− b

)
+b},

and thus C ′I(x) = a+ (b− a)(1− (s+ 1)−|u|0.
←−
u′ ) and

DIC◦u(x) = a+ (b− a)(1− 0.←−u − (s+ 1)−|u|0.
←−
u′ )

= enc(u′u).

Otherwise, u′ is the empty word and C ′I(x) ≥ b. Since
CIu (x) ≤ b, we know that C ′I(x) ⊗ CIu (x) = CIu (x) and
thus DIC◦u(x) = CIu (x) = enc(u) = enc(εu).

The goal of this property is to ensure that at every node
with V I(x) = enc(u) for some u ∈ {ε} ∪ ΣΣ∗0 and
CIvi(x) = vi, we have DIV ◦vi(x) = enc(uvi), and similarly
for W,wi and M,u+. Thus, we define the ontology

OP,◦ :=

n⋃
i=1

(
OV ◦vi ∪ OW◦wi ∪ OM◦u+

)
.

By construction, the values of V I(x) and W I(x) should
always be encodings of words vν , wν ∈ Σ∗, while MI(x)
might encode words in Σ∗0. To simplify the notation, we use
the concept names Vi,Wi,M+ instead of Cvi , Cwi , Cu+ in
this ontology.

Once we have computed the concatenation of two words,
we need to transfer it to the successors of the node, as en-
sured by the following property.

Transfer property (P ):
⊗x-L has the transfer property if for all concepts C,D
and role names r there is an ontology O

C
r
 D such that

for every x-model I of O
C

r
 D and every x, y ∈ DI , if

rI(x, y) = 1 and CI(x) = enc(u) for some u ∈ Σ∗0,
then CI(x) = DI(y).

Lemma 10. For every t-norm ⊗, ⊗-AL and ⊗-ELC satisfy
P .

Proof. Notice first that for any model I of the ⊗-EL axiom
∃r.D v C and all x, y ∈ DI with rI(x, y) = 1 it holds that

DI(y) = rI(x, y)⊗DI(y) ≤ (∃r.D)I(x) ≤ CI(x).

We now add a restriction ensuring that alsoDI(y) ≥ CI(x)
holds, depending on the expressivity of the logic used.

[⊗-AL] The axiom C v ∀r.D restricts every model I to
satisfy that if rI(x, y) = 1, then

CI(x) ≤ (∀r.D)I(x) ≤ rI(x, y)⇒ DI(y) = DI(y).

Thus, the ontology O
C

r
 D := {C v ∀r.D, ∃r.D v C}

satisfies the condition.

[⊗-ELC] For a model I of ∃r.¬D v ¬C and rI(x, y) = 1,

1−DI(y) = rI(x, y)⊗ (1−DI(y))

≤ (∃r.¬D)I(x) ≤ 1− CI(x).

Thus, O
C

r
 D := {∃r.¬D v ¬C,∃r.D v C} satisfies the

required condition.

To ensure that the values of enc(uε · u+|ν|), enc(u+),
enc(vνi), and enc(vj) for every j ∈ N are transfered from
x to the successor yi for every i ∈ N , we use the ontology

OP, :=
⋃
i∈N
O
DM◦u+

ri M
∪ O

M+
ri M+

∪
⋃
i∈N
O
DV ◦vi

ri V
∪ O

DW◦wi

ri W

∪
⋃

i,j∈N
O
Vj

ri Vj
∪ O

Wj
ri Wj

.

The initialization property ensures that the root of the search
tree can be encoded.

Initialization property (Pini):
⊗x-L has the initialization property if for every concept
C, individual name e, and u ∈ Σ∗0 there is an ontology
OC(e)=u such that CI(eI) = enc(u) for every x-model
I of OC(e)=u.

Lemma 11. For every t-norm⊗,⊗-EL= and⊗-ELC≥ sat-
isfy Pini.

Proof. [⊗-EL=] If the equality assertion 〈e : C = enc(u)〉
is satisfied by I, then CI(eI) = enc(u).

[⊗-ELC≥] We use the two axioms 〈e : C ≥ enc(u)〉
and 〈e : ¬C ≥ 1 − enc(u)〉. The first axiom expresses
that CI(eI) ≥ enc(u), while the second requires that
1−CI(eI) ≥ 1−enc(u), i.e. CI(eI) ≤ enc(u), holds.

To initialize the search tree, we need to fix an individ-
ual name e0 at which V and W are both interpreted as the
encoding of the empty word and M as the encoding of uε.
Moreover, we need that M+ encodes u+ and every Vi and



Wi encodes the word vi, wi, respectively. We thus define the
ontology

OP,ini := OM(e0)=uε
∪ OM+(e0)=u+

∪ OV (e0)=ε

∪ OW (e0)=ε ∪
n⋃
i=1

(
OVi(e0)=vi ∪ OWi(e0)=wi

)
.

In some cases, it suffices to consider a weaker version of
Pini, where only the two words ε and uε need to be initial-
ized.

Weak initialization property (Pwini):
⊗x-L has the weak initialization property if for every con-
cept C, individual name e, and u ∈ {ε, uε} there is an
ontology OC(e)=u such that CI(eI) = enc(u) holds for
every x-model I of OC(e)=u.

Lemma 12. The logic Π-ELC satisfies Pwini.

Proof. We have enc(ε) = 1 and hence the crisp assertion
〈e : C ≥ 1〉 yields the desired condition for ε. For uε = 1,
we use the axiom C ≡ ¬C, which in particular restricts
CI(eI) = 1− CI(eI) to be 0.5 = enc(1).

For any logic satisfying Pwini, any model of the ontology

OwP,ini := OV (e0)=ε ∪ OW (e0)=ε ∪ OM(e0)=uε
,

must contain an individual encoding the values of V , W and
M at the root of the search tree of P .

Note that the construction for Π-ELC works since we
know that u+ = ε, i.e. the value of M is constant. In gen-
eral, a constant interpretation of a concept name can be en-
forced through the following property.

Constant property (P=):
⊗x-L has the constant property if for every concept name
C and word u ∈ Σ∗0 there is an ontology OC=u such that
for every x-model of OC=u and every x ∈ DI we have
CI(x) = enc(u).

Lemma 13. The logic Π-ELC satisfies P=.

Proof. Consider OC=u := {H ≡ ¬H,C ≡ Hu}. From
the first axiom it follows that for every model I of this on-
tology and x ∈ DI , we have HI(x) = 1 − HI(x), and
thus HI(x) = 0.5 = 2−1. Thus, from the second axiom,
CI(x) = (2−1)u = 2−u = enc(u).

The constant values of Vi,Wi, andM+ are ensured by the
ontology

OP,= := OM+=u+
∪

n⋃
i=1

OVi=vi ∪ OWi=wi
.

As described before, different combinations of these
properties yield the canonical model property.

Theorem 14. If a logic ⊗x-L satisfies the properties P◦,
Pini, P→, and P , then it also satisfies P4.

Proof. We show thatOP := OP,ini∪OP,◦∪OP,→∪OP, 
satisfies the conditions from the definition of P4. For a
model I of OP , we construct the function g : N ∗ → DI
inductively as follows.

We first set g(ε) := eI0 . Since I is a model of OP,ini, we
have that V I(g(ε)) = V I(eI0 ) = enc(ε) = V IP (ε), and
likewise for W , M , M+, Vi, and Wi for all i ∈ N .

Let now ν be such that g(ν) has already been defined
and V I(g(ν)) = enc(vν), V Ii (g(ν)) = enc(vi). I being
a model of OP,◦ ensures that DIV ◦vi = enc(vνi). Since I
satisfiesOP,→, for each i ∈ N there must be a yi ∈ DI with
rIi (g(ν), yi) = 1. Define now g(νi) := yi. OP, ensures
that V I(g(νi)) = DIV ◦vi(g(ν)) = enc(vνi) = V IP (νi)

and V Ii (g(νi)) = enc(vi) = V IPi (νi) for all i ∈ N , and
analogously for W , Wi and M , M+.

From this theorem and Lemmata 8 to 11, we obtain the
following result.

Corollary 15. If⊗ is a continuous t-norm, but not the Gödel
t-norm, then the logics ⊗>-AL=, ⊗-AL=,c, ⊗>-ELC≥,
and ⊗-ELC≥,c satisfy P4.

Alternatively, we can substitute Pini with the properties
Pwini and P= and still obtain the canonical model property.
The proof of this is analogous to that of Theorem 14, using
the ontologyOP := OwP,ini∪OP,=∪OP,◦∪OP,→∪OP, .

Theorem 16. If ⊗x-L satisfies the properties P◦, Pwini, P=,
P→, and P , then it also satisfies P4.

With the help of Lemmata 8 to 13, we now obtain the
following result.

Corollary 17. The logics Π>-ELC and Π-ELCc satisfy P4.

It is a simple task to verify that the interpretation IP can
be extended to a model of the ontology OP in all the cases
described. We only need to use a unique new concept name
for every auxiliary concept name appearing in the different
ontologies. In fact, the values of these auxiliary concept
names at each node ν are uniquely determined by the val-
ues of the concept names V,W, Vi,Wi,M,M+ in ν. More-
over, since every ν has exactly one ri-successor with degree
greater than 0 for every i ∈ N , it follows that IP can be
extended to a witnessed model of OP .

We now use the property P4 to prove undecidability of
a fuzzy DL. The idea is to extend OP so that every model
I must satisfy V I(g(ν)) 6= W I(g(ν)) for every ν ∈ N+,
thus obtaining an ontology that is consistent if and only if P
has no solution.

4.2 Finding a Solution
For the rest of this section, we assume that ⊗x-L satisfies
P4 and for any given model I ofOP , g denotes the function
mapping the nodes of IP to nodes in I given by the property.
Furthermore, we assume that IP can be extended to an x-
model of OP . These assumptions have been shown to hold
for a variety of fuzzy DLs in the previous section.

The key to showing undecidability of⊗x-L is to be able to
express the restriction that V and W encode different words
at every non-root node ν ∈ N+ of the search tree. Since



enc is a valid encoding function, and M encodes the word
uε · u+|ν| at every ν ∈ N ∗, it suffices to check whether,
for all ν ∈ N+, either (V → W )IP (ν) ≤ MIP (ν) or
(W → V )IP (ν) ≤ MIP (ν) (recall Definition 6). This
can easily be done in every logic that has the implication
constructor →. However, this constructor is not necessary
in general to show undecidability.

Solution property (P6=):
A logic ⊗x-L satisfying P4 has the solution property if
there is an ontology OV 6=W such that

1. For every x-model I of OP ∪ OV 6=W and ν ∈ N+,
either

V I(g(ν))⇒W I(g(ν)) ≤MI(g(ν)) or

W I(g(ν))⇒ V I(g(ν)) ≤MI(g(ν)).

2. If for every ν ∈ N+ we have either

V IP (ν)⇒W IP (ν) ≤MIP (ν) or

W IP (ν)⇒ V IP (ν) ≤MIP (ν),

then IP can be extended to a model of OP ∪ OV 6=W .

Lemma 18. Let ⊗ be a continuous t-norm ⊗ different from
the Gödel t-norm and L contain either IAL or ELC. If
⊗x-L satisfies P4 and IP can be extended to an x-model of
OP , then ⊗x-L satisfies P6=.

Proof. We divide the proof according to the underlying DL.

[IAL] We define OV 6=W as
{> v ∀ri.(((V →W ) u (W → V ))→M) | i ∈ N}.
This ontology is satisfied by I iff for every x, y ∈ DI and

every i ∈ N we have

rIi (x, y) ≤ ((V →W ) u (W → V ))I(y)⇒MI(y).

Let now I be an x-model of OP ∪ OV 6=W . Since at least
one of (V → W )I(g(νi)), (W → V )I(g(νi)) must be 1
and rIi (g(ν), g(νi)) = 1 for every ν ∈ N ∗ and i ∈ N , then
it holds that either V I(g(ν))⇒W I(g(ν)) ≤MI(g(ν)) or
W I(g(ν))⇒ V I(g(ν)) ≤MI(g(ν)).

For the second condition, consider an extension I of IP
that satisfies OP and assume that it violates OV 6=W . Thus,
there are ν ∈ N ∗, i ∈ N such that

1 > (∀ri.(((V →W ) u (W → V ))→M))IP (ν).

Since νi is the only ri-successor of ν, this implies that

MIP (νi)

< (V IP (νi)⇒W IP (νi))⊗ (W IP (νi)⇒ V IP (νi))

≤ min{V IP (νi)⇒W IP (νi),W IP (νi)⇒ V IP (νi)}.

[ELC] Consider the ontology
OV 6=W :={∃ri.¬Y v ⊥ | 1 ≤ i ≤ n} ∪ (1)

{X v X uX,> v ¬(X u ¬X), 〈e0 : ¬Y ≥ 1〉,
Y uX u V v Y uX uW uM, (2)
Y u ¬X uW v Y u ¬X u V uM}. (3)

Every model of the axioms in (1) has to satisfy that ev-
ery ri-successor with degree 1 must belong to Y with de-
gree 1, for every i ∈ N . In particular, this means that for
every model I of OP ∪ OV 6=W and every ν ∈ N+, we
have Y I(g(ν)) = 1. The next axiom ensures that for every
x ∈ DI , XI(x) ≤ XI(x) ⊗ XI(x), and hence, XI(x)
must be an idempotent element w.r.t. ⊗. In particular, this
means that (Xu¬X)I(x) = min{XI(x), 1−XI(x)} (Kle-
ment, Mesiar, and Pap 2000), and from the second axiom it
follows that XI(x) ∈ {0, 1}.

Let now I be a model of OP ∪ OV 6=W and ν ∈ N+.
If XI(g(ν)) = 1, then from axiom (2) it follows that
V I(g(ν)) ≤ W I(g(ν)) ⊗ MI(g(ν)). We consider two
cases, according to the representative chosen in ⊗.

[Π(a,b)] We know that W I(g(ν)) = enc(wν) > a and
MI(g(ν)) = enc(1) < b. Thus, for all m′ > MI(g(ν)),

W I(g(ν))⊗m′ > W I(g(ν))⊗MI(g(ν)) ≥ V I(g(ν)).

[Ł(a,b)] Since the length of wν is bounded by |ν|k, we have

W I(g(ν))⊗MI(g(ν))

= a+ (b− a) max{0, 1− 0.←−wν − (0.0|ν|k · 1)}
= a+ (b− a)(1− 0.←−wν − (0.0|ν|k · 1)) ∈ (a, b).

Thus, for every m′ > MI(g(ν)),

W I(g(ν))⊗m′ > W I(g(ν))⊗MI(g(ν)) ≥ V I(g(ν)).

In both cases, since W I(g(ν))⇒ V I(g(ν)) equals

sup{z ∈ [0, 1] |W I(g(ν))⊗ z ≤ V I(g(ν))},

we have W I(g(ν)) ⇒ V I(g(ν)) ≤ MI(g(ν)). Using
an analogous argument, if XI(g(ν)) = 0, then axiom (3)
yields V I(g(ν))⇒W I(g(ν)) ≤MI(g(ν)).

To show the second point of P 6=, consider an extension
I of IP that satisfies OP , which exists by assumption. We
show that I can be extended to a model of OV 6=W . We first
set Y I(ν) = 1 for every ν ∈ N+ and XI(ε) = Y I(ε) = 0.
It remains to find values for XI(ν) for ν ∈ N+.

By assumption, we know that one of the two residua
V IP (ν) ⇒ W IP (ν) and W IP (ν) ⇒ V IP (ν) is smaller
than or equal to MIP (ν) < 1. However, one of them
must be equal to 1. If V IP (ν) ⇒ W IP (ν) = 1 and
W IP (ν) ⇒ V IP (ν) ≤ MIP (ν), then we set XI(ν) = 1,
which trivially satisfies axiom (3) at ν. By definition of the
residuum, this implies that W IP (ν)⊗m′ > V IP (ν) for all
m′ > MIP (ν). Since ⊗ is continuous and monotone, this
means that V IP (ν) ≤W IP (ν)⊗MIP (ν), i.e. axiom (2) is
also satisfied at ν.

If the other residuum is equal to 1, we set XI(ν) = 0
and use dual arguments to show that axioms (2) and (3) are
satisfied at ν. We have thus constructed an extension of IP
that satisfies OV 6=W .

If a fuzzy DL satisfies the property P6=, then consistency
of ontologies is undecidable.
Theorem 19. Let ⊗x-L satisfy P6=. Then P has a solution
iff OP ∪ OV 6=W is inconsistent.



Proof. If OP ∪ OV 6=W is inconsistent, then in particular
no extension of IP can satisfy this ontology. By P 6=, there
must be a ν ∈ N+ such that both V IP (ν) ⇒ W IP (ν) and
W IP (ν) ⇒ V IP (ν) are greater than MIP (ν). By Defini-
tion 6 and by P4, we have enc(vν) = enc(wν), i.e. P has a
solution.

Assume now thatOP∪OV 6=W has a model I. By P 6=, for
every ν ∈ N+ either V I(g(ν))⇒W I(g(ν)) ≤MI(g(ν))
orW I(g(ν))⇒ V I(g(ν)) ≤MI(g(ν)). By P4, it follows
that enc(vν) = V I(g(ν)) 6= W I(g(ν)) = enc(wν), and
thus vν 6= wν for all ν ∈ N+, i.e. P has no solution.

Together with Corollaries 15 and 17, we obtain the fol-
lowing undecidability results.
Corollary 20. For every continuous t-norm different from
the Gödel t-norm, ontology consistency is undecidable in
the logics ⊗>-IAL=, ⊗-IAL=,c, ⊗>-ELC≥, ⊗-ELC≥,c,
Π>-ELC, and Π-ELCc.

Since every extension of IP is witnessed, from these re-
sults it also follows that ontology consistency in the logics
⊗w-IAL=, ⊗w-ELC≥, and Πw-ELC is undecidable.

4.3 Undecidability of Ł(0,b)-NEL
For the logic Π-ELC, we were able to exploit the involutive
negation and obtain undecidability of consistency of classi-
cal ontologies; that is, no membership degrees other than 1
are required to appear in the axioms. The same idea can be
applied to show that ontology consistency is also undecid-
able in Ł-ELC, which is equivalent to Ł-NEL. We show a
stronger result: consistency in Ł(0,b)

> -NEL and Ł(0,b)-NELc

for b > 0 is undecidable. The t-norms (0, b)-containing the
Łukasiewicz t-norm cover an important family of t-norms,
known as the Mayor-Torrens t-norms that have been studied
in the literature (Klement, Mesiar, and Pap 2000).

If ⊗ (0, b)-contains the Łukasiewicz t-norm, then for ev-
ery x ∈ (0, b] we have that x ⇒ 0 = b − x; that is, the
residual negation yields a “local involutive negation” over
the interval [0, b]. Thus, the concept �C will be inter-
preted as the local involutive negation of the interpretation
of C, whenever the latter is in this interval. Moreover, if
0 ≤ DI(x) < CI(x) ≤ b, then

(�(C u�D))I(x)=b−(CI(x) + (b−DI(x))− b)
=b−CI(x) +DI(x) = (C → D)I(x).

Thus, we abbreviate �(C u �D) as C ⇀ D. Additionally,
⊥ can be expressed by �>.

We encode a word u ∈ Σ∗0 by enc(u) = b(0.←−u ). The
proof that this is indeed a valid encoding function uses sim-
ilar arguments to the case for Ł(a,b) of Lemma 7.

Let P be an instance of the PCP as before and assume that
vν 6= wν for some ν ∈ N+. Then these words must differ
in one of the first |ν|k digits, and thus either

enc(vν)⇒ enc(wν) = bmin{1, 1− 0.←−vν + 0.←−wν}
≤ b(1− (s+ 1)−|ν|k)

= enc(ε · s|ν|k)

or enc(wν)⇒ enc(vν) ≤ enc(ε · s|ν|k) < 1. Conversely, if
vν = wν , then both residua are 1. Thus, the words uε = ε
and u+ = sk satisfy the condition of Definition 6.

We will employ Theorem 16 to show that the logics
Ł(0,b)
> -NEL and Ł(0,b)-NELc satisfy the canonical model

property. Thus, we need to prove that they satisfy P→, P◦,
P , Pwini, and P=. By Lemma 8, they satisfy the successor
property. We now show that Ł(0,b)-NEL satisfies the rest of
the properties.

Concatenation property Analogous to Lemma 9, the ax-
ioms (�C ′)(s+1)|u| ≡ �C and �DC◦u ≡ (�C ′) u (�Cu)
yield the concatenation of words represented by C with the
constant word u.

Transfer property If CI(x) = enc(w), w ∈ Σ∗, then
CI(x) < b, and thus for every model I of ∃r.(�D) v �C
if rI(x, y) = 1 then

b− CI(x) = (�C)I(x) ≥ (∃r.(�D))I(x) ≥ (�D)I(y).

If DI(y) < CI(x) < b, then

(�D)I(y) = b−DI(y) > b− CI(x),

which yields a contradiction; hence CI(x) ≤ DI(y) must
hold. Together with the first part of the proof of Lemma 10,
we have that the ontology

O
C

r
 D := {∃r.(�D) v �C,∃r.D v C}

yields the transfer property.

Weak initialization property The assertion 〈e : �C ≥ 1〉
initializes the value enc(uε) = enc(ε) = 0.

Constant property We have to restrict the value of a con-
cept C to enc(u) for some word u ∈ Σ∗0. For u = ε, the
axiom C v ⊥ suffices. If u ∈ Σ+

0 , we employ the ontology

OC=u := {H(s+1)|u| ≡ �H(s+1)|u| , �C ≡ H2←−u }.

If an interpretation I satisfies the first axiom, then for every
x ∈ DI we have −b = 2(s + 1)|u|(HI(x) − b); that is
HI(x) = b − b

2(s+1)|u|
. From the second axiom it follows

that

(�C)I(x) = max
{

0, 2←−u
(
− b

2(s+1)|u|

)
+ b
}
.

Since
←−u

(s+1)|u|
= 0.←−u < 1, we obtain

(�C)I(x) = b− b(0.←−u ) = b− enc(u).

Since enc(u) < b, we have 0 < (�C)I(x) < b, and thus
0 < CI(x) < b and (�C)I(x) = b−CI(x). From this, we
obtain that CI(x) = enc(u).

One can easily extend IP to a model of the ontology OP
that results from the above definitions. By Theorem 16,
Ł(0,b)
> -NEL and Ł(0,b)-NELc satisfy the canonical model

property. It remains to show that the solution property holds.



NEL IAL ELC
classical Ł(0,b) Ł(0,b) Π, Ł

≥ Ł(0,b) Ł(0,b) ⊗
= Ł(0,b) ⊗ ⊗

Table 3: A summary of the undecidability results.

Lemma 21. The logics Ł(0,b)
> -NEL and Ł(0,b)-NELc satisfy

P6=.

Proof. Consider the following ontology OV 6=W :

{∃ri.� ((((V ⇀ W ) u (W ⇀ V )) ⇀M) v ⊥ | i ∈ N}.
In any model I of OP ∪ OV 6=W and for every ν ∈ N+,

(�(((V ⇀ W ) u (W ⇀ V )) ⇀M))I(g(ν)) = 0,

and thus, (((V ⇀ W ) u (W ⇀ V )) ⇀M)I(g(ν)) ≥ b.
If V I(g(ν)) ≤ W I(g(ν)), then either MI(g(ν)) ≥ b or

MI(g(ν)) ≥ (W ⇀ V )I(g(ν)). The former is impossi-
ble since MI(g(ν)) = enc(s|ν|k) < b. We also know that
V I(g(ν)) < b and W I(g(ν)) < b, and thus

W I(g(ν))⇒ V I(g(ν)) ≤MI(g(ν)).

Similarly, if W I(g(ν)) ≤ V I(g(ν)), then we have
V I(g(ν))⇒W I(g(ν)) ≤MI(g(ν)).

Consider now an extension I of IP that satisfies OP and
assume that it violates OV 6=W . Then there must be ν ∈ N ∗
and i ∈ N such that

(�(((V ⇀ W ) u (W ⇀ V )) ⇀M))I(νi) > 0,

and thus (V ⇀ W )I(νi) ⊗ (W ⇀ V )I(νi) > MI(νi).
As above, the value (V ⇀ W )I(νi) ⊗ (W ⇀ V )I(νi) is
either V I(νi) ⇒ W I(νi) or W I(νi) ⇒ V I(νi). Thus,
both V I(νi) ⇒ W I(νi) and W I(νi) ⇒ V I(νi) must be
greater than MI(νi), contradicting the assumption.

This theorem shows that consistency is undecidable
in Ł(0,b)

> -NEL and Ł(0,b)-NELc. Undecidability of
Ł(0,b)
w -NEL follows from the same arguments since every

extension of IP is witnessed. Notice that Ł(0,1)-NEL is a
sublogic of Ł-IEL, which is equivalent to Ł-ELC. Thus,
consistency in Ł-ELC is also undecidable.

5 Conclusions
We have presented a framework for showing undecidability
of consistency in fuzzy description logics and have success-
fully applied this framework to numerous fuzzy DLs. Ta-
ble 3 summarizes the undecidability results. Every cell rep-
resents a combination of constructors and axioms. The entry
in a cell denotes the largest family of t-norms for which we
have shown undecidability of the resulting fuzzy DL with
(>-)witnessed models or with general models if crisp role
axioms are allowed. Here, ⊗ represents all continuous t-
norms except the Gödel t-norm.

Our results strengthen all previously known undecidabil-
ity results for fuzzy DLs in several ways. For all pre-
vious results, ontologies required fuzzy GCIs of the form
〈C v D ≥ q〉. More precisely, it was shown that

• Πw-ALC≥ (with some additional axioms) (Baader and
Peñaloza 2011a),

• Π
(0,b)
w -IAL= (Baader and Peñaloza 2011c), and

• Łw-ELC≥ (Cerami and Straccia 2011)

extended with fuzzy GCIs are undecidable. For the first and
last case, we were able to show that classical ontologies suf-
fice to get undecidability. We find these results especially in-
teresting, since they show that it is the underlying semantics,
and not the expressivity of the axioms, that yields undecid-
ability. In the second case, we extended the class of t-norms
for which the logic is undecidable to cover all continuous
t-norms, except the Gödel t-norm.

The decision problem considered in this paper, ontology
consistency, is usually studied in crisp DLs because other
reasoning problems (like concept satisfiability or subsump-
tion between concepts) can be reduced to it, but a con-
verse reduction is not possible using only the constructors
of ⊗-IALC. It is thus natural to ask whether these other
problems are also undecidable. Our proofs of undecidabil-
ity w.r.t. classical ontologies (first row of Table 3) use a
set of GCIs and a set of crisp concept assertions using a
fixed individual name. It follows that concept satisfiabil-
ity in Ł(0,b)-NEL, Π-ELC, and Ł-ELC is undecidable w.r.t.
(>-)witnessed models, and w.r.t. general models if crisp role
axioms are allowed. Without GCIs, the problem is decidable
in ⊗-IAL for any continuous t-norm ⊗ (Hájek 2005). We
will continue studying the decidability of these reasoning
problems in different fuzzy DLs.

To the best of our knowledge, we have presented the
first undecidability results w.r.t. general models, which were
obtained with the help of crisp role axioms. Crisp roles
are a desirable feature for many application domains and
have been considered e.g. in the fuzzyDL reasoner6 or
(Vaneková and Vojtás 2010).

In the future, we will continue studying the problem of
reasoning w.r.t. general models, and consider also reasoning
in other classes of models like finite or strongly witnessed
models, for which only a few undecidability results exist
(Baader and Peñaloza 2011c). We also want to find decid-
able classes of fuzzy DLs, beyond the simple restrictions to
finitely many fuzzy values (Borgwardt and Peñaloza 2011a;
2011b; Bobillo and Straccia 2011) or to acyclic and unfold-
able terminologies (Bobillo, Bou, and Straccia 2011).
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Hájek, P. 2005. Making fuzzy description logic more gen-
eral. Fuzzy Sets and Systems 154(1):1–15.
Horrocks, I.; Patel-Schneider, P. F.; and van Harmelen, F.
2003. From SHIQ and RDF to OWL: The making of a web
ontology language. Journal of Web Semantics 1(1):7–26.
Klement, E. P.; Mesiar, R.; and Pap, E. 2000. Triangular
Norms. Springer.
Lukasiewicz, T., and Straccia, U. 2008. Managing uncer-
tainty and vagueness in description logics for the semantic
web. Journal of Web Semantics 6(4):291–308.
Molitor, R., and Tresp, C. B. 2000. Extending description
logics to vague knowledge in medicine. In Fuzzy Systems in
Medicine, volume 41 of Studies in Fuzziness and Soft Com-
puting. Springer. 617–635.
Mostert, P. S., and Shields, A. L. 1957. On the structure of
semigroups on a compact manifold with boundary. Annals
of Mathematics 65:117–143.
Post, E. L. 1946. A variant of a recursivley unsolvable prob-
lem. Bulletin of the AMS 53:264–268.
Stoilos, G., and Stamou, G. B. 2009. A framework for rea-
soning with expressive continuous fuzzy description logics.
In Proc. of the 22nd Int. Workshop on Description Logics
(DL 2009), volume 477 of CEUR-WS.
Stoilos, G.; Stamou, G. B.; Tzouvaras, V.; Pan, J. Z.; and
Horrocks, I. 2005. The fuzzy description logic f-SHIN . In
Proc. of the 1st Int. Workshop on Uncertainty Reasoning for
the Semantic Web (URSW’05), 67–76.
Stoilos, G.; Straccia, U.; Stamou, G. B.; and Pan, J. Z.
2006. General concept inclusions in fuzzy description log-
ics. In Proc. of the 17th Eur. Conf. on Artificial Intelligence
(ECAI’06), volume 141 of Frontiers in Artificial Intelligence
and Applications, 457–461. IOS Press.
Straccia, U., and Bobillo, F. 2007. Mixed integer program-
ming, general concept inclusions and fuzzy description log-
ics. In Proc. of the 5th EUSFLAT Conf. (EUSFLAT’07),
213–220. Universitas Ostraviensis.
Straccia, U. 1998. A fuzzy description logic. In Proc. of the
15th Nat. Conf. on Artificial Intelligence (AAAI’98), 594–
599.
Straccia, U. 2001. Reasoning within fuzzy description log-
ics. Journal of Artificial Intelligence Research 14:137–166.
Tresp, C. B., and Molitor, R. 1998. A description logic for
vague knowledge. In Proc. of the 13th Eur. Conf. on Artifi-
cial Intelligence (ECAI’98), 361–365. J. Wiley and Sons.
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