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Abstract. Fuzzy Logics have been applied successfully within both For-
mal Concept Analysis and Description Logics. Especially in the latter
field, Fuzzy Logics have been gaining significant momentum during the
last two years. Unfortunately, the research on fuzzy logics within the two
communities has been conducted independently from each other, lead-
ing to different approaches being pursued. We show that if we look at a
restricted variant of fuzzy formal concept analysis, then the differences
between the two approaches can be reconciled. Moreover, an implica-
tional base can be computed even when the identity hedge is used.

1 Introduction

In many applications one is forced to deal with vague knowledge, knowledge that
does not fit into the binary world of classical logics. Questions such as whether
a country is large, or whether two cities are close to each other are difficult to
answer with true or false. There are various degrees of size and proximity. Fuzzy
Logics has successfully proposed to use a scale of truth degrees to describe vague
knowledge. It has first been formalized for propositional logic [1] and has since
been applied to many other logics and logic related formalisms. Among them
are Formal Concept Analysis (FCA) [2] and Description Logics (DL) [3].

Whenever one applies Fuzzy Logics to an existing formalism, one is faced with
several choices: Should the real unit interval be used for the set of truth degrees
or a more complex lattice of truth degrees? How should the semantics of the
conjunction be defined? Which parts of the existing theory should be replaced
by their fuzzy counterparts and which should remain unchanged? These decisions
have been made independently for fuzzy FCA and fuzzy DL.

In the past, a number of works have used FCA methods in DL. Some use it as
a tool for efficiently computing concept hierarchies [4]. Others use it for ontology
completion [5] and for exploring and learning from graph data [6, 7]. This work
has been possible due to the close ties between FCA and DL. For example, in
FCA objects can be described using sets of attributes, and in DL individuals
can be described using concept descriptions, in the easiest case conjunctions
over concept names. Sets of attributes in FCA and conjunctions over concept
names in DL share essentially the same semantics.

While in the crisp case the similarities between fuzzy DL and fuzzy FCA are
prominent, the situation is not so clear in the fuzzy variants of the respective



theories. In fuzzy FCA one is allowed to use fuzzy sets of attributes. In fuzzy
DL the same concept descriptions as in crisp DL are used. They are not fuzzy,
only their semantics are. In Section 3 we identify such differences, that hinder
the close cooperation that exists between the crisp variants of the two fields. We
propose simple adjustments to avoid them. Generally speaking, one can say that
the FCA community has been more ambitious and applied Fuzzy Logics to much
larger parts of the original theory than fuzzy DL. Unfortunately, for this reason
implication bases, which play an important role in the cooperation between crisp
DL and crisp FCA, can no longer effectively be computed in the general case
[8, 9].1 We shall see in Section 4 that if we restrict expressivity of fuzzy FCA
by considering only crisp sets of attributes, we can effectively compute bases.2
Moreover, if the Gödel t-norm is used, this restricted version of fuzzy FCA is
exactly the segment of fuzzy FCA whose semantics overlaps with fuzzy DL,
presumably allowing synergies as in the crisp case.

The restriction to the Gödel t-norm is necessary, since fuzzy FCA uses weak
conjunction for the semantics of attribute sets, while DL uses strong conjunction
for its semantics. Weak conjunction and strong conjunction coincide only for the
Gödel t-norm. From a current DL viewpoint, this is not a severe restriction,
since up to now the Gödel t-norm is the only t-norm for which the standard DL
reasoning tasks are know to be decidable [10].

2 Preliminaries

2.1 T-Norms, Hedges and Fuzzy Sets

Fuzzy Logics represent vague data while maintaining a well-defined semantics.
Instead of using only the two values true and false a scale of truth degrees is used.
In this work we consider only the most typical choice where truth degrees are
values from the real unit interval [0, 1].

Fuzzy Logics provide several operators to define its semantics. A t-norm ⊗
is a binary operator ⊗ : [0, 1] × [0, 1] → [0, 1] that is associative, commutative,
monotone and has 1 as its unit. Every continuous t-norm gives rise to a binary
operator ⇒ : [0, 1] × [0, 1] → [0, 1] that is the unique operator satisfying for all
z ∈ [0, 1]

z ≤ x⇒ y iff x⊗ z ≤ y. (1)

The intuition is that the t-norm and the residuum can be used to interpret
conjunction and implication, respectively. Among the many continuous t-norms
perhaps the simplest one, and the one we shall be interested in, is the Gödel
t-norm. It is defined as x⊗ y = min{x, y} and its corresponding residuum is

x⇒ y =

{
1 if x ≤ y
y otherwise.

1 They can still be computed if the globalization hedge is used. However, hedges do
not exist in fuzzy DL and would even be problematic, as we shall see later.

2 even if the globalization hedge is not used



A hedge ·∗ is a unary operator that is idempotent and satisfies 1∗ = 1, a∗ ≤ a,
and (a ⇒ b)∗ ≤ a∗ ⇒ b∗ for all a, b ∈ [0, 1]. It is used for truth-stressing, i.e. to
increase the contrast between 1 and the smaller truth values. A simple hedge is
the globalization, defined as 1∗ = 1 and a∗ = 0 for a 6= 0.

Fuzzy sets are a central idea of Fuzzy Logics. Given a setM a fuzzy (sub-)set
T of M is a function T : M → [0, 1], that maps each element of M to its mem-
bership degree in T . The cardinality of a fuzzy set T is defined as the cardinality
of its support {x ∈ M | T (x) > 0}. Two fuzzy sets T1 and T2 can be compared
pointwise by defining T1 ⊆ T2 iff T1(x) ≤ T2(x) for all x ∈M . Alternatively, one
can associate a subsethood degree with T1 and T2 by defining

S(T1, T2) = inf
x∈M

T1(x)⇒ T2(x).

For finite fuzzy sets we use notation such as {0.5/a, 1/b} to denote the set that
contains a with degree 0.5 and b with degree 1.

2.2 Formal Concept Analysis

The crisp setting We introduce crisp FCA in addition to fuzzy FCA, as we
shall need the crisp version of the Duquenne-Guigues Base in the later sections.
In crisp FCA [11], data is typically represented in the form of cross tables such
as the one in Table 1. More formally, a formal context is a triple K = (G,M, I)
where G is a set, called the set of objects, M is a set, called the set of attributes,
and I ⊆ G×M is a binary relation, called the incidence relation. For sets A ⊆ G
and B ⊆M the derivation operators are defined as

A↑ = {m ∈M | ∀g ∈ A : (g,m) ∈ I}, B↓ = {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.
(2)

The two derivation operators ·↑ and ·↓ form an antitone Galois-connection. An
implication A→ B, where A,B ⊆M , is said to hold in the context K if A↓ ⊆ B↓.
A set of attributes U ⊆M respects A→ B iff A 6⊆ U or B ⊆ U . A→ B follows
from a set of implications L iff every set U that respects all implications from L
also respects A→ B.

One way to structure the data in a formal context K is the Duquenne-Guigues
base DG(K) [12]. DG(K) is a set of implication that is sound for K, i.e. every
implication from DG(K) holds in K, complete for K, i.e. every implication that
holds in K follows from DG(K), and hasminimal cardinality among all sound and
complete sets of implications. A version that can handle background knowledge
has been introduced in [13]. Given a sound set of implication S (the background
knowledge) the S-Duquenne-Guigues base DGS(K) is a set of implications such
that DGS(K) is sound for K, S ∪ DGS(K) is complete for K and DGS(K) has
minimal cardinality [7]. The underlying mathematics of DG(K) and DGS(K)
are not relevant for this work. It is, however, important, that both bases can
effectively be computed for every finite context K.



The Fuzzy Setting [2] In a fuzzy context K = (G,M, I) the incidence relation
I is a fuzzy relation, i.e. a fuzzy subset of G×M . The derivation operators are
defined for fuzzy subsets A of G and fuzzy subsets B of M as follows:

A↑(m) = inf
g∈G

(
A(g)∗ ⇒ I(g,m)

)
, B↓(g) = inf

m∈M

(
B(m)⇒ I(g,m)

)
. (3)

Notice, that the hedge ·∗ is used only for the derivation of fuzzy sets of objects.
The operators ·↑ and ·↓ form a Galois connection with hedges.

In fuzzy FCA the implications are also allowed to be fuzzy. A fuzzy implica-
tion is a pair written as A → B where A and B are fuzzy subsets of M . Let U
be a fuzzy subset of M . The degree to which A→ B holds in U is defined as

‖A→ B‖U = S(A,U)∗ ⇒ S(B,U) (4)

The degree to which A→ B holds in K is defined as ‖A→ B‖K = ming∈G ‖A→
B‖Ig , where Ig is the fuzzy set to which eachm ∈M belongs with degree I(g,m).
Let L be a fuzzy set of fuzzy implications. A set U ⊆M is called a model of L if
‖A→ B‖U ≥ L(A→ B) holds for every fuzzy implication A→ B. We say that
A→ B follows from L to degree q if ‖A→ B‖U ≥ q for all models U of L. There
have been several works where the existence of bases for fuzzy implications has
been considered [8, 9]. We shall not go into details, however, we would like to
point out two things. First, it can be shown that it suffices to consider crisp sets
L that contain fuzzy GCIs [14]. Second, in this setting an effective algorithm for
computing a base is known only when globalization is used as the hedge [8].

2.3 Fuzzy Description Logics

For DL we only introduce the fuzzy version. The crisp version only occurs in
a high-level description in Section 3.1. For a formal introduction of crisp DL
we refer to [15]. DL is not just one formalism, but a family of many knowledge
representation formalisms. The observations in this work hold for any fuzzy DL
that provides for conjunction, i.e. virtually all of them. For brevity we only
introduce the lightweight DL called EL. In fuzzy EL (exactly like in crisp EL)
concept descriptions can be formed from a set of concept names NC and a set
of role names NR using the constructors >, u and ∃. More formally, > and all
concept names are concept descriptions, and if C and D are concept description
and r is a role name then C uD and ∃r.C are also concept descriptions.

In fuzzy EL (in contrast to crisp EL) fuzzy sets are used to interpret both
concepts and roles. A fuzzy interpretation I = (∆I , ·I) satisfies

AI : ∆I → [0, 1], rI : ∆I ×∆I → [0, 1].

for all A ∈ NC and all r ∈ NR. Fuzzy interpretations I are extended to complex
concept descriptions by defining >I(x) = 1 and

(C uD)I(x) =CI(x)⊗DI(x), (∃s.C)I(x) = sup
z∈∆I

sI(x, z)⊗ CI(z) (5)



for all x ∈ ∆I . Fuzzy GCIs are typically written as 〈C v D, q〉, where C,D
are concept descriptions and q ∈ [0, 1]. The fuzzy GCI 〈C v D, q〉 holds in the
fuzzy interpretation I if all x ∈ ∆I satisfy CI(x) ⇒ DI(x) ≥ q. The fuzzy
interpretation I is a model of the set of fuzzy GCIs T if all fuzzy GCIs from T
hold in I. 〈C v D, q〉 is entailed by T if it holds in all models of T .

3 Comparison of the Two Formalisms

3.1 The Crisp Setting

Most existing works at the intersection of FCA and DL have in common that
they associate FCA attributes and DL concept names. The objects are usually
chosen to be domain elements of an interpretation [6, 7]. Other choices, such
as selecting ABox individuals, usually require extending FCA theory, e.g. to
allow for partial knowledge [5]. These choices are motivated by the following
observation. Whether we compute the interpretation of the concept descrip-
tion Large u Populous u Asian or compute the derivation of the set of attributes
{Large,Populous,Asian}, the intuition in both cases is that we want to know
which countries are large and populous and Asian.

To formalize this connection, for every interpretation I = (∆I , ·I) one can
define its induced context KI whose set of objects is ∆I , whose attributes
are the concept names and where x ∈ ∆I and A ∈ NC are incident iff x ∈
AI . For example, we can think of the context in Table 1 as being induced
by an interpretation I whose domain are the world’s 8 most populous coun-
tries, and where the concept names Populous, Large and Asian are interpreted
as PopulousI = {China, India}, LargeI = {China,Russia,US}, and AsianI =
{China, India, Indonesia,Pakistan,Russia}.

In the induced context it holds for all sets U ⊆ NC that U↓ = (
d
U)I , further

supporting the intuition that sets of attributes are treated like conjunctions
over attributes. Similarly, for two sets of concept names U, V ⊆ NC the GCId
U v

d
V holds in the interpretation I iff the implication U → V holds in

the induced context of I. Hence, the notions of dependencies also coincide in
crisp FCA and crisp DL. One could even go so far to say that standard formal
contexts and the very simple DL that only allows for conjunction are syntactic
variants of each other.

3.2 The Fuzzy Setting

In this section, we analyze the differences between fuzzy FCA and fuzzy DL that
hinder a close cooperation like it exists in the crisp setting. First, the semantics
of fuzzy FCA do not treat sets of attributes like conjunctions over concept names.
Remember that in the crisp setting the exact same semantics are used to compute
the derivation of a set of attributes or the interpretation of a conjunction of
concept names. This is not true in the fuzzy setting because the infimum (or
minimum in the case of finite contexts) is used to interpret attribute sets (2) while



Table 1. Induced Context

Large Populous Asian

Brazil

China × × ×
India × ×
Indonesia ×
Nigeria

Pakistan ×
Russia × ×
US ×

Table 2. Induced Fuzzy Context

Large Populous Asian

Brazil 0.5 0.14 0.0

China 0.56 1.0 1.0

India 0.19 0.9 1.0

Indonesia 0.11 0.18 0.76

Nigeria 0.05 0.13 0.0

Pakistan 0.05 0.13 1.0

Russia 1.0 0.11 0.75

US 0.58 0.23 0.0

the t-norm is used to interpret conjunctions (5).3 In the case of the Gödel t-norm
this is completely harmless, as the Gödel t-norm coincides with the minimum.
For the other t-norms the difference is relevant.

As an example, assume that Table 2 is obtained from a fuzzy interpretation
I by using the domain as objects, concept names as attributes and defining
I(x,A) = AI(x) (We could call it the induced fuzzy context of I). If we use the
Łukasiewicz t-norm, which is defined as x⊗ y = max{0, x+ y − 1}, then

(Populous u Large)I(US) = 0.23⊗ 0.58 = 0

However, in fuzzy FCA with the Łukasiewicz t-norm we obtain

{1/Populous, 1/Large}↓(US) = min{1⇒ 0.23, 1⇒ 0.58} = 0.23.

Thus, unlike in the crisp case, the fuzzy semantics differ even for crisp sets of
attributes such as {1/Populous, 1/Large}.

Second, we can observe that in fuzzy DL concept descriptions on their own
are not fuzzy. The interpretations are fuzzy, the axioms are fuzzy, but the concept
descriptions themselves are not. By contrast, in fuzzy FCA it is possible to use
a fuzzy set of attributes to describe a class of objects.

To describe all countries that are (completely) huge and somewhat Asian,
one can use a fuzzy set of attributes {1/Large, 0.5/Asian}. Then in Table 2 the mem-
bership of Russia in the derivation {1/Large, 0.5/Asian}↓ is 1. By contrast, in DL it is
not possible to associate a truth degree with the concepts in a conjunction. The
best approximation of the above attribute set in DL is the simple conjunction
LargeuAsian, which has, of course, a different semantics. In fact, Russia belongs
to (Large u Asian)I only with degree 0.75.4 In this respect fuzzy FCA is more
expressive than fuzzy DL.

Finally, fuzzy FCA typically uses hedges and fuzzy DL does not. In principle,
fuzzy FCA is more general here, since one could treat fuzzy DL as the special
3 Some authors use two types of conjunction: a strong conjunction interpreted by the
t-norm and a weak conjunction interpreted by the minimum. In this terminology,
we could write that fuzzy DL uses strong conjunction while fuzzy FCA uses weak
conjunction.

4 The Gödel t-norm is used to emphasize that this is independent of the first problem.



case where identity is used as the hedge. In practice, if identity is used as the
hedge, one cannot effectively compute a base in fuzzy FCA, at least not in the
settings that have previously been considered.

On the other hand, using globalization in combination with crisp sets of
attributes has practical limitations. Consider a fuzzy implication A→ B. Using
the globalization as the hedge means, that all those counterexamples g ∈ G are
ignored that do not satisfy S(A, Ig) = 1. This is particularly problematic, if we
only consider crisp left-hand sides A, since then

S(A, Ig) = min
m∈A

(1⇒ I(g,m)) = min
m∈A

I(g,m). (6)

If for just one m ∈ A the value I(g,m) is not 1 then S(A, Ig) < 1 holds and the
object g is ignored. For example, in Table 2 if we consider A = {1/Large, 1/Populous}
then all objects are ignored, i.e. any implication with A as its left-hand side
holds. Presumably, in many applications values that differ from 1 are the rule
rather than the exception, meaning that almost all objects will be ignored.

4 Bridging the Gap

In the previous section we have identified the three aspects in which fuzzy DL
and fuzzy FCA disagree. We shall now consider a restricted subset of fuzzy FCA
for which the semantics agree. Unfortunately, it is not possible to use strong
conjunction instead of weak conjunction in fuzzy FCA, since the derivation op-
erators would no longer form a Galois-connection. Instead, we caution that the
following theory can only be applied directly in fuzzy DL with Gödel t-norm.

Since truly fuzzy implications have no equivalent in fuzzy DL, we only con-
sider implications A → B, where both sets A and B are crisp (from now on
called crisp implications). A similar idea has been proposed under the name of
“one-sided fuzzyness” in [16], with respect to concept lattices, not with respect
to bases. Instead of trying to compute a base that is complete for all fuzzy im-
plications we try to find a base that is complete only for crisp implications. In
standard fuzzy FCA there is a result, that allows one to consider only crisp sets
of fuzzy implications when searching for a base (Lemma 1 in [14]). Unfortunately,
this result cannot be applied in our restricted setting. Instead of computing a
crisp set containing fuzzy implications we compute a fuzzy set containing crisp
implications:

Problem 1. Given a fuzzy context K = (G,M, I) compute a fuzzy subset T of
{A→ B | A,B ⊆M} that is

– complete, i.e. for every implication A → B, A,B ⊆ M , ‖A → B‖K = q
implies that A→ B follows from T with degree q,

– sound, i.e. every implication A→ B holds in K with degree at least T (A→
B), and

– irredundant, i.e. no fuzzy set U ( T is complete.



Furthermore, we use identity as the hedge, thereby ensuring both compat-
ibility with DL and the use of all objects as potential counterexamples. These
three restrictions – Gödel t-norm, identity as the hedge, only crisp implications
– guarantee that A → B holds in the fuzzy induced context K of I to degree q
iff 〈

d
A v

d
B, q〉 holds in I. This is analogous to the crisp case.

4.1 Axiomatization

In [14] an axiomatic system is presented that can be used to infer all fuzzy
implications that follow from a crisp set of fuzzy implications. We present a
similar system of deduction rules, which can be used to infer for each crisp
implication the degree to which it follows from a fuzzy set of crisp implications.

Let L be a fuzzy subset of {A → B | A,B ⊆ M}. Our axiomatic system
consists of the following deduction rules, where q1, q2 are positive truth values. In
each deduction step a new fuzzy subset Li+1 is obtained from the previous set Li,
where L0 = L. For all implications E → F we define Li+1(E → F ) = Li(E → F )
unless mentioned otherwise in the rules.

(Refl) From A ⊆ B and Li(A→ B) < 1 infer Li+1(A→ B) = 1
(Union) From Li(A → B) = q1, Li(A → C) = q2 and Li(A → B ∪ C) <

min{q1, q2} infer Li+1(A→ B ∪ C) = min{q1, q2}
(Trans) From Li(A → B) = q1, Li(B → C) = q2 and Li(A → C) < q1 ⊗ q2

infer Li+1(A→ C) = q1 ⊗ q2.

In each of the three rules the inferred implication obtains a membership
degree that is smaller or equal to the membership degrees of the rules in the pre-
condition. Since a rule can only be applied if the degree of the inferred implication
strictly increases, no implication can ever be used in its own deduction implicitly
or explicitly. There are only finitely many crisp implications and therefore the
deduction process must terminate. We now want to show that the deduction
system is sound, in the sense that if after a finite number k of deduction steps
we can deduce Lk(A→ B) = q then A→ B follows from L with at least degree
q, and complete in the sense that if A → B follows from L with degree q then
Lk(A→ B) = q can be deduced.

Lemma 1. (Refl)–(Trans) is a sound and complete system of deduction rules.

Proof. To prove soundness, we prove that each rule application does not change
the models, i.e. that every model U of Li is a model of Li+1. The converse that
every model of Li+1 is a model of Li is trivial, since Li ⊆ Li+1. Soundness of
(Refl) is also trivial. Soundness of (Union): Assume that U is a model of Li. We
define α = minm∈A U(m), β = minm∈B U(m) and γ = minm∈C U(m). From (6)
and (4) we obtain

‖A→ B‖U = α⇒ β, ‖A→ C‖U = α⇒ γ, ‖A→ B ∪ C‖U = α⇒ min{β, γ}.

Monotonicity of the residuum yields ‖A → B ∪ C‖U = min{α ⇒ β, α ⇒ γ} =
min{q1, q2}. This proves that U is also a model of Li+1, which suffices to prove



soundness of (Union). Soundness of (Trans): The preconditions can be rewritten
as α⇒ β = q1 and β ⇒ γ = q2. Using (1) we obtain α⊗ q1 ≤ β and β ⊗ q2 ≤ γ.
From monotonicity of the t-norm we obtain α ⊗ (q1 ⊗ q2) ≤ γ. Using (1) again
we get q1⊗q2 ≤ α⇒ γ = ‖A→ C‖U . Hence, U is a model of Li+1, which proves
soundness of (Trans).

Completeness: Let X → Y be an implication that follows (semantically) from
L to degree q. Let Lk be the fuzzy set of implications obtained after exhaustively
applying the deduction rules. To prove completeness it suffices to show that that
Lk(X → Y ) ≥ q.

As a preliminary step, let us define the following fuzzy set X+(m) = Lk(X →
{m}) and show that it is a model of L. Assume that X+ is not a model of L,
i.e. ‖A→ B‖X+ < L(A→ B) for some implication A→ B. We use the notation
α = minm∈AX

+(m) and β = minm∈B X
+(m). Then ‖A → B‖X+ = α ⇒ β <

L(A→ B), or equivalently by (1)

α⊗ L(A→ B) > β. (7)

On the other hand X+(a) = Lk(X → {a}) ≥ α holds for all a ∈ A. Because
the rules have been applied exhaustively to obtain Lk (Union) is not applicable
to Lk and therefore Lk(X → A) ≥ α. Using a similar argument for (Trans) we
obtain

Lk(X → B) ≥ Lk(X → A)⊗ Lk(A→ B) ≥ α⊗ L(A→ B),

where we have exploited the fact that truth values can only increase when a
rule is applied and therefore L(A → B) ≤ Lk(A → B). Finally, using (Refl)
and (Trans) it follows that Lk(X → {b}) ≥ α ⊗ L(A → B) for all b ∈ B. This
contradicts (7) and thus X+ must be a model of L.

Since X → Y follows from L to degree q it must hold that

q ≤ ‖X → Y ‖X+ =
(

min
x∈X

X+(x)⇒ min
y∈Y

X+(y)
)

= min
y∈Y

X+(y).

Therefore Lk(X → {y}) = X+(y) ≥ q for all y ∈ Y . Since (Union) cannot be
applied to Lk we obtain Lk(X → Y ) ≥ q which proves completeness. ut

4.2 Stem Base

We now provide a practical approach for computing a finite base for the Gödel
t-norm, the only t-norm for which the semantics of fuzzy FCA and fuzzy DL
coincide. Assume that we are given a finite fuzzy context K = (G,M, I). Let QK
be the set containing 1 and all truth degrees that occur in K. Let q0 ∈ [0, 1] be a
fixed truth degree. We define a crisp context Kq0 = (Gq0 ,M, Iq0) as follows. For
each g ∈ G and each q ∈ QK with q < q0 the set Gq0 contains an object gq with

{gq}′ = {m ∈M | I(g,m) > q},

i.e. gq has exactly those attributes that g has with degree higher than q. As an
example, consider a context K of South American Countries (Table 3).5

5 The value for HighGDP is the fraction of the country’s GDP per capita and the GDP
per capita of Chile, the largest in South America. Similarly for the other values.



Algorithm 1 Computing a Minimal Base with Gödel t-Norm
B = L = ∅
for all q ∈ QK in decreasing order do
D = DGB(Kq)
B = B ∪ D
L = L ∪ {q/A→B | A→ B ∈ D}

end for
return L

Lemma 2. A→ B holds in K with at least degree q0 iff A→ B holds in Kq0 .

Proof. Assume that A → B holds in K with degree less than q0. According to
(4) and the definition of the Gödel-residuum this is equivalent to

min
g∈G
‖A→ B‖Ig < q0

⇐⇒ ∃g ∈ G :

(
min
a∈A

I(g, a)⇒ min
b∈B

I(g, b)

)
< q0

⇐⇒ ∃g ∈ G : min
b∈B

I(g, b) < q0 and min
a∈A

I(g, a) > min
b∈B

I(g, b)

⇐⇒ ∃g ∈ G : ∃b ∈ B : I(g, b) < q0 and ∀a ∈ A : I(g, a) > I(g, b).

(8)

I(g, b) is a truth degree from QK and gI(g,b) satisfies (gI(g,b), b) /∈ Iq0 and
(gI(g,b), a) ∈ Iq0 for all a ∈ A. Therefore, Kq0 contains a counterexample to
A→ B, hence A→ B does not hold in Kq0 .

On the other hand if A→ B does not hold in Kq0 then there must be some gq,
q < q0 such thatA ⊆ {gq}′ andB 6⊆ {gq}′. By definition of {gq}′ this is equivalent
to I(gq, a) > q for all a ∈ A and I(gq, b) ≤ q for some b ∈ B. Since q < q0 it
holds that for this value b in particular I(gq, b) < q0 and I(gq, a) > I(gq, b) for
all a ∈ A. It then follows from (8) that A→ B does not hold in K with at least
degree q0. ut

Notice, that if q1 < q0 then Gq1 ⊆ Gq0 and Iq1 ⊆ Iq0 . This observation, to-
gether with Lemma 2, suggests a levelwise approach as sketched in Algorithm 1.
One starts with the largest value qmax in QK and computes the Duquenne-
Guigues Base for Kqmax

. The base serves two purposes. Its implications are added
to the fuzzy set of implications L with degree q, and it serves as background
knowledge in the next iteration. For the context from Table 3 Algorithm 1 yields
the base {1/{Populous,Small}→{HighGDP}, 0.9/{Populous}→{HighGDP}, 0.2/∅→{HighGDP}}.

Lemma 3. Upon termination Algorithm 1 returns a fuzzy set of crisp implica-
tions L that is sound and complete for Kq and has minimal cardinality among
all such sets.

Proof. Soundness follows immediately from Lemma 8. To prove completeness,
assume that U → V holds in K with degree q ∈ QK (notice that for the Gödel
t-norm it always holds that ‖U → V ‖K ∈ QK). Then by Lemma 8 U → V holds



Table 3. South American Countries

Populous HighGDP Small

Argentina 0.2 0.8 0.6

Bolivia 0.1 0.2 0.9

Brazil 1.0 0.9 0.0

Chile 0.1 1.0 0.9

Colombia 0.2 0.5 0.9

Ecuador 0.1 0.3 1.0

Guyana 0.0 0.2 1.0

Paraguay 0.0 0.2 1.0

Suriname 0.0 0.5 1.0

Uruguay 0.0 1.0 1.0

Venezuela 0.1 0.7 0.9

Table 4. K1

Populous HighGDP Small

Argentina0.6 ×
Argentina0.2 × ×
Bolivia0.2 ×
Bolivia0.1 × ×
Brazil0.9 ×
Brazil0.0 × ×
Chile0.9 ×
Chile0.1 × ×
Colombia0.5 ×
Colombia0.2 × ×
Ecuador0.3 ×
Ecuador0.1 × ×
Guyana0.2 ×
Guyana0.0 × ×
Paraguay0.2 ×
Paraguay0.0 × ×
Suriname0.5 ×
Suriname0.0 × ×
Uruguay0.0 × ×
Venezuela0.7 ×
Venezuela0.1 × ×

in Kq. Consider D, V and L after the iteration for q in Algorithm 1. Since D∪B
is complete for Kq and U → V holds in Kq the implication U → V follows from
D ∪ B = {A→ B | L(A→ B) ≥ q} in the crisp setting.

We show that then U → V follows to degree q from L in the fuzzy setting.
Assume the contrary, i.e. that there exists a context K̄ for which L is sound,
but in which U → V does not hold to degree at least q. By Lemma 8 this yields
that U → V does not hold in K̄q while all implications from D ∪ B = {A→ B |
L(A → B) ≥ q} do hold in K̄q. Because we have shown that U → V follows
from D ∪ B in the crisp setting this is a contradiction. Hence U → V follows to
degree q from L, which proves completeness.

Assume that L̄ is another sound and complete fuzzy set of implications for
K. Then by Lemma 8 for each q ∈ QK the crisp set

L̄q = {A→ B | L(A→ B) ≥ q}

must be sound and complete for Kq. A simple induction over q ∈ QK can be used
to show that |L̄q| ≥ |Lq| for all q ∈ QK. For q maximal in QK the claim follows
directly from minimality of the Duquenne-Guigues Base. For the induction step
let q ∈ QK where |L̄q̄| ≥ |Lq̄| holds for the next larger value q̄ ∈ QK. Both Lq̄
and L̄q̄ are sound and complete for Kq̄, in particular they have the same models.
Thus, L̄q =

(
L̄q \L̄q̄

)
∪L̄q̄ and

(
L̄q \L̄q̄

)
∪Lq̄ also have the same models, and are

thus both sound and complete for Kq. Minimality of the Lq̄-Duquenne-Guigues
base implies |L̄q \ L̄q̄| ≥ |DGLq̄

(Kq)|. This proves

|L̄q| = |
(
L̄q \ L̄q̄

)
|+ |L̄q̄| ≥ |DGLq̄ (Kq)|+ |Lq̄| = |Lq|.

Since this holds for all q ∈ QK we get that L has minimal cardinality among all
bases. ut



5 Conclusion

We have restricted fuzzy FCA by allowing only crisp sets of attributes in the
implications and using identity as the hedge. We have presented a sound and
complete set of deduction rules for this restricted setting. For the Gödel t-norm
the restricted setting corresponds semantically to fuzzy DL. Furthermore, we
have presented a simple algorithm for computing a minimal base for the re-
stricted setting. In the general setting this is only possible with globalization.

We do not claim, that this restriction of expressivity is the only feasible
approach for reconciling the differences between the two fields. In future work it
would be interesting to look at a kind of weighted conjunction in DL (imitating
the semantics of fuzzy attribute sets). It would also be interesting to consider a
version of fuzzy FCA that uses strong conjunction.
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