
Role-depth Bounded Least Common Subsumers
for EL+ and ELI

Andreas Ecke and Anni-Yasmin Turhan?

TU Dresden, Institute for Theoretical Computer Science

Abstract. For EL the least common subsumer (lcs) need not exist, if
computed w.r.t. general TBoxes. In case the role-depth of the lcs con-
cept description is bounded, an approximate solution can be obtained.
In this paper we extend the completion-based method for computing
such approximate solutions to ELI and EL+. For ELI the extension
needs to be able to treat complex node labels. For EL+ a naive method
generates highly redundant concept descriptions for which we devise a
heuristic that produces smaller, but equivalent concept descriptions. We
demonstrate the usefulness of this heuristic by an evaluation.

1 Introduction

The reasoning service least common subsumer (lcs) computes a concept descrip-
tion from set of concept descriptions expressed in a DL L. The resulting concept
description subsumes all of the input concept descriptions and is the least w.r.t.
subsumption expressible in L to do so. This reasoning service has turned out to
be useful for the augmentation of TBoxes [15] and as a subtask when computing
the (dis)similarity of concept descriptions [6, 9] or other non-standard inferences.

In particular several bio-medical TBoxes are written in extensions of EL
that allow to model roles in a more detailed way, such as SNOMED [14] which
allows to use role inclusions and is written in ELH or the Gene Ontology [5]
and the FMA ontology [13] which are both written in EL+, which is a DL that
extends ELH by right identities for roles. For these extensions of EL standard
DL reasoning can still be done in polynomial time [3]. However, the GALEN
ontology uses the DL ELHIfR+—a DL with inverse roles, which are known to
make subsumption w.r.t. general TBoxes ExpTime-complete [3] due to the use
of inverse roles. These TBoxes are known to be very large and are mostly build
by hand.

If computed w.r.t. general or just cyclic EL-TBoxes, the lcs need not exist
[1], since resulting cyclic concept descriptions cannot be expressed in EL. In [10]
an extension of EL by fixed-points has been investigated that can capture such
concept descriptions. Since we want to obtain a concept description for the lcs
that is expressed in that DL in which the TBox is written, we follow the idea
? Partially supported by the German Research Foundation (DFG) in the Collaborative

Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

Name Syntax Semantics
top > ∆I

conjunction C uD CI ∩DI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
inverse role r− {(y, x) ∈ ∆I ×∆I | (x, y) ∈ rI}
general concept inclusion C v D CI ⊆ DI

role inclusion axiom r1 ◦ . . . ◦ rk v r rI1 ◦ . . . ◦ rIk ⊆ rI
Table 1. Constructors and axioms for EL and some of its extensions

from [12] and compute as an approximative solution the role-depth bounded lcs:
k-lcs which has a maximal nesting of quantifiers limited to k.

The approach to compute the k-lcs is to employ the completion method that
is used to classify the TBox. This method builds a graph structure, which is
saturated by completion rules [2, 3]. In case of EL the k-lcs can be more or less
directly be read off from the saturated completion graph. In this paper we devise
computation algorithms for the k-LCS for the DLs EL+ and in ELI. It turns
out that for EL+ the computation algorithm is the same as for EL [12]. While
the polynomial time completion algorithm for EL+ works on graph structures
with static node sets and have simple labellings, the algorithm for ELI requires
dynamic nodes sets and uses complex labels. In [16] such a completion algorithm
for ELI has been devised, which we employ for the computation of the k-lcs in
ELI.

For both methods we show that the obtained concept is a common subsumer
and that it is minimal w.r.t. subsumption for the given role-depth bound k.
Thus, the obtained concept description is the exact lcs, if the exact lcs exists for
a role-depth n and the k-lcs is computed for a maximal role-depth of k ≥ n.

The concept descriptions obtained in this way turn out to be highly redun-
dant. In order to obtain concise and readable concept descriptions, we devise a
heuristic to obtain smaller, equivalent concept descriptions.

This paper is organised as follows: next, we introduce the basic notions. In
Section 3 we recall the completion algorithm for EL+ and devise the computation
algorithms for the k-lcs in EL+. The computation algorithm for ELI is presented
in Section 4. In Section 5 we present the simplification heuristic to obtain smaller
EL+-concept descriptions. We end with conclusions and remarks on future work.

2 Preliminaries

We assume the the reader is familiar with the basic notions of DLs, for an
introduction see [4]. We introduce the DLs used in this paper formally. Concept
descriptions are inductively defined from a set of concepts names NC and a set
of role names NR by applying the constructors from the upper half of Table 1.
In particular, EL-concept descriptions only allow for conjunctions, existential
restrictions, and the top concept >. EL+ additionally allows for complex role
inclusion axioms (RIAs). These role inclusions can express inclusion of roles

(s v r) and transitive roles (r ◦ r v r). The semantics are displayed in the lower
half of Table 1. ELI-concept description extend EL-concept descriptions by the
use of inverse roles.

The concept constructors and axioms are interpreted in the standard way.
We denote by NC,T and NR,T the sets of concept names and role names that
occur in a TBox T . For a concept description C we denote by rd(C) its role-
depth, i.e., its maximal nesting of quantifiers. We define the central reasoning
services of this paper.
Definition 1 ((Role-depth bounded) least common subsumer). Let L
be a DL, T be a L-TBox and C1, . . . , Cn be L-concept descriptions. Then the
L-concept description D is the least common subsumer of C1, . . . , Cn w.r.t. T
iff (1) Ci vT D for all i ∈ {1, . . . , n}, and (2) for all L-concept descriptions E:
Ci vT E for all i ∈ {1, . . . , n} implies D vT E.

Let k ∈ N. Then the L-concept description D is the role-depth bounded least
common subsumer of C1, . . . , Cn w.r.t. T and the role-depth k (k−lcs(C1, . . . , Cn))
iff (1) rd(D) ≤ k, (2) Ci vT D for all i ∈ {1, . . . , n}, and (3) for all L-concept
descriptions E with rd(E) ≤ k: Ci vT E ∀i ∈ {1, . . . , n} implies D vT E.
For the DLs considered in this paper the (k-)lcs is unique up to equivalence,
thus we speak of the (k-)lcs.

3 Computing the k-lcs in EL+

The algorithms to compute the role-depth bounded lcs rely on completion graphs
produced by completion-based subsumption algorithms. Completion algorithms
work on normalized TBoxes and for which they build a completion graph and ex-
haustively apply completion rules. After this step, the completion graph contains
all subsumption relations from the TBox explicitly.

3.1 Completion algorithm for EL+

An EL+-TBox T is in normal form, if all concept inclusions in T are of the form
A v B, A1 u A2 v B, A v ∃r.B, or ∃r.A v B with A,A1, A2, B ∈ NC and r ∈
NR; and all role inclusions are of the form s v r or s ◦ t v r with {r, s, t} ⊆ NR.
All EL+-TBoxes can be normalized by applying a set of normalization rules [2].

The completion graph for a normalized TBox T ′ used by the completion
algorithm is of the form (V,E, S), where V = NC,T ′∪{>} is the set of nodes, E ⊆
V ×NR,T ×V is the set of role name labeled edges and S : V → 2NC,T ′∪{>} is the
node-labeling. The completion algorithms starts with an initial graph (V,E, S)
with E = ∅ and S(A) = {A,>} for each A ∈ NC,T ′ ∪ {>} and exhaustively
applies a set of completion rules from [2] until no more rule applies.

Once the rule-applications finished, all subsumption relations can be directly
be read off the completion graph. This completion algorithm is sound and com-
plete as shown in [2]. Specifically, given a normalized EL+-TBox T and its
completion graph (V,E, S) after all completions rules were applied exhaustively,
we have for each A,B ∈ V and r ∈ E:

Algorithm 1 Computation of a role-depth bounded EL+-lcs.
Procedure k-lcs (C,D, T , k)
Input: C,D: EL+-concept descriptions; T : EL+-TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded EL+-lcs of C,D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: (V,E, S) := apply-completion-rules(T ′)
3: L := k-lcs-r(A,B, (V,E, S), k)
4: return remove-normalization-names(L)

Procedure k-lcs-r(A,B, (V,E, S), k)
Input: A,B: concept names; (V,E, S): completion graph; k: natural number
Output: k-lcs(A,B): role-depth bounded EL+-lcs of A,B w.r.t. T and k

1: common-names := S(A) ∩ S(B)
2: if k = 0 then
3: return

l

P∈common-names

P

4: else
5: return

l

P∈common-names

P u
l

r∈NR

(l

(A,r,C)∈E,(B,r,D)∈E

∃r.k-lcs-r(C,D, (V,E, S), k − 1)
)

Soundness If B ∈ S(A), then A vT B; and
if (A, r,B) ∈ E, then A vT ∃r.B.

Completeness If A vT B, then B ∈ S(A); and
if A vT ∃r.B, then there are C,D ∈ V with C ∈ S(A), B ∈ S(D) and
(C, r,D) ∈ E.

3.2 Computation algorithm of the k-lcs in EL+

The resulting completion graph can be used to compute the role-depth bounded
lcs. All RIAs from the EL+-TBox are explicitly captured in the completion graph
in the following sense: for each edge in the completion graph labeled with some
role r, the completion algorithm also creates edges for all its super-roles. This
means that for computing the k-lcs for an EL+-TBox the same algorithm can
be used as for EL, which was introduced in [12] and is shown in Algorithm 1
for the binary lcs. The idea is to introduce new concept names for the concept
descriptions of interest and to apply the completion algorithm. Then, starting
from the newly introduced names A and B, traverse the completion graph si-
multaneously. More precisely, for the tree unravelings of depth k for A and B
the cross product is computed. In a post-processing step those concept names
have to be removed from the concept that were introduced during normalization.
Obviously, this method creates heavily redundant concept descriptions, due to
the multiple edge labelings due to RIAs.

Algorithm 2 Simplification
Procedure simplify(C, (V,E, S), T)
Input: C: EL+-concept description; (V,E, S): completion graph; T : EL+-TBox
Output: simplify(C): simplified concept description
1: Let C ≡ A1 u . . . uAn u ∃r1.D1 u . . . u ∃rm.Dm with Ai ∈ NC for 1 ≤ i ≤ n.
2: Conj := {Ai | 1 ≤ i ≤ n} ∪ {∃rj .Dj | 1 ≤ j ≤ m}
3: for all X ∈ Conj do
4: for all Y ∈ Conj do
5: if X 6= Y ∧ subsumes-H(X,Y, (V,E, S), T) then
6: Conj := Conj \ {X}
7: break
8: for all X ∈ Conj do
9: if X = ∃rj .Dj then

10: Conj := (Conj \ {∃rj .Dj}) ∪ {∃rj .simplify(Dj , (V,E, S), T)}
11: return

d
X∈Conj X

3.3 Simplifying EL+-concept descriptions

The highly redundant ELH-concept descriptions obtained from the k-lcs algo-
rithm, need to be simplified, in order to make the resulting concept description
readable. The general idea for the simplification is to remove those subtrees
from the syntax tree which are subsumers of any of their sibling subtrees. For a
conjunction of concept names, this results in the least ones (w.r.t. vT).

Algorithm 2 computes the simplification of an EL+-concept description.
Note, that the algorithm needs to be applied after the normalization names
were removed, otherwise it might remove names from the original TBox that
subsume normalization names, which get removed later during denormalization.

For the soundness of the simplification procedure simplify, it is only necessary
to ensure that the procedure ‘subsumes-H’ is sound. However, for our purpose
this procedure does not have to be complete. This might result in simplifications
that are correct k-lcs, but that are still redundant. This heuristic is given in
[8]. The idea is to make simple structural comparison depending on the concept
constructor of the concepts in question.

Obviously, it would be desirable to avoid the generation of highly redundant
concept descriptions, instead of reducing them in a post-processing step. Due
to interactions with denormalization, such optimizations need to be conserva-
tive. Such optimizations have been investigated in [8], which avoid unnecessary
branching and role-depth of the generated concept description. Interestingly,
these optimizations do not only speed-up the execution of Algorithm 1, but also
of the subsequent simplification, see [8].

Evaluation. The k-lcs algorithm and the simplification algorithm are imple-
mented in our system GEL1, which is implemented on top of the jCEL rea-
1 GEL is freely available from http://sourceforge.net/p/gen-el.

Fig. 1. Average gain in concept size for simplified k-lcs computed w.r.t. Not-Galen

soner2 [11]. We have tested the effectiveness of the simplification procedure on
the NotGalen ontology, which is a version of the GALEN ontology pruned to
EL+. Some input concept pairs resulted in run-times over a minute for k = 6,
which were mostly dominated by the run-time of the k-lcs-r-procedure. Simplifi-
cation of larger concepts was faster by a factor of 10 or more. Figure 1 shows the
average gain in concept size by simplification on various input pairs for different
values of k. For k = 6 concepts with a size of several thousands were reduced to a
concept size of 30 to 40, which are large, but still readable concept descriptions.
In an extreme case a concept of size of over 106 was reduced to a size of 140. For
more empirical results and details on the implementatio of GEL see [8].

4 Computing the k-lcs in ELI

To handle inverse roles correctly, the completion algorithm needs to be adapted
in several ways. The normal form for TBoxes is the same as before.

4.1 Completion algorithm for ELI

The EL-completion algorithm has been extended to ELI in [16]. One adaptation
is that the node set V is not fixed. Consider the example TBox T = {∃r−.A v
C,A v ∃r.B}. In this TBox, A has an r-successor subsumed by B and each r-
predecessor A implies C. However, that does not mean that C is also a subsumer
of B – only those elements in BI , that are r-successors of elements in AI are
also in CI . Thus, C 6∈ S(B). On the other hand we know that A v ∃r.C. To
solve this problem, we need to have a dynamic node set V , add a new node u to
V for u = B u ∃r−.A and then add C to the completion set S(u).

The node set V is defined as V ⊆ NC,T × 2{∃r.X|r is a role,X∈NC,T }. A node A
with A ∈ NC,T from the node set for EL+ would then correspond to the node
(A, ∅) from the node set for ELI. We will formalize the meaning of nodes in the
node set V by defining the concept descriptions that these nodes correspond to:
2 jCEL is freely availabel from http://jcel.sourceforge.net.

Definition 2 (Concept descriptions for nodes). Let T be a normalized
ELI-TBox and (V,E, S) its completion graph. Then we define for each node
u = (A, φ) ∈ V : vconcept(u) = A u

d
∃r.X∈φ ∃r.X

The graph (V,E, S) for the completion algorithm for ELI starts with V =
{(A, ∅) | A ∈ NC,T }, E = ∅ and S((A, ∅)) = {A,>} for all A ∈ NC,T . The
completions rules for ELI are the following:

CI1 If A1 ∈ S(v) and A1 v B ∈ T and B 6∈ S(v),
then S(v) := S(v) ∪ {B}

CI2 If A1, A2 ∈ S(v) and A1 uA2 v B ∈ T and B 6∈ S(v),
then S(v) := S(v) ∪ {B}

CI3 If A1 ∈ S(u), v = (B, ∅) and A1 v ∃r.B ∈ T and (u, r, v) 6∈ E,
then E := E ∪ {(u, r, v)}

CI4 If (u, r, v) ∈ E, B1 ∈ S(v) and ∃r.B1 v C ∈ T and C 6∈ S(u),
then S(u) := S(u) ∪ {C}

CI5 If (u, r, v) ∈ E, v = (B,ψ), A1 ∈ S(u), ∃r−.A1 v B1 ∈ T and B1 6∈ S(v),
then
v′ := (B,ψ ∪ {∃r−.A1})
if v′ 6∈ V then V := V ∪ {v′}, E := E ∪ {(u, r, v′}), S(v′) := S(v) ∪ {B1}
else E := E ∪ {(u, r, v′}), S(v′) := S(v′) ∪ {B1}

The completion algorithm for ELI defined this way is again sound. For complete-
ness one needs to consider only those edges that do not point to nodes, which
have an ‘extended copy’ generated by rule CI5, i.e., edges (u, r, v) for which there
is no ∃r−.A v B ∈ T with A ∈ S(u) and B 6∈ S(v). We call those edges bad
edges and collect them in the bad edge set Ebad. However, since for each edge
(u, r, v) in Ebad there is (u, r, v′) ∈ E \ ebad with vconcept(v′) vT vconcept(v),
completeness for good edges is sufficient to show that the concept description
obtained by Algorithm 3 is a common subsumer [7].

4.2 Computation of the k-lcs in ELI

Since ELI allows for inverse roles, we may also traverse edges backwards (i.e.,
use the inverse role of the role that the edge is labeled with in the k-lcs concept
description). However, we can only traverse those edges backwards, that we just
came from–as you can see in the example for T = {A v ∃r.>, B v ∃r.C,C v
∃r−.A}, which results in the following completion graph:

A

>

B

C

r r
r−

Now, traversing this completion graph to compute the lcs of A and B without
going backwards, we would get the result >u ∃r.> and then get stuck in the >
node. However, the lcs of A and B is ∃r.∃r−.A, therefore the algorithm must to
go backwards from > to A using the edge (A, r,>) as (>, r−, A), which yields

the correct lcs. To see that the algorithm may not go backwards along arbitrary
edges consider to go from A to C using the edge (C, r−, A) as (A, r, C). This
would clearly be wrong, since we don’t have A vT ∃r.C. Thus the algorithm
may only traverse backwards on those edges that led to the current node.

Therefore, the recursive algorithm needs to know not only the current nodes,
but also the whole path from the start to the current node. This path is given
in the form [u0, r1, u1, r2, . . . , rn, un] where u0 is the starting node, un the cur-
rent node, and (ui−1, ri, ui) ∈ E are edges of the completion graph that have
been traversed. For each path [u0, r1, u1, r2, . . . , rn, un] we will define the concept
description they correspond to.

Definition 3 (Concept descriptions for paths). Let T be a normalized
ELI-TBox and (V,E, S) its completion graph. Then we define for each path
l = [u0, r1, u1, r2, . . . , rn, un]

lconcept(l) =
vconcept(un) u ∃r−n .(vconcept(un−1) u ∃r−n−1.(. . . u ∃r

−
1 .vconcept(u0) . . .))

Algorithm 3 depicted below computes the role-depth bounded lcs for two ELI-
concept descriptions C and D w.r.t. a general ELI-TBox. This algorithm differs
from the Algorithm 1 for EL+ mainly only in the following aspects:

– Algorithm 3 uses the whole path to the current node instead of the node
itself.

– While in Algorithm 1 the nodes to visit from the current node are computed
implicitly, Algorithm 3 stores all successors of the paths p1 and p2 explicitly
in the sets S1 and S2.

– Both algorithms traverse all edges (u, r, v) from the current node u, but
Algorithm 3 additionally traverses the last edge backwards, if it is the inverse
of r.

We give a proof sketch that Algorithm 3 indeed computes the k-lcs. Condition
(1) from the Definition of the role-depth bounded lcs is obviously given.

Common Subsumer. The fact that Algorithm 3 yields a common subsumer fol-
lows directly from the following lemma:

Lemma 1. Let L = k-lcs-r(p1, p2, (V,E, S), k) for the two given paths p1 =
[u0, r1, u1, r2, . . . , rn, un] and p2 = [v0, s1, v1, s2, . . . , sm, vm]. Then
lconcept(p1) vT L and lconcept(p2) vT L.

Proof. This lemma can be proven by induction on the role-depth k of L. For
k = 0, L = A1 u A2 u . . . u Al must be a conjunction of concept names Ai ∈
S(un) ∩ S(vm), 0 ≤ i ≤ l. Then soundness of the completion algorithm yields
that for each Ai, we have lconcept(p1) vT vconcept(un) vT Ai and similarly
lconcept(p2) vT Ai; therefore lconcept(p1) vT L and lconcept(p2) vT L.

For k ≥ 1, L is a conjunction of concept names and existential restric-
tions. For concept names, the same argument as above holds. All existential
restrictions are of the form ∃r.k-lcs-r(l1, l2, (V,E, S), k − 1) where l1 is either

Algorithm 3 Computation of a role-depth bounded ELI-lcs.
Procedure k-lcs(C,D, T , k)
Input: C,D: ELI-concept descriptions; T : ELI-TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded ELI-lcs of C and D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: (V,E, S) := apply-completion-rules(T ′)
3: L := k-lcs-r([(A, ∅)], [(B, ∅)], (V,E, S), k)
4: return remove-normalization-names(L)

Procedure k-lcs-r(p1, p2, (V,E, S), k)
Input: p1 = [(A0, ∅), r1, . . . , rn, (An, φn)] and p2 = [(B0, ∅), s1, . . . , sn, (Bm, ψm)]: two
paths in the completion graph; (V,E, S): completion graph; k: natural number
Output: role-depth bounded ELI-lcs of lconcept(p1) and lconcept(p2) w.r.t. T and k
1: result-concept :=

l

C∈S((An,φn))∩S((Bm,ψm))

C

2: if k > 0 then
3: for all r ∈ NR do
4: S1 := {[(A0, ∅), r1, . . . , rn, (An, φn), r, (A, φ)] | ((An, φn), r, (A, φ)) ∈ E}
5: if n > 0 ∧ r = r−n then
6: S1 := S1 ∪ {[(A0, ∅), r1, (A1, φ1), r2, . . . , (An−2, φn−2), rn−1, (An−1, φn−1)]}
7: S2 := {[(B0, ∅), s1, . . . , sn, (Bm, ψm), r, (B,ψ)] | ((Bm, ψm), r, (B,ψ)) ∈ E}
8: if n > 0 ∧ r = s−m then
9: S2 := S2∪{[(B0, ∅), s1, (B1, ψ1), s2, . . . , (Bm−2, ψm−2), sm−1, (Bm−1, ψm−1)]}

10: result-concept := result-concept u
l

l1∈S1
l2∈S2

∃r.k-lcs-r(l1, l2, (V,E, S), k − 1)

11: return result-concept

p1 extended by one more edge (un, r, u) ∈ E or shorted by the last edge if
rn = r−. In the first case soundness of completion for (un, r, u) ∈ E yields
vconcept(un) vT ∃r.vconcept(u) and thus lconcept(p1) vT ∃r.(vconcept(u) u
∃r−.lconcept(p1)) = ∃r.lconcept(l1). In the second case we have lconcept(p1) =
vconcept(un) u ∃r−n .lconcept(l1) vT ∃r.lconcept(l1). Then the induction hy-
pothesis yields that lconcept(p1) vT ∃r.k-lcs-r(l1, l2, (V,E, S), k − 1), therefore
lconcept(p1) vT L holds and by the same argument lconcept(p2) vT L holds.

Minimality. To show that Algorithm 3 yields the least common subsumer w.r.t.
the role-depth bound k, we show the following lemma.
Lemma 2. Let p1 and p2 be two paths in the completion graph (V,E, S) with
p1 = [u0, r1, . . . , rn, un] and p2 = [v0, s1, . . . , sm, vm], such that (ui−1, ri, ui) ∈
E \ Ebad for all 1 ≤ i ≤ n and (vj−1, sj , vj) ∈ E \ Ebad for all 1 ≤ j ≤ m,
u0 = (A, ∅) and v0 = (B, ∅). Let k ∈ N and F an ELI-concept description
with rd(F) ≤ k. If lconcept(p1) vT F and lconcept(p2) vT F then L =
k-lcs-r(p1, p2, (V,E, S), k) vT F .

Proof. We prove this claim by induction on the role-depth bound k. For k = 0,
F = A1u. . .uAn must be a conjunction of concept names. Since lconcept(p1) vT

F and lconcept(p2) vT F , we have lconcept(p1) vT Ai and lconcept(p2) vT Ai
for all 1 ≤ i ≤ n. Since p1 and p2 only traverse edges over E\Ebad, all possible rule
applications of CI5 during that path were applied, and we have vconcept(un) vT
Ai and vconcept(vm) vT Ai. Then completeness of the completion algorithm
yields Ai ∈ S(un) and Ai ∈ S(vm) for all 1 ≤ i ≤ n. Thus, L vT F .

For k ≥ 1, F is a conjunction of concept names and existential restric-
tions. The concept names in F must appear in L by the same argument as
in the base case. For each existential restriction ∃r.F ′ of F , we can again use
the fact that p1 and p2 only traverse edges over E \ Ebad to derive that there
must be nodes u and v with vconcept(u) vT F ′, vconcept(v) vT F ′, such that
vconcept(un) vT ∃r.vconcept(u) and vconcept(vm) vT ∃r.vconcept(v). Then
completeness of completion yields that there are u′ and v′ with (un, r, u′) ∈
E \ Ebad or u′ = un−1, r = r−n and similarly (vm, r, v′) ∈ E \ Ebad or v′ =
vm−1, r = s−m, such that vconcept(u′) vT vconcept(u) and vconcept(v′) vT
vconcept(v). Therefore, there are new paths l1 ∈ S1 and l2 ∈ S2, such that
lconcept(l1) vT F ′ and lconcept(l2) vT F ′ which still only traverse edges in
E \Ebad, so the induction hypothesis yields k-lcs-r(l1, l2, (V,E, S), k− 1) vT F ′,
and thus L = k-lcs-r(p1, p2, (V,E, S), k) vT F .

This shows that the Algorithm 3 computes the role-depth bounded least
common subsumer for ELI. In contrast to subsumption, the computation of k-
lcs does not increase complexity-wise when going from EL to ELI– it remains
exponential in the size of k.

5 Conclusions and Future Work

In this paper we have extended the computation algorithm for the k-lcs in EL
w.r.t. general TBoxes to two members of the EL-family and showed that the
proposed methods indeed compute the k-lcs. In cases where the exact lcs exists,
our algorithms compute the exact lcs for a big enough k.

For ELI the extension of the EL algorithm for computing the k-lcs required
traversal of the completion graph w.r.t. paths and the correct handling of com-
plex node labels.

In case of EL+, the extension of the computation method for EL turned out
to be trivial, here our contribution rather lies in the simplification procedure
devised. This procedure turned out to be extremely helpful, when reducing the
concept size. For the NotGalen ontology the the result concepts were reduced
by several orders of magnitude. It would be desirable to obtain the simplified
EL+-concept descriptions directly, instead of in the generate and then reduce
kind of fashion employed so far. Besides this, we want to extend our results on
EL+ and ELI to the computation of most specific concepts by completion.

References

1. F. Baader. Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In G. Gottlob and

T. Walsh, eds., Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-
03), pages 325–330. Morgan Kaufmann, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05,
2005. Morgan-Kaufmann Publishers.

3. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark
and P. F. Patel-Schneider, eds., In Proc. of the OWLED Workshop, 2008.

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider,
eds.. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

5. The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

6. C. d’Amato, N. Fanizzi, and F. Esposito. A dissimilarity measure for ALC concept
descriptions. In Proceedings of the ACM symposium on Applied computing, SAC
’06, pages 1695 – 1699, 2006.

7. Andreas Ecke. Completion-based role-depth bounded least common subsumer for
extensions of EL. Belegarbeit, TU Dresden, 2012. Available from http://lat.inf.tu-
dresden.de/ turhan/Teaching/AE-Beleg-12.pdf.

8. A. Ecke and A.-Y. Turhan. Optimizations for the role-depth bounded least common
subsumer in EL+. In M. Horridge and P. Klinov, eds., In Proc. of the OWLED
Workshop, 2012. To appear.

9. K. Janowicz. Computing Semantic Similarity Among Geographic Feature Types
Represented in Expressive Description Logics. PhD thesis, Institute for Geoinfor-
matics, University of Münster, Germany, 2008.

10. C. Lutz, R. Piro, and F. Wolter. Enriching EL-concepts with greatest fixpoints. In
Proc. of the 19th European Conf. on Artificial Intelligence (ECAI-10). IOS Press,
2010.

11. J. Mendez, A. Ecke, and A.-Y. Turhan. Implementing completion-based inferences
for the EL-family. In R. Rosati, S. Rudolph, and M. Zakharyaschev, eds., Proc. of
the 2011 Description Logic Workshop (DL 2011), volume 745. CEUR, 2011.

12. R. Peñaloza and A.-Y. Turhan. A practical approach for computing generalization
inferences in EL. In M. Grobelnik and E. Simperl, eds., Proc. of the 8th European
Semantic Web Conf. (ESWC’11), LNCS. Springer, 2011.

13. C. Rosse and J. L. V. Mejino. A reference ontology for biomedical informatics: the
foundational model of anatomy. Journal of Biomedical Informatics, 36:478–500,
2003.

14. K. Spackman. Managing clinical terminology hierarchies using algorithmic calcula-
tion of subsumption: Experience with snomed-rt. Journal of the American Medical
Informatics Assoc., 2000. Fall Symposium Special Issue.

15. A.-Y. Turhan. On the Computation of Common Subsumers in Description Logics.
PhD thesis, TU Dresden, Institute for Theoretical Computer Science, 2007.

16. Q. H. Vu. Subsumption in the description logic ELHIfR+ w.r.t. general tboxes.
Master’s thesis, Technische Universität Dresden, 2008.

