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Abstract. Similarity measures for concepts written in Description Log-
ics (DLs) are often devised based on the syntax of concepts or simply by
adjusting them to a set of instance data. These measures do not take the
semantics of the concepts into account and can thus lead to unintuitive
results. It even remains unclear how these measures behave if applied to
new domains or new sets of instance data.
In this paper we develop a framework for similarity measures for ELH-
concept descriptions based on the semantics of the DL ELH. We show that
our framework ensures that the measures resulting from instantiations
fulfill fundamental properties, such as equivalence invariance, yet the
framework provides the flexibility to adjust measures to specifics of the
modelled domain.

1 Introduction

Concept similarity measures map a pair of concepts from an ontology to a value
between 0 and 1 indicating how similar the concepts are. These measures are
an important means to discover similar concepts in ontologies. In bio-medical
ontology-based applications, for example the Gene ontology [5], they are em-
ployed to discover functional similarities of genes. Furthermore, concept similar-
ity measures are used in ontology alignment algorithms [9].

A common approach to find and evaluate similarity measures is to have test
data and to tune a similarity measure until it matches the results of a human
expert. The disadvantage of this approach is that the behavior of such a measure
is hard to predict when applied to new test data, or when used for ontologies
modeling a different domain. As a consequence an ontology developer cannot
competently decide whether a measure obtained in this way is suitable for a
particular task.

Description Logics (DLs) are a family of knowledge representation formalisms
with formal semantics. A good similarity measure for DL concepts should take
the semantics of the underlying formalism into account, instead of assessing
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similarity in a purely syntactical way. Similarity measures are often tailored for
particular applications. Thus, one similarity measure will hardly meet the needs
of all applications.

In [8] the intended behavior of a measure was discussed and partially cap-
tured in terms of properties. These properties were adapted from metric spaces
which are related to similarity measures. We follow this approach to address
the problems mentioned above. We extend this set of properties by including
DL specific ones and mathematically describe those from [8] in terms of DL.
The formalization of the properties allows us to prove whether or not an ob-
tained measure has the desired properties. Additionally, we investigate existing
DL similarity measures to determine which of the properties they fulfill. We then
propose the framework simi for similarity measures for ELH-concepts. If instan-
tiated with the right functions and operators as building blocks, simi yields
measures for which (most of) the formalized properties can be guaranteed. At
the same time the framework retains flexibility as it allows users to choose from
the list which properties the resulting measure should have and to build their
measure accordingly. Furthermore, the resulting similarity measures can be com-
puted efficiently, provided that functions employed can be computed efficiently
as well.

Our choice for the DL ELH is motivated by the fact that large, well-known bio-
medical ontologies such as the Gene Ontology [5] or Snomed [21] are written in
(extensions of) ELH. Furthermore, ELH is a fragment of the DL that corresponds
to the OWL 2 EL profile, which is part of the W3C standard for an ontology
language for the Semantic Web [23, 19].

The paper is structured as follows: we start with preliminaries on DLs. In
Section 3, we introduce the set of properties desirable for similarity measures
and in Section 4 we devise a framework for constructing similarity measures
that fulfill (most of) the introduced properties. The paper ends with conclusions
and directions for future work.

2 Preliminaries

In this section we introduce the basic notions of DLs. For a thorough introduction
see [1]. Starting from a finite set of concept names NC and a finite set of role
names NR, complex concepts can be defined using concept constructors. Let A,
B ∈ NC , then EL-concepts are formed according to the following syntax rule:

C ::= > | A | C uD | ∃r.C

where r ∈ NR and C, D denote arbitrary EL-concepts. A concept of the form
∃r.C is called an existential restriction and one of the from C u D is called
a conjunction. We call the DL, that only offers conjunction as a concept con-
structor, L0. The semantics of concepts is given in terms of interpretations. An
interpretation I = (∆, ·) consists of the interpretation domain ∆I a non-empty
set and an interpretation function ·I that assigns role names to binary relations
on ∆I and concepts to subsets of ∆I . The top-concept > is mapped to ∆I . The



extension of the interpretation function to conjunctions is (C uD)I := CI ∩DI
and to existential restrictions (∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI and
e ∈ CI}.

A concept definition assigns a concept name to a complex concept. We call
A = C a concept definition and A v C a primitive concept definition. A finite
set of (possibly primitive) concept definitions is a TBox T . If the (primitive)
definitions in a TBox are acyclic and do not contain multiple definitions we call
the TBox unfoldable. Concept names occurring on the left-hand side of a defi-
nition are called defined concepts. All other concept names are called primitive
concepts. Let s, r ∈ NR. A role inclusion axiom (RIA) is a statement of the
form: r v s. The DL that extends EL by RIAs is called ELH. An interpretation
is a model for s v r iff sI ⊆ rI . A finite set of RIAs is called RBox R. An in-
terpretation I is a model of the TBox T (RBox R) iff it satisfies all its concept
definitions (RIAs). We write s vR r, if sI ⊆ rI holds in all models of R and
s ≡R r, if s vR r and r vR s hold.

A DL knowledge base (KB) K consists of the TBox and the RBox and we say
that an interpretation I is a model of K, if it is a model for the corresponding
TBox and RBox.

Based on the semantics of concepts, reasoning problems can be defined. The
concept C is subsumed by the concept D w.r.t. the KB K (C vK D) iff CI ⊆ DI
holds for all models I of K. C andD are equivalent w.r.t. K (C ≡K D) iff C vK D
and D vK C.

For a given concept C, expansion replaces exhaustively all occurrences of
defined concepts in C by the right-hand sides of their concept definitions. For
unfoldable TBoxes all reasoning problems can be reduced to reasoning for con-
cepts by using expansion of concepts w.r.t. the TBox [1].

We denote the set of concepts for a specific DL L with C(L), e.g., C(EL) is
the set of all EL-concepts. We call concepts that are either concept names or
existential restrictions atoms and denote the set of atoms by NA.

For EL-concepts a unique normal form (modulo associativity and commuta-
tivity), was given in [2], which we extend to ELH-concepts in presence of RBoxes.
To treat equivalent roles, we define [r] = {s ∈ NR | r≡Rs} and fix a function f
that picks one role ri from each equivalence class and replaces each occurrence
of a role from [ri] with ri. Given an RBox R and an ELH-concept C, C is in
ELH-normal form, if the following 4 rules have been applied exhaustively to the
concept C and its subconcepts:

1. A u > −→ A, 2. A uA −→ A, 3. ∃r.C ′ −→ ∃f([r]).C ′,

4. ∃r.C ′ u ∃s.D′ −→ ∃r.C ′ if r vR s and C ′ v D′

The transformation of ELH-concepts into ELH-normal form can be done in poly-
nomial time.



3 Properties for Concept Similarity Measures

Formally, a concept similarity measure sim is a function mapping from pairs of
ELH-concepts to the interval [0, 1]. To identify properties of similarity measures
for concepts, [8] used metric spaces as a starting point, which was also done in
other areas of similarity research (see [22, 16, 17, 20]). A metric can be interpreted
as a dissimilarity measure. The distance represents the dissimilarity between two
objects—the lower their distance, the higher the similarity. Using a metric d, we
can obtain a similarity function s by defining s(a, b) := 1 − d(a, b). If we adapt
the properties of a metric accordingly, we obtain the following properties for
similarity functions.

Definition 1. Let D be a set. A function s : D ×D −→ [0, 1] is called a simi-
larity function for D iff for all a, b, c ∈ D holds

1. s(a, b) = 1 ⇐⇒ a = b, (identity of indiscernibles)
2. s(a, b) = s(b, a), and (symmetry)
3. 1 + s(a, b) ≥ s(a, c) + s(c, b) (triangle inequality).

Next we present definitions of properties of concept similarity measures and the
underlying intuitions for these properties. We start with a formal definition of
the properties and discuss each of them afterwards.

Definition 2. Let C,D,E ∈ C(ELH). A similarity measure sim is

1. symmetric iff sim(C,D) = sim(D,C).
2. fulfilling the triangle inequality property iff

1 + sim(D,E) ≥ sim(D,C) + sim(C,E).

3. equivalence invariant iff C ≡ D =⇒ sim(C,E) = sim(D,E).
4. equivalence closed iff sim(C,D) = 1 ⇐⇒ C ≡ D.
5. subsumption preserving iff C v D v E =⇒ sim(C,D) ≥ sim(C,E).
6. reverse subsumption preserving iff C v D v E =⇒ sim(C,E) ≤ sim(D,E).
7. structurally dependent iff for all sequences (Cn)n of atoms with ∀i, j ∈ N, i 6=

j : Ci 6v Cj the concepts

Dn :=
l

i≤n

Ci uD and En :=
l

i≤n

Ci u E

fulfill the condition limn→∞ sim(Dn, En) = 1.

The properties 1. to 4. are adopted from the literature, whereas to the best of
our knowledge the properties 5. to 7. are introduced for DLs in this paper.

Symmetry is a rather controversial property for similarity in general—while
some consider it essential [18], cognitive sciences seems to favor an asym-
metric notion of similarity [22, 4]. Even for DL concepts Janowicz et al.
[13, 12] prefer asymmetry (but devise symmetric measures), whereas most
[3, 7, 6, 10, 8] consider it a fundamental property of similarity of concepts.



Triangle property is inherited from metrics. Two papers mentioned triangle
inequality in the context of DLs: [8] argues in favor, while [12] argue against
it, because of Tversky’s [22] work.

DLs allow the same thing to be described in different ways. Two concepts can
be syntactically different and yet semantically equivalent. A similarity measure
for complex concepts should depend on the semantics rather than the syntax of
the concepts to measure.

Equivalence invariance ensures that two equivalent concepts have the same
similarity towards a third concept. Equivalence invariance is widely accepted
as a necessary property for measures for DL concepts ([13, 12, 6, 8]). Yet
we found that the methods used to ensure equivalence invariance were not
always sound (see Section 3.1).

Equivalence closure holds for a similarity measure if and only if two concepts
are totally similar if and only if they are equivalent. This corresponds with
the idea that indiscernible things are identical. Equivalence closure is consid-
ered to be a basic property for concept similarity measures [8, 12] especially
since it is inherited from metrics.

One asset of DLs is their reasoning services. An intuitive idea is to charac-
terize similarity of concepts in terms of these services. The subsumption relation
yields a total partial order on concepts. Consider the case where C,D,E ∈
C(ELH) and C v D v E. A natural requirement of similarity measures is to
reflect this constellation.

Subsumption preservation expresses that the similarity of C and D is higher
than the one of C and E because C is ‘closer’ to D than to E.

Reverse subsumption preservation states likewise that the similarity of D
and E is higher than the similarity of C and E, since E is ‘closer’ to D than
to C.

In [15] we also employ the reasoning service least common subsumer to capture
the characteristics of total dissimilarity of concept similarity.

Tversky [22] presents the feature model, where an object is described by a set
of features. The similarity of two objects is measured by a relation between the
number of common features of both objects and the number of unique features
of each object. The basic rule is that if

1. the number of common features increases and
2. the number of uncommon features is constant

then the similarity must increase.

Structural dependence reflects this basic rule. Concepts are our objects to
compare and the atoms of a conjunction represent the features of the object.
The intuition is that the more features (atoms) two complex concepts share,
the higher their similarity should be.

For a more detailed explanation of the last property and for a presentation of
examples illustrating the above properties see [15].



Table 1. Overview of similarity measures and their properties

symm. triang. eq. inv. eq. cl. subs. rev. subs. struc. dep. DL

simi � - � � � - � ELH
Jacc [11] � � � � � � � L0

[13] � - - - - - � SHI
[12] � - - - - - � ALCHQ
[7] - - - - - - - ALC
[10] � - � - � � - ALN
[6] � - � - � � - ALC
[8] � - � - � � - ALE

3.1 Inspecting Existing Concept Similarity Measures

We distinguish two kinds of concept similarity measures: structural measures and
interpretation based measures. Structural measures are defined using the syntax
of the concepts to measure. Since conjunction and disjunction are commutative
and associative, these measures are invariant to the order of the atoms in a con-
junction or disjunction. The measures differ regarding the similarity of primitive
concepts: [12] uses the TBox whereas [7] and [10] use the canonical interpreta-
tion which takes the set of ABox individuals as the interpretation domain (for
an introduction to ABoxes see [1]).

Interpretation based measures are defined using interpretations and cardi-
nality, instead of the syntax of the (possibly) complex concepts to measure.
Therefore, they are trivially equivalence invariant. The two interpretation based
measures we investigated [6, 8] are using the canonical interpretation IA. These
measures need a populated and representative ABox as a significant domain.

Table 1 presents an overview of similarity measures for concepts written
in different DLs (including our measure simi to be defined in Section 4) and
whether or not they fulfill the properties from Definition 2. The proofs can be
found in [15]. The first four measures are purely structural measures. The next
two are structural measures which use the canonical interpretations to measure
primitives. The last two are purely interpretation based measures.

We included the Jaccard index [11], which is originally a set measure, here
adapted to L0. Interestingly, this is the only measure of those investigated that
fulfills the triangle inequality.

Our thorough investigation of the similarity measures defined in the literature
showed that defining a similarity measure that fulfills most of the properties from
Definition 2 is by no means a trivial task—in particular if the DL allows the use
of roles, as the lightweight DL ELH already does.

4 Developing Concept Similarity Measures for ELH

We present simi, a framework for similarity measures for concepts written in the
DL ELH based on the semantics of the logic. It operates on (complex) concepts



and an RBoxR, which contains role inclusion axioms. If concepts to be processed
contain concepts defined in an unfoldable TBox T , we assume that these concepts
are expanded w.r.t. T , i.e., all concept names occurring in them are primitive
names.

Another preprocessing step is to transform the concepts into ELH-normal
form (defined in Section 2). Concepts in this normal form are unique (mod-
ulo associativity and commutativity), which ensures that simi (and any other
measure processing concepts in this normal form) is equivalence invariant. We
assume for the remainder of the paper that the concepts are in ELH-normal form.

The framework simi constructs similarity measures from several free parame-
ters, i.e., it allows functions to be combined in such a way that, if these functions
fulfill certain properties, then the resulting similarity measure can be shown to
fulfill all properties from Definition 2 except reverse subsumption preserving and
the triangle inequality. Furthermore, it can be computed efficiently.

Simi is inspired by the Jaccard index and it is a conservative extension of
the Jaccard index, in the sense that ∀C,D ∈ C(L0) : simi(C,D) = Jacc(C,D)
(proven in [15]). Another inspiration is the equivalence of concepts, which can
be regarded as a trivial similarity measure: the similarity of two concepts is 1
if they are equivalent and 0 otherwise. To determine if C ≡ D is true, one can
use the subsumption test to find out whether or not C v D and D v C are
true. We generalize this approach in simi by introducing a generalization of
the subsumption operator. Since such an operator is in general an asymmetric
function, we call it directed simi and denote it with simid (to be introduced in
Section 4.1). Now, once the values simid(C,D) and simid(D,C) are computed,
we have to combine them with an operator to obtain a value for simi. Instead
of fixing a specific operator, we identify the properties such an operator needs
to provide such that simi fulfills as many of the properties as possible. We call
such an operator a fuzzy connector (denoted with ⊗). A fuzzy connector ⊗ is an
operator on the interval [0, 1], ⊗ : [0, 1]2 −→ [0, 1] such that for all x, y ∈ [0, 1]
the following properties are true.

– Commutativity: x⊗ y = y ⊗ x,
– Equivalence closed: x⊗ y = 1 ⇐⇒ x = y = 1,
– Weak monotonicity: x ≤ y =⇒ 1⊗ x ≤ 1⊗ y,
– Bounded: x⊗ y = 0 =⇒ x = 0 or y = 0 and
– Grounded: 0⊗ 0 = 0.

Using a fuzzy connector, simi is simply defined as

simi(C,D) := simid(C,D)⊗ simid(D,C)

where C and D are arbitrary ELH-concepts.
The commutativity of a fuzzy connector ensures that simi is symmetric,

the property equivalence closed provides the same property for the resulting
similarity measure and weak monotonicity is sufficient to prove that simi fulfills
subsumption preserving. Examples for fuzzy connectors are the average and
triangular norms (t-norms, ⊗) [14] which fulfill the property that for all x, y ∈
[0, 1] : x⊗ y = 0 =⇒ x = 0 or y = 0 as shown in [15].



4.1 A Directed Similarity Measure: simid

To formulate simid, we need a bit of notation. If convenient, we treat concepts
as sets of atoms. Let C ∈ C(ELH), then it can be written as C =

d
i≤n Ci where

∀i ≤ n : Ci ∈ NA. The function ( ·̂ ) maps concepts to sets of atoms, so for C,

Ĉ := {C1, C2, . . . , Cn}. Now, the starting point for the derivation of simid is the
function

d(C,D) :=
|Ĉ ∩ D̂|
|Ĉ|

which is inspired by the Jaccard Index. This function can be used to measure the
similarity of sets of concept names. In order to be able to incorporate existential
restrictions, we rewrite the numerator of d to

|Ĉ ∩ D̂| =
∑
C′∈Ĉ

max
D′∈D̂

f(C ′, D′), (1)

where the function f : NC −→ {0, 1} is defined as f(C ′, D′) := 1 if C ′ = D′ and
0 otherwise.

The simplifying assumption for f is that two different concept names denote
always totally dissimilar concepts. However, this assumption may not be correct
in all cases. Therefore, we generalize f by introducing a measure for concept
names. In order to work for existential restrictions, this measure has to be able
to deal with role names, too. In addition, we have to ensure some properties for
this measure to guarantee properties for simi. We call this measure for (concept
or role) names a primitive measure and denote it with pm. More formally, it
is a function of type pm : N2

C ∪ N2
r −→ [0, 1] with the property that for all

A,B ∈ NC and r, s, t ∈ Nr the following holds:

– pm(A,B) = 1 ⇐⇒ A = B,

– pm(r, s) = 1 ⇐⇒ s v r,
– s vR r =⇒ pm(s, r) > 0, and

– t vR s =⇒ pm(r, s) ≤ pm(r, t).

The first two properties are sufficient to ensure that simi fulfills equivalence
closed and the last one is needed to prove that simi fulfills subsumption pre-
serving. Note that pm does not need to be symmetric.

To incorporate existential restrictions into d we have three cases to consider.
Namely, we need to be able to compute the similarity of two concept names, of
a concept name and an existential restriction and of two existential restrictions.
The first case is handled directly by the primitive measure pm. In the second
case, we assert that a concept name and an existential restriction are always
totally dissimilar and thus their similarity is 0. For the third case, let ∃r.C∗
and ∃s.D∗ be the two existential restrictions. To compute the similarity of both
atoms, we proceed component-wise. The similarity of the role names is computed
using the primitive measure pm and the similarity of the concepts C∗ and D∗



is computed by a recursive call to d. Then, to combine both values we use a
number w ∈ (0, 1) and the formula

d(∃r.C∗,∃s.D∗) := pm(r, s) · [w + (1− w) · d(C∗, D∗)].

Forcing w > 0, enables us for d(C∗, D∗) = 0 to distinguish between the cases
where the roles are similar and where they are not. In the first case, the similarity
is w, whereas in the second one, the similarity is 0.

As a suitable w, we suggest the value n where one would say that the concepts

C := ∃r. · · · ∃r.︸ ︷︷ ︸
n

A and D := ∃r. · · · ∃r.︸ ︷︷ ︸
n

B

with pm(A,B) = 0 are regarded (almost) totally similar.

In Equation 1, we search for each atom of C for that atom of D with the
highest similarity value. This method does not always yield satisfactory results.
Consider the case, where pm(A,B1) = 0.5 and pm(A,B2) = 0.5 and we want
to measure A towards B1 u B2, then the current version of function d does not
take into account that A is ‘known to be similar’ to each of B1 and B2 alone and
thus should even be more similar to their combination. The function chooses one
‘best matching partner’ instead of combining the two sources of similarity.

To deal with this effect, we propose to replace the maximum operator with
a triangular conorm (t-conorm, ⊕) [14] which is bounded, meaning that for all
x, y ∈ [0, 1] : x ⊕ y = 1 =⇒ x = 1 or y = 1. There are several reasons for
the use of a t-conorm. First, the operator max is an instance of a bounded
t-conorm. Second, all t-conorms yield values greater or equal to those of max
which is consistent with our expectation that the value should be higher or equal
to the maximum. Also, 0 acts as neutral element for t-conorms. Therefore, all
atoms from D that are totally dissimilar do not influence the value. If we use
the probabilistic sum (x⊕sum y = x+ y − xy) instead of the maximum for our
example above, then we obtain the value 0.75 instead of 0.5, since the measure
takes both similarity values (towards B1 and B2) into account.

Another parameter of simid is the weighting function (denoted g). It weights
the atoms by assigning each of them a value greater than 0, so g : NA −→ R>0.
The effect is that some atoms can ‘contribute more’ to the similarity than others,
thus a part of the vocabulary can be picked by g to supply a context under
which the concepts from the KB are assessed. Let’s assume we are interested in
similarity regarding Anatomy and our KB, say Snomed, contains atoms from
two different subject areas like Anatomy and medical procedures. Now, weighting
the atoms related to Anatomy higher would result in their similarity having a
greater influence on the overall similarity value between concepts.

Note, that the KB does not need to be changed or adapted to achieve this.
Several different such weighting functions can easily be employed for the same
KB. To incorporate the weighting function we generalize the cardinality of a
set of atoms to the sum of the weights of its elements. To obtain a well-defined
measure, the weight needs to be added to the numerator of d as well.



By combining the above presented parts, we can already obtain a definition
of simid except for some corner cases involving >. If we want to be formally
correct, then the type of the function simid depends on the used parameters as
well as on the concepts to be measured. However, for better readability, we omit
writing these parameters.

Definition 3 (simid). Let C,D ∈ C(ELH) \ {>}, E,F ∈ C(ELH), A,B ∈ NC

and r, s ∈ NR. Directed simi is the function simid : C(ELH)2 −→ [0, 1] defined
(w.r.t. a bounded t-conorm ⊕, a primitive measure pm, a weighting function g
and w ∈ (0, 1)) by

simid(>,>) := simid(>, D) := 1,

simid(C,>) := 0,

simid(C,D) :=

∑
C′∈Ĉ

[g(C ′) ·
⊕

D′∈D̂
simia(C ′, D′)]

∑
C′∈Ĉ

g(C ′)
,

where simia measures the similarity of two atoms and is defined as

simia(A,B) := pm(A,B),

simia(∃r.E,A) := simia(A,∃r.E) := 0,

simia(∃r.E,∃s.F ) := pm(r, s) · [w + (1− w)simid(E,F )].

4.2 Properties of simid and simi

We present the lemma needed to prove various properties of simi. The proofs
can be found in [15] (p. 67 ff). In the following we assume that the primitive
measure is pm, the weighting function is g, the t-conorm is ⊕ and the fuzzy
connector is ⊗.

Lemma 1. Let C,D,E ∈ C(ELH). Then

1. simid(C,D) = 1 ⇐⇒ D v C.
2. D v E =⇒ simid(C,E) ≤ simid(C,D).

Proof. We present a proof sketch for the left-to-right implication of the first
statement. Let simid(C,D) = 1. If C = > then D v C = > is true. Let C 6= >.

To prove D v C we have to show that ∀C ′ ∈ Ĉ ∃D′ ∈ D̂ : D′ v C ′. Let C ′ be
an arbitrary atom of C. simid(C,D) = 1 implies that∑

C′∈Ĉ

g(C ′) =
∑
C′∈Ĉ

[g(C ′) ·
⊕
D′∈D̂

simia(C ′, D′)].

Because of g(C ′) ·
⊕

D′∈D̂ simia(C ′, D′) ≤ g(C ′) we derive that for all C ′ ∈
Ĉ :

⊕
D′∈D simia(C ′, D′) = 1. Since the t-conorm is bounded, ∃D′ ∈ D such



that simia(C ′, D′) = 1. The rest of the proof uses structural induction and case
distinction.

If C ′ = A then simia(C ′, D′) = 1 leads to D′ = A which implies D′ v C ′.
Next, let C ′ = ∃r.C∗. simia(C ′, D′) = 1 implies that D′ is of the form D′ =
∃s.D∗ and 1 = pm(r, s) · [w+ (1−w)simid(C∗, D∗)]. This leads to pm(r, s) = 1
which according to the definition of the primitive measure implies s v r. Since
w < 1, simid(C∗, D∗) = 1. Using the induction hypothesis we can derive D∗ v
C∗, therefore D′ v C ′.

Recall, simi(C,D) := simid(C,D) ⊗ simid(D,C). The resulting function has
the following properties.

Theorem 1. The function simi fulfills

1. symmetry,
2. equivalence invariance,
3. equivalence closed,
4. subsumption preserving.

Let g′ be a weighting function with inf{g(C ′) | C ′ ∈ C(ELH)} > 0. Furthermore,
let ⊗′ be a fuzzy connector s.t. for all sequences (xn)n and (yn)n (xi, yi ∈ [0, 1])
with limn→∞ xn = limn→∞ yn = 1 and limn→∞ xn⊗′yn = 1. Then simi together
with ⊗′ and g′ fulfills structural dependence.

The main reason why simi neither fulfills the triangle inequality nor reverse
subsumption preserving is that the computation of simid(C,D) does not use the
similarity values between the atoms of C (and between the atoms of D). Consider
C := A u

d
i≤nBi, where the Bi are very similar to each other, D := A u B0

and E := A then the similarity of D and E is approximately 0.5, the similarity
of C and D is close to 1 (since each Bi is very similar to B0) but the similarity
of C and E converges to 0 with increasing n. For the proofs of other properties
of simi and further details see [15].

An important property of simi is that it can be computed efficiently, provided
that the involved parameter functions can be computed efficiently as well.

Lemma 2. If the specific fuzzy connector, the bounded t-conorm, the primitive
measure and the weighting function can be computed in polynomial time, then
simi can be computed in time polynomial in the size of the concepts to measure.

5 Conclusions

Similarity measures are important procedures for central ontology management
tasks such as alignment of ontologies. Often these measures are built in an ad-hoc
way by simply tuning them to test data.

In this paper we have proposed a different approach to construct a whole
range of such measures for ELH-concepts. Our starting point was a set of for-
mally defined properties for concept similarity measures, which make use of the



semantics of DL concepts and of DL reasoning services. We devised a framework
that, if instantiated with appropriate functions and operators as discussed in this
paper, allows to generate similarity measures that have 5 of the proposed 7 prop-
erties (reverse subsumption preservation and triangle inequality are missing). In
that sense one could claim that our framework for similarity measures is not only
semantics-based, but also provides the measures with semantics. Moreover, our
approach does not restrict users to a single similarity measure, but allows them to
design their own measures by selecting the functions and operators appropriate
to yield the needed individual similarity measure. If the selected functions con-
form to the framework described in this paper, the resulting similarity measure
is equipped with the properties.

Similarity is often perceived as a context-dependent characteristic. Even in
this case our framework can offer support, in the sense that the directed measure
simid allows atoms appearing in the concept to be weighted differently using
the weighting function g. Different instantiations of g allow different thematic
subdomains of the domain of discourse to be highlighted.

To test our framework empirically is a non-trivial task, since each application
may require a different instantiation of simi with functions and operators. To
aquire such instantiations suitable for each application requires profound knowl-
edge of the application in question. Thus for now it remains future work to
compare the outcome of simi instantiations with other well-accepted similarity
measures.

On the theoretical side it would be interesting to investigate such frameworks
for more expressive DLs and for the concepts defined w.r.t. general TBoxes. Since
a unique normal form is the main means to achieve an equivalence invariant
similarity measure, it is not obvious how to extend simi to these more expressive
scenarios.
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