
Hybrid Unification in the Description Logic EL

Franz Baader, Oliver Fernández Gil, and Barbara Morawska?
{baader,morawska}@tcs.inf.tu-dresden.de,

fernandez@informatik.uni-leipzig.de

Theoretical Computer Science, TU Dresden, Germany

Abstract. Unification in Description Logics (DLs) has been proposed
as an inference service that can, for example, be used to detect redundan-
cies in ontologies. For the DL EL, which is used to define several large
biomedical ontologies, unification is NP-complete. However, the unifi-
cation algorithms for EL developed until recently could not deal with
ontologies containing general concept inclusions (GCIs). In a series of re-
cent papers we have made some progress towards addressing this prob-
lem, but the ontologies the developed unification algorithms can deal
with need to satisfy a certain cycle restriction. In the present paper, we
follow a different approach. Instead of restricting the input ontologies,
we generalize the notion of unifiers to so-called hybrid unifiers. Whereas
classical unifiers can be viewed as acyclic TBoxes, hybrid unifiers are
cyclic TBoxes, which are interpreted together with the ontology of the
input using a hybrid semantics that combines fixpoint and descriptive
semantics. We show that hybrid unification in EL is NP-complete and
introduce a goal-oriented algorithm for computing hybrid unifiers.

1 Introduction

Description logics [5] are a well-investigated family of logic-based knowledge rep-
resentation formalisms. They can be used to represent the relevant concepts of
an application domain using concept descriptions, which are built from concept
names and role names using certain concept constructors. The DL EL, which
offers the constructors conjunction (u), existential restriction (∃r.C), and the
top concept (>), has recently drawn considerable attention since, on the one
hand, important inference problems such as the subsumption problem are poly-
nomial in EL, even in the presence of GCIs [10]. On the other hand, though
quite inexpressive, EL can be used to define biomedical ontologies, such as the
large medical ontology SNOMEDCT.1 From a semantic point of view, concept
names and concept descriptions represent sets of individuals, whereas role names
represent binary relations between individuals. For example, using the concept
names Head_injury and Severe, and the role names finding and status, we can
describe the concept of a patient with severe head injury as

Patient u ∃finding.(Head_injury u ∃status.Severe). (1)
? Supported by DFG under grant BA 1122/14-2
1 see http://www.ihtsdo.org/snomed-ct/



In a DL ontology, one can use concept definitions to introduce abbreviations
for concept descriptions. For example, we could use the definition Head_injury ≡
Injury u ∃finding_site.Head to define Head_injury as an injury that is located at
the head. More generally, GCIs can be used to require that certain inclusions
hold in all models of the ontology. For example,

∃finding.∃status.Severe v ∃status.Emergency (2)

is a GCI that says that a severe finding entails an emergency status.
Knowledge representation systems based on DLs provide their users with

various inference services that allow them to deduce implicit knowledge from
the explicitly represented knowledge. For instance, the subsumption algorithm
allows one to determine subconcept-superconcept relationships. For example,
the concept description (1) is subsumed by (i.e., is a subconcept of) the concept
description ∃finding.∃status.Severe. With respect to the GCI (2), it is thus also
subsumed by ∃status.Emergency, i.e., in all models of this GCI, patients with
severe head injury have an emergency status.

Unification in DLs has been proposed in [9] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example, as-
sume that one developer of a medical ontology describes the concept of a patient
with severe head injury using the concept description (1), whereas another one
represents it as

Patient u ∃finding.(Severe_injury u ∃finding_site.Head). (3)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by introducing definitions for the concept names Head_injury and Severe_injury:
if we define Head_injury ≡ Injury u ∃finding_site.Head and Severe_injury ≡
Injuryu∃status.Severe, then the two concept descriptions (1) and (3) are equiva-
lent w.r.t. these definitions. If such definitions exist, we say that the descriptions
are unifiable, and call the TBox consisting of these definitions a unifier. More
precisely, it is required that this TBox is acyclic, i.e., there are no cyclic depen-
dencies between the definitions.

To motivate our interest in unification w.r.t. GCIs, assume that the second
developer uses the description

Patient u ∃status.Emergency u ∃finding.(Severe_injury u ∃finding_site.Head)(4)

instead of (3). The descriptions (1) and (4) are not unifiable without additional
GCIs, but they are unifiable, with the same unifier as above, if the GCI (2) is
present in a background ontology.

In [7], we were able to show that unification in the DL EL (without back-
ground ontology) is NP-complete. In addition to a brute-force “guess and then
test” NP-algorithm [7], we have also developed a goal-oriented unification al-
gorithm for EL, in which nondeterministic decisions are only made if they are
triggered by “unsolved parts” of the unification problem [8]. In [8] it was also



shown that these two approaches for unification of EL-concept descriptions (with-
out any background ontology) can easily be extended to the case of an acyclic
TBox as background ontology without really changing the algorithms or increas-
ing their complexity. For more general GCIs, such a simple solution is no longer
possible.

In [3], we extended the brute-force “guess and then test” NP-algorithm from
[7] to the case of GCIs. Unfortunately, the algorithm is complete only for ontolo-
gies that satisfy a certain restriction on cycles, which, however, does not prevent
all cycles. For example, the cyclic GCI ∃child.Human v Human satisfies this re-
striction, whereas the cyclic GCI Human v ∃parent.Human does not. In [4], we
introduced a more practical, goal-oriented unification algorithm that can also
deal with role hierarchies and transitive roles, but still needs the ontology (now
consisting of GCIs and role axioms) to be cycle-restricted. At the moment, it is
not clear how similar brute-force or goal-oriented algorithms could be obtained
for the general case without cycle-restriction.

In this paper, we follow another line of attack on this problem. Instead of
restricting the input ontology, we allow cyclic TBoxes to be used as unifiers.
Subsumption w.r.t. cyclic TBoxes in EL has been investigated in detail in [1].
In addition to the classical descriptive semantics, it also makes sense to use
greatest fixpoint semantics (gfp-semantics) for such TBoxes. For example, w.r.t.
this semantics, the definition X ≡ ∃parent.X describes exactly those domain
elements that are the origin of an infinite parent-chain, whereas descriptive se-
mantics would also allow the empty set to be an interpretation of X, even if
there are infinite parent-chains. Hybrid semantics deals with the case where a
TBox interpreted with gfp-semantics is combined with GCIs that are interpreted
with descriptive semantics [11,14,13]. Its introduction was originally motivated
by the fact that the least common subsumer (lcs) w.r.t. a set of GCIs interpreted
with descriptive semantics need not exist. For example, w.r.t. the GCIs

Human v ∃parent.Human and Horse v ∃parent.Horse, (5)

there is no least concept description (w.r.t. subsumption) that subsumes both
Human and Horse. What elements of these two concepts have in common is that
they are the origin of an infinite parent-chain, and thus the concept X with
definition X ≡ ∃parent.X is their lcs, if we interpret this definition with gfp-
semantics, but the GCIs (5) still with descriptive semantics. A hybrid unifier is
a cyclic TBox that, together with the background ontology consisting of GCIs,
entails the unification problem w.r.t. hybrid semantics. We will show that hybrid
unification in EL, i.e., the problem of testing whether a hybrid unifier exists,
is NP-complete. In addition, we will introduce a goal-oriented algorithm for
computing hybrid unifiers. The proofs, which can be found in [6], are based on
the proof system for hybrid subsumption introduced in [14,13].

2 The Description Logic EL
The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,



which can be used to state additional constraints on the interpretation of con-
cepts in a so-called ontology.

The concept description language The concept description language con-
sidered in this paper is called EL. Starting with a finite set NC of concept names
and a finite set NR of role names, EL-concept descriptions are built from concept
names using the constructors conjunction (C uD), existential restriction (∃r.C
for every r ∈ NR), and top (>). Since in this paper we only consider EL-concept
descriptions, we will usually dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be
more precise, an interpretation I = (∆I , ·I) consists of a non-empty domain ∆I
and an interpretation function ·I that maps concept names to subsets of ∆I and
role names to binary relations over ∆I . This function is inductively extended to
concept descriptions as follows:

>I := ∆I , (C uD)I := CI ∩DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

Classical ontologies and subsumption A concept definition is an expression
of the form X ≡ C where X is a concept name and C is a concept description,
and a general concept inclusion (GCI) is an expression of the form C v D,
where C,D are concept descriptions. An interpretation I is a model of this
concept definition (this GCI) if it satisfies XI = CI (CI ⊆ DI). This semantics
for GCIs and concept definitions is usually called descriptive semantics.

A TBox is a finite set T of concept definitions that does not contain multiple
definitions, i.e., {X ≡ C,X ≡ D} ⊆ T implies C = D. Note that we do not
prohibit cyclic dependencies among the concept definitions in a TBox, i.e., when
defining a concept X we may (directly or indirectly) refer to X. An acyclic TBox
is a TBox without cyclic dependencies. An ontology is a finite set of GCIs. The
interpretation I is a model of a TBox (ontology) iff it is a model of all concept
definitions (GCIs) contained in it.

A concept description C is subsumed by a concept description D w.r.t. an
ontology O (written C vO D) if every model of O is also a model of the GCI
C v D. We say that C is equivalent to D w.r.t. O (C ≡O D) if C vO D and
D vO C. As shown in [10], subsumption w.r.t. EL-ontologies is decidable in
polynomial time.

Note that TBoxes can be seen as special kinds of ontologies since concept
definitions X ≡ C can of course be expressed by GCIs X v C,C v X. Thus, the
above definition of subsumption also applies to TBoxes. However, in our hybrid
ontologies we will interpret concept definitions using greatest fixpoint semantics
rather than descriptive semantics.

Hybrid ontologies We assume in the following that the set of concept names
NC is partitioned into the set of primitive concepts Nprim and the set of defined
concepts Ndef . In a hybrid TBox, concept names occurring on the left-hand side



of a concept definition are required to come from the set Ndef , whereas GCIs
must not contain concept names from Ndef .

Definition 1 (Hybrid EL-ontologies). A hybrid EL-ontology is a pair (O, T ),
where O is an EL-ontology containing only concept names from Nprim , and T is
a (possibly cyclic) EL-TBox such that X ≡ C ∈ T for some concept description
C iff X ∈ Ndef .

The idea underlying the definition of hybrid ontologies is the following: O can be
used to constrain the interpretation of the primitive concepts and roles, whereas
T tells us how to interpret the defined concepts occurring in it, once the inter-
pretation of the primitive concepts and roles is fixed.

A primitive interpretation J is defined like an interpretation, with the only
difference that it does not provide an interpretation for the defined concepts. A
primitive interpretation can thus interpret concept descriptions built over Nprim

and NR, but it cannot interpret concept descriptions containing elements of
Ndef . Given a primitive interpretation J , we say that the (full) interpretation
I is based on J if it has the same domain as J and its interpretation function
coincides with J on Nprim and NR.

Given two interpretations I1 and I2 based on the same primitive interpreta-
tion J , we define I1 �J I2 iff XI1 ⊆ XI2 for all X ∈ Ndef .

It is easy to see that the relation �J is a partial order on the set of interpre-
tations based on J . In [1] the following was shown: given an EL-TBox T and a
primitive interpretation J , there exists a unique model I of T such that

– I is based on J ;
– I ′ �J I for all models I ′ of T that are based on J .

We call such a model I a gfp-model of T .

Definition 2 (Semantics of hybrid EL-ontologies). The interpretation I is
a hybrid model of the hybrid EL-ontology (O, T ) iff I is a gfp-model of T and
the primitive interpretation J it is based on is a model of O.

It is well-known that gfp-semantics coincides with descriptive semantics for
acyclic TBoxes. Thus, if T is actually acyclic, then I is a hybrid model of (O, T )
according to the semantics introduced in Definition 2 iff it is a model of T ∪ O
w.r.t. descriptive semantics, i.e., iff I is a model of every GCI in O and of every
concept definition in T .

Subsumption w.r.t. hybrid EL-ontologies Let (O, T ) be a hybrid EL-
ontology and C,D EL-concept descriptions. Then C is subsumed by D w.r.t.
(O, T ) (written C vgfp,O,T D) iff every hybrid model of (O, T ) is also a model of
the GCI C v D. As shown in [11,14,13], subsumption w.r.t. hybrid EL-ontologies
is also decidable in polynomial time.

Here, we sketch the proof-theoretic approach for deciding subsumption from
[14,13] since our algorithms for hybrid unification in EL are based on it. The



C vn C (Refl) C vn > (Top) C v0 D (Start)

C vn E

C uD vn E (AndL1)
D vn E

C uD vn E (AndL2)
C vn D C vn E

C vn D u E (AndR)

C vn D

∃r.C vn ∃r.D (Ex)

C vn D

X vn D (DefL)
D vn C

D vn+1 X (DefR)

C vn E F vn D

C vn D (GCI)

for X ≡ C ∈ T for X ≡ C ∈ T for E v F ∈ O

Fig. 1. The calculus HC(O, T ,∆).

proof calculus is parametrized with a hybrid EL-ontology (O, T ) and a finite set
of GCIs ∆ for which we want to decide subsumption. A sequent for (O, T ) and ∆
is of the form C vn D, where C,D are sub-descriptions of concept descriptions
occurring in O, T , and ∆, and n ≥ 0. If (O, T ) and ∆ are clear from the context,
we will sometimes simply say sequent without specifying (O, T ) and ∆ explicitly.

The rules of the Hybrid EL-ontology Calculus HC(O, T , ∆) are depicted in
Fig. 1. Again, if (O, T ) and ∆ are clear from the context, we will sometimes
dispense with specifying them explicitly and just talk about the calculus HC.
The rules of this calculus can be used to derive new sequents from sequents that
have already been derived. For example, the sequents in the first row of the figure
can always be derived without any prerequisites, using the rules (Refl), (Top),
and (Start), respectively. Using the rule (AndR), the sequent C vn D u E can
be derived in case both C vn D and C vn E have already been derived. Note
that the rule Start applies only for n = 0. Also note that, in the rule (DefR),
the index is incremented when going from the prerequisite to the consequent.

A derivation in HC(O, T , ∆) can be represented in an obvious way by a proof
tree whose nodes are sequents: a proof tree for C vn D has this sequent as its
root, instances of the rules Refl, Top, and Start as leaves, and each parent-child
relation corresponds to an instance of a rule of HC other than Refl, Top, and
Start (see [14,13] for more details)

Definition 3. Let C,D be sub-descriptions of concept descriptions occurring in
O, T , and ∆. Then we say that C v∞ D can be derived in HC(O, T , ∆) if all
sequents C vn D for n ≥ 0 can be derived using the rules of HC(O, T , ∆).

The calculus HC is sound and complete for subsumption w.r.t. hybrid EL-
ontologies in the following sense.

Theorem 4 (Soundness and Completeness of HC). Let (O, T ) be a hybrid
EL-TBox, ∆ a finite set of GCIs, and C,D sub-descriptions of concept descrip-



tions occurring in O, T , and ∆. Then C vgfp,O,T D iff C v∞ D can be derived
in HC(O, T , ∆).

In [13], soundness and completeness of HC is actually formulated for a restricted
setting where ∆ is empty and C,D are elements of Ndef that occur as left-hand
sides in T . It is, however, easy to see that the proof given in [13] generalizes to
the above theorem.

For n ∈ N∪{∞}, we collect the GCIs C v D such that C vn D is derivable in
HC(O, T , ∆) in the set Dn(O, T , ∆). Obviously, D0(O, T , ∆) consists of all GCIs
built from sub-descriptions of concept descriptions occurring in O, T , and∆, and
it is not hard to show that Dn+1(O, T , ∆) ⊆ Dn(O, T , ∆) holds for all n ≥ 0
[14,13]. Thus, to compute D∞(O, T , ∆), one can start with D0(O, T , ∆), and
then computeD1(O, T , ∆),D2(O, T , ∆), . . ., untilDm+1(O, T , ∆) = Dm(O, T , ∆)
holds for some m ≥ 0, and thus Dm(O, T , ∆) = D∞(O, T , ∆). Since the cardi-
nality of the set of sub-descriptions is polynomial in the size of the input O, T ,
and∆, the computation of each set Dn(O, T , ∆) can be done in polynomial time,
and we can be sure that only polynomially many such sets need to be computed
until an m with Dm+1(O, T , ∆) = Dm(O, T , ∆) is reached. This shows that the
calculus HC(O, T , ∆) indeed yields a polynomial-time subsumption algorithm
(see [14,13] for details).

3 Hybrid unification in EL

We will first introduce the new notion of hybrid unification and then relate it to
the notion of unification in EL w.r.t. background ontologies considered in [3,4].

Definition 5. Let O be an EL-ontology containing only concept names from
Nprim . An EL-unification problem w.r.t. O is a finite set of GCIs Γ = {C1 v
D1, . . . , Cn v Dn} (which may also contain concept names from Ndef ). The
TBox T is a hybrid unifier of Γ w.r.t. O if (O, T ) is a hybrid EL-ontology that
entails all the GCIs in Γ , i.e. , C1 vgfp,O,T D1, . . . , Cn vgfp,O,T Dn. We call
such a TBox T a classical unifier of Γ w.r.t. O if it is acyclic.

It is easy to see that the notion of a classical unifier indeed corresponds to
the notion of a unifier introduced in [3,4]. In fact, Nprim and Ndef respectively
correspond to the sets of concept constants and concept variables in previous
papers on unification in DLs. Using acyclic TBoxes rather than substitutions as
unifiers is also not a relevant difference. As explained in [2], by unfolding concept
definitions, the acyclic TBox T can be transformed into a substitution σT such
that Ci vT ∪O Di iff σT (Ci) vO σT (Di). Conversely, replacements X 7→ E of a
substitution σ can be expressed as concept definitions X ≡ E in a corresponding
acyclic TBox. In contrast, hybrid unifiers cannot be translated into substitutions
since the unfolding process would not terminate for a cyclic TBox.

Obviously, any classical unifier is a hybrid unifier, but the converse need
not hold. The following is an example of an EL-unification problem w.r.t. a
background ontology that has a hybrid unifier, but no classical unifier.



Example 6. Let O be the ontology consisting of the GCIs (5), and

Γ := {Human v X,Horse v X,X v ∃parent.X},

where X ∈ Ndef and Human,Horse ∈ Nprim . Intuitively, this unification problem
asks for a concept such that all horses and humans belong to this concept and
every element of it has a parent also belonging to it. It is easy to see that
T := {X ≡ ∃parent.X} is a hybrid unifier of Γ w.r.t. O. In fact, we have already
mentioned in the introduction that X is then the lcs of Human and Horse, and
obviously the hybrid ontology (O, T ) also entails the third GCI in Γ . It is also
not hard to show that this unification problem does not have a classical unifier,
basically for the same reasons that Human and Horse do not have an EL-concept
description as lcs (see [6] for details).

Flat unification problems To simplify the technical development, it is con-
venient to normalize the unification problem appropriately. To introduce this
normal form, we need the notion of an atom. An atom is a concept name or
an existential restriction. Obviously, every EL-concept description C is a finite
conjunction of atoms, where > is considered to be the empty conjunction. An
atom is called flat if it is a concept name or an existential restriction of the form
∃r.A for a concept name A.

The GCI C v D is called flat if C is a conjunction of n ≥ 0 flat atoms and
D is a flat atom. The unification problem Γ w.r.t. the ontology O is called flat
if both Γ and O consist of flat GCIs.

Given a unification problem Γ w.r.t. an ontology O, we can compute in
polynomial time (see [6]) a flat ontology O′ and a flat unification problem Γ ′

such that Γ has a (hybrid or classical) unifier w.r.t. O iff Γ ′ has a (hybrid or
classical) unifier w.r.t. O′. For this reason, we will assume in the following that
all unification problems are flat.

Local unifiers The main reason why EL-unification without background on-
tologies is in NP is that any unification problem that has a unifier also has a
local unifier. For classical unification w.r.t. background ontologies this is only
true if the background ontology is cycle-restricted.

Given a flat unification problem Γ w.r.t. an ontology O, we denote by At
the set of atoms occurring as sub-descriptions in GCIs in Γ or O. The set of
non-variable atoms is defined by Atnv := At\Ndef . Though the elements of Atnv
cannot be defined concepts, they may contain defined concepts if they are of the
form ∃r.X for some role r and a concept name X ∈ Ndef .

In order to define local unifiers, we consider assignments ζ of subsets ζX of
Atnv to defined concepts X ∈ Ndef . Such an assignment induces a TBox

Tζ := {X ≡
l

D∈ζX

D | X ∈ Ndef }.

We call such a TBox local. The (hybrid or classical) unifier T of Γ w.r.t. O is
called local unifier if T is local, i.e., there is an assignment ζ such that T = Tζ .



As shown in [3], there are unification problems that have a classical unifier,
but no local classical unifier.

Example 7. Let O = {B v ∃s.D, D v B} and consider the unification problem

Γ := {A1 uB v Y1, Y1 v A1 uB, A2 uB v Y2, Y2 v A2 uB,
∃s.Y1 v X, ∃s.Y2 v X, X v ∃s.X},

where A1, A2, B ∈ Nprim and X,Y1, Y2 ∈ Ndef . This problem has the classical
unifier T := {Y1 ≡ A1 u B, Y2 ≡ A2 u B,X ≡ ∃s.B}, which is not local since it
uses the atom ∃s.B. As shown in [3], Γ actually does not have a local classical
unifier w.r.t. O. However, it is easy to see that T := {Y1 ≡ A1 u B, Y2 ≡
A2 uB,X ≡ ∃s.X} is a local hybrid unifier of T . In fact, gfp-semantics applied
to T ensures that X consists of exactly those domain elements that are the origin
of an infinite s-chain, and O ensures that any element of B (and thus also of
∃s.B) is the origin of an infinite s-chain.

To overcome the problem of missing local unifiers, the notion of a cycle-
restricted ontology was introduced in [3]: the EL-ontology O is called cycle-
restricted if there is no nonempty sequence r1, . . . , rn of role names and EL-
concept description C such that C vO ∃r1. · · · ∃rn.C. Note that the ontology O
of Example 7 is not cycle-restricted since B vO ∃s.B.

The main technical result shown in [3] is that any EL-unification problem
Γ that has a classical unifier w.r.t. the cycle-restricted ontology O also has a
local classical unifier. This yields the following brute-force algorithm for classical
EL-unification w.r.t. cycle-restricted ontologies: first guess an acyclic local TBox
T , and then check whether T is indeed a unifier of Γ w.r.t. O. As shown in [3],
this algorithm runs in nondeterministic polynomial time. NP-hardness follows
from the fact that already classical unification in EL w.r.t. the empty ontology
is NP-hard [7].

4 Hybrid EL-unification is NP-complete

The fact that hybrid EL-unification w.r.t. arbitrary EL-ontologies is in NP is an
easy consequence of the following proposition.

Proposition 8. Consider a flat EL-unification problem Γ w.r.t. an EL-ontology
O. If Γ has a hybrid unifier w.r.t. O then it has a local hybrid unifier w.r.t. O.

In fact, the NP-algorithm simply guesses a local TBox and then checks (using
the polynomial-time algorithm for hybrid subsumption) whether it is a hybrid
unifier.

To prove the proposition, we assume that T is a hybrid unifier of Γ w.r.t. O.
We use this unifier to define an assignment ζT as follows:

ζTX := {D ∈ Atnv | X vgfp,O,T D}.



Let T ′ be the TBox induced by this assignment. To show that T ′ is indeed a
hybrid unifier of Γ w.r.t. O, we consider the set of GCIs

∆ := {C1 u . . . u Cm v D | C1, . . . , Cm, D ∈ At},

and prove that, for any GCI C1 u . . . u Cm v D ∈ ∆, derivability of C1 u . . . u
Cm v∞ D in HC(O, T , ∆) implies derivability of C1 u . . . u Cm v∞ D also in
HC(O, T ′, ∆). Soundness and completeness of HC, together with the facts that
Γ ⊆ ∆ and T is a hybrid unifier of Γ w.r.t. O, then imply that T ′ is also a
hybrid unifier of Γ w.r.t. O. Thus, to complete the proof of Proposition 8, it is
enough to prove the following lemma.

Lemma 9. Let C1 u . . . u Cm v D ∈ ∆. If C1 u . . . u Cm v∞ D is derivable
in HC(O, T , ∆), then C1 u . . . u Cm vn D is derivable in HC(O, T ′, ∆) for all
n ≥ 0.

Proof. We prove derivability of C1u. . .uCm vn D in HC(O, T ′, ∆) by induction
on n. The base case is trivial due to the rule (Start).

Induction Step: We assume that the statement of the lemma holds for n −
1, and show that it then also holds for n. Let ` be such that D`(O, T , ∆) =
D∞(O, T , ∆). We know that there exists a proof tree P for C1 u . . . uCm v` D
in HC(O, T , ∆). Consider the subtree of P that is obtained from it by cutting
branches at the nodes obtained by an application of one of the rules (DefL) or
(DefR). The tree obtained this way contains only sequents with index ` and has
as its leaves

– instances of the rules (Refl), (Top), or (Start),
– consequences E1 v` E2 of instances of the rules (DefL) or (DefR).

In order to show that C1 u . . . u Cm vn D is derivable in HC(O, T ′, ∆), it is
sufficient to show that, for leaves E1 v` E2 of the second kind, E1 vn E2 is
derivable in HC(O, T ′, ∆) (see [6] for details).

First, assume that E1 v` E2 was obtained by an application of (DefR).
Then E2 ∈ Ndef . Assume that ζTE2

= {F1, . . . , Fq}. By the definition of ζT ,
we have E2 vgfp,O,T Fi for all i, 1 ≤ i ≤ q. In addition, by our choice of `,
derivability of E1 v` E2 in HC(O, T , ∆) (using the subtree of P with this node
as root) yields E1 vgfp,O,T E2, and thus E1 vgfp,O,T Fi for all i, 1 ≤ i ≤ q.
Consequently, E1 v∞ Fi is derivable in HC(O, T , ∆) for all i, 1 ≤ i ≤ q. Since
E1 is a conjunction of elements of At and F1, . . . , Fq ∈ At, induction yields
that E1 vn−1 Fi is derivable in HC(O, T ′, ∆) for all i, 1 ≤ i ≤ q. Performing
q − 1 applications of (AndR) thus allows us to derive E1 vn−1 F1 u . . . u Fq in
HC(O, T ′, ∆). Since T ′ contains the definition E2 ≡ F1u . . .uFq, an application
of (DefR) shows that E1 vn E2 is derivable in HC(O, T ′, ∆).

Second, assume that E1 v` E2 was obtained by an application of (DefL).
Then E1 ∈ Ndef and E2 = F1 u . . . u Fm for elements F1, . . . , Fm of At. By
our choice of ` we have E1 vgfp,O,T E2, and thus E1 vgfp,O,T Fi for all i, 1 ≤
i ≤ q. It is sufficient to show, for all i, 1 ≤ i ≤ q, that E1 vn Fi is derivable



in HC(O, T ′, ∆) since q − 1 applications of (AndR) then yield derivability of
E1 vn E2 in HC(O, T ′, ∆).

If Fi does not belong to Ndef , then it is an element of Atnv. The definition
of ζT thus yields Fi ∈ ζTE1

. Consequently, Fi occurs as a conjunct on the right-
hand side of the definition of E1 in T ′. This implies E1 vgfp,O,T ′ Fi, and thus
E1 vn Fi is derivable in HC(O, T ′, ∆).

If Fi ∈ Ndef , then E1 vgfp,O,T Fi implies that ζTFi
⊆ ζTE1

. Consequently, every
conjunct on the right-hand side of the definition of Fi in T ′ is also a conjunct on
the right-hand side of the definition of E1 in T ′. This implies E1 vgfp,O,T ′ Fi,
and thus E1 vn Fi is derivable in HC(O, T ′, ∆). ut

This finishes the proof of Proposition 8, and thus shows that hybrid EL-
unification w.r.t. arbitrary EL-ontologies is in NP. NP-hardness does not follow
directly from NP-hardness of classical EL-unification. In fact, as we have seen in
Example 6, an EL-unification problem that does not have a classical unifier may
well have a hybrid unifier. Instead, we reduce EL-matching modulo equivalence
to hybrid EL-unification.

Using the notions introduced in this paper, EL-matching modulo equivalence
can be defined as follows. An EL-matching problem modulo equivalence is an
EL-unification problem of the form {C v D,D v C} such that D does not
contain elements of Ndef . A matcher of such a problem is a classical unifier of
it. As shown in [12], testing whether a matching problem modulo equivalence
has a matcher or not is an NP-complete problem. Thus, NP-hardness of hybrid
EL-unification w.r.t. EL-ontologies is an immediate consequence of the following
lemma, whose (non-trivial) proof can be found in [6].

Lemma 10. If an EL-matching problem modulo equivalence has a hybrid unifier
w.r.t. the empty ontology, then it also has a matcher.

To sum up, we have thus determine the exact worst-case complexity of hybrid
EL-unification.

Theorem 11. The problem of testing whether an EL-unification problem w.r.t.
an arbitrary EL-ontology has a hybrid unifier or not is NP-complete.

5 A goal-oriented algorithm for hybrid EL-unification

The brute-force algorithm is not practical since it blindly guesses a local TBox
and only afterwards checks whether the guessed TBox is a hybrid unifier. We now
introduce a more goal-oriented unification algorithm, in which nondeterministic
decisions are only made if they are triggered by “unsolved parts” of the unification
problem. In addition, failure due to wrong guesses can be detected early. Any
non-failing run of the algorithm produces a hybrid unifier, i.e., there is no need
for checking whether the TBox computed by this run really is a hybrid unifier.
This goal-oriented algorithm is based on ideas similar to the ones used in the
algorithm for classical unification in EL w.r.t. cycle-restricted ontologies in [4].
However, it differs from the previous algorithm in several respects.



First, it is based on the proof calculus HC rather than on a structural charac-
terization of subsumption, as employed in [4]. Basically, to solve the unification
problem Γ w.r.t. the ontology O, the rules of the algorithm try to build, for
each GCI C v D ∈ Γ , a proof tree for the sequent C v` D while simultaneously
generating the hybrid unifier T by adding non-variable atoms to an assignment
ζ inducing T . The index ` of the sequent is chosen large enough, i.e., such that
derivability of C v` D implies derivability of C v∞ D. In [6] it is shown how an
appropriate number ` of polynomial size can be computed from the size of the
input Γ and O.

Second, to avoid nonterminating runs of the algorithm, a blocking mechanism
needs to be employed. This mechanism prevents cyclic dependencies between
sequents where the derivability of one sequents depends on the derivability of
another sequent and vice versa. This problem did not occur in the algorithm
for classical unification in [4] due to the fact that, for classical unification, the
generation of a cyclic assignment causes the run to fail. For hybrid unification,
cyclic assignments may lead to valid hybrid unifiers. In order to realize blocking,
we need to keep track of dependencies between sequents. For this reason, we
work with p-sequents rather than sequents.

We assume without loss of generality that the input unification problem Γ
w.r.t. the input ontology O is flat. Given O and Γ , the sets At and Atnv are
defined as above.

Definition 12. A flat sequent for Γ and O is of the form C1 u . . . u Cm vn D
where C1, . . . , Cm ∈ At, D ∈ At ∪ {>}, m ≥ 0, and 0 ≤ n ≤ `. This sequent is
called ground if no element of Ndef occurs in it. A p-sequents for Γ and O is a
pair (C vn D,P ) such that {C vn D} ∪ P is a finite set of flat sequents for Γ
and O.

Intuitively, the p-sequent (C vn D,P ) says that we need to find a proof tree for
C vn D, and that the proof trees for all the elements of P must contain this
proof tree, i.e., the derivations of the elements of P depend on the derivation of
C vn D.

Starting with the initial set of p-sequents

Γ (0)
p := {(C v` D, ∅) | C v D ∈ Γ}

the algorithm maintains a current set of p-sequents Γp and a current assignment
ζ, which initially assigns the empty set to all X ∈ Ndef . In addition, for each
p-sequent in Γp it maintains the information on whether it is solved or not.
Initially, all p-sequents are unsolved, except those with a defined concept on
the right-hand side of its first component.2 Rules are applied only to unsolved
p-sequents. A (non-failing) rule application does the following:

– it solves exactly one unsolved p-sequent,
– it may extend the current assignment ζ, and

2 Such p-sequents are dealt with by expansion rather than by applying a rule (see
below).



Eager Axiom Solving:

Condition: This rule applies to (s, P ), if s is of the form C1 u . . . u Cm v0 D or
C1 u . . . u Cm vn >.
Action: Its application marks (s, P ) as solved.

Eager Ground Solving:

Condition: This rule applies to (s, P ) with s = C1 u . . . u Cm vn D, if s is ground.
Action: If C1 u . . . u Cm vT D does not hold, the rule application fails. Otherwise,
(s, P ) is marked as solved.

Eager Solving:

Condition: This rule applies to (s, P ) with s = C1 u . . . u Cm vn D, if there is an
index i ∈ {1, . . . ,m} such that Ci = D or Ci = X ∈ Ndef and D ∈ ζX .
Action: The application marks (s, P ) as solved.

Fig. 2. The eager rules of hybrid unification.

– it may add new p-sequents to Γp, which are marked unsolved unless their
first component has a defined concept on the right-hand side.

Adding a new p-sequent is realized through the blocking procedure. This proce-
dures checks whether the new sequent introduces cyclic derivability obligations
(in which case it fails) and whether the sequent to be added already exists (in
which case it re-uses the existing sequent, but updates the dependency informa-
tion). Only if these two cases do not apply does it add the new sequent. To be
more precise, given a set of p-sequents Γp and a p-sequents (C vn D,P ), the
procedure blocking applied to this input does the following:

B1: If the sequent C vn D belongs to P , then blocking fails.
B2: Otherwise, if there is a p-sequent of the form (C vn D,P ′) in Γp, then do

the following:
– Extend the second component of this sequent to P ′ ∪ P .
– For each p-sequent (_, P ′′) in Γp such that C vn D is in P ′′, extend the

second component to P ′′ ∪ P ,
B3: Otherwise, add (C vn D,P ) to Γp.

Each rule application that extends ζX additionally expands Γp w.r.t. X as
follows: every p-sequent of the form (C1 u · · · u Cn vn X,P ) is expanded by
applying blocking to (C1u· · ·uCn vn−1 D, ∅) and Γp for everyD ∈ ζX . Since the
second components of the p-sequents provided as inputs for blocking are empty,
blocking cannot fail during expansion. Note that expansion basically corresponds
to an application of the rule (DefR) of HC together with an appropriate number
of applications of (AndR).

If a p-sequent p is marked as solved, this does not mean that a proof tree for its
first component s has already been constructed (w.r.t. O and the TBox induced
by the current assignment). It may be the case that the task of constructing the
proof tree for s was deferred to constructing a proof tree for the first component



Decomposition:

Condition: This rule applies to (s, P ) with s = C1 u . . . uCm vn ∃s.D′, if there is a
Ci = ∃s.C′ such that blocking does not fail if applied to (C′ vn D

′, P ∪ {s}) and Γp.
Action: Its application chooses such an index i and applies blocking to (C′ vn D

′, P ∪
{s}) and Γp. Once blocking was applied, it expands Γp w.r.t. D′ if D′ ∈ Ndef , and
marks (s, P ) as solved.

Extension:
Condition: This rule applies to (s, P ) with s = C1 u . . . u Cm vn D if there is at
least one i ∈ {1, . . . ,m} with Ci ∈ Ndef .
Action: Its application chooses such an index i and adds D to ζCi . Γp is expanded
w.r.t. Ci and (s, P ) is marked as solved.

Mutation:
Condition: This rule applies to (s, P ) with s = C1 u . . .uCm vn D, if there is a GCI
E1 u . . . u Ek v F in O and a set S ⊆ {1, . . . ,m} such that blocking does not fail if
applied to Γp and each of the p-sequents (

d
j∈S Cj vn E1, P ∪ {s}), . . . , (

d
j∈S Cj vn

Ek, P ∪ {s}), and (F vn D,P ∪ {s}).
Action: Its application chooses such a GCI E1 u . . . u Ek v F and a set S ⊆
{1, . . . ,m}. It applies blocking to Γp and each of the p-sequents (

d
j∈S Cj vn

E1, P ∪ {s}), . . . , (
d

j∈S Cj vn Ek, P ∪ {s}), and (F vn D,P ∪ {s}). Once blocking
was applied, (s, P ) is marked as solved.

Fig. 3. The nondeterministic rules of hybrid unification.

s′ of a “smaller” p-sequent. The proof tree for s′ is then part of the proof tree
for s, and thus s needs to be added to the second component of p′.

The rules of the algorithm consist of three eager rules, which are deterministic
(see Figure 2), and three nondeterministic rules (see Figure 3). Eager rules are
applied with higher priority than nondeterministic rules. Among the eager rules,
Eager Axiom Solving has the highest priority, then comes Eager Ground Solving,
and then Eager Solving.

Algorithm 13. Let Γ w.r.t. O be a flat EL-unification problem. We set Γp :=

Γ
(0)
p and ζX := ∅ for all X ∈ Ndef . While Γp contains an unsolved p-sequent,

apply the steps (1) and (2).

(1) Eager rule application: If some eager rules apply to an unsolved p-sequent
p in Γp, apply one of highest priority. If the rule application fails, then return
“no hybrid unifier”.

(2) Nondeterministic rule application: If no eager rule is applicable, let p
be an unsolved p-sequent in Γp. If one of the nondeterministic rules applies
to p, nondeterministically choose one of these rules and apply it. If none of
these rules apply to p, then return “no hybrid unifier”.

Once all p-sequents are solved, return the TBox T induced by the current as-
signment.



In step (2), the choice which unsolved p-sequent to consider next is don’t care
nondeterministic. However, choosing which rule to apply to the chosen p-sequent
is don’t know nondeterministic. Additionally, the application of nondeterministic
rules requires don’t know nondeterministic guessing.

The eager rules are mainly there for optimization purposes, i.e., to avoid non-
deterministic choices if a deterministic decision can easily be made. For example,
given a ground sequent C vn D, as considered in the Eager Ground Solving rule,
the GCI C v D either follows from the ontology O, in which case any TBox is a
hybrid unifier of it, or it does not, in which case there is no hybrid unifier. This
condition can be checked in polynomial time since subsumption w.r.t. hybrid
EL-ontologies is polynomial [11,14,13]. In the case considered in the Eager Solv-
ing rule, the TBox induced by the current assignment obviously already implies
the GCI C1 u . . . u Cm v D. The Eager Axiom Solving rule corresponds to the
rules (Top) and (Start) of HC. Note that the rule (Refl) of HC is covered by
Eager Solving.

The nondeterministic rules only come into play if no eager rules can be ap-
plied. In order to solve an unsolved p-sequent (s, P ), one considers which rule of
HC could have been applied to obtain s. The rules Extension and Decomposition
respectively correspond to applications of rules (DefL) and (Ex) of HC, together
with an appropriate number of applications of the rules (AndLi). The Mutation
rule corresponds to an application of the (GCI) rule from HC, again together
with an appropriate number of applications of the rules (AndLi).

Due to the space restrictions, we cannot give details on how to prove that
the algorithm is correct. Complete proofs of soundness, completeness and termi-
nation can be found in [6].

Theorem 14. Algorithm 13 is an NP-decision procedure for hybrid EL-unifi-
ability w.r.t. arbitrary EL-ontologies.

6 Conclusions

In this paper, we have first proved that hybrid EL-unification w.r.t. arbitrary EL-
ontologies is NP-complete, and then developed a goal-oriented NP-algorithm for
hybrid EL-unification that is better than the brute-force “guess and then test” al-
gorithm used to show the “in NP” result. As illustrated by Example 6, computing
hybrid unifiers rather than classical ones may be appropriate in some situations.
Nevertheless, the decidability and complexity of classical EL-unification w.r.t.
arbitrary EL-ontologies is an important topic for future research. We hope that
hybrid unification may also be helpful in this context. Basically, given a hybrid
unifier T of Γ w.r.t. O, we can obtain a classical unifier of Γ w.r.t. O by finding
an acyclic TBox S such that O∪S entails all the GCIs that (O, T ) entails w.r.t.
hybrid semantics, i.e. C vgfp,O,T D implies C vO∪S D for all (relevant) concept
descriptions C,D.



References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003). pp. 325–330. Morgan Kaufmann, Los Altos, Acapulco,
Mexico (2003)

2. Baader, F., Borgwardt, S., Morawska, B.: Unification in the description logic EL
w.r.t. cycle-restricted TBoxes. LTCS-Report 11-05, Chair for Automata Theory,
Institute for Theoretical Computer Science, Technische Universität Dresden, Dres-
den, Germany (2011), see http://lat.inf.tu-dresden.de/research/reports.html.

3. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012). pp. 568–572. AAAI/MIT Press (2012)

4. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unification
in ELHR+ w.r.t. cycle-restricted ontologies. In: Thielscher, M., Zhang, D. (eds.)
Pro. of 25th Australasian Joint Conf. on Artificial Intelligence (AI’12). LNAI, vol.
7691, pp. 493–504. Springer-Verlag (2012)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

6. Baader, F., Fernández Gill, O., Morawska, B.: Hybrid unification in the description
logic EL. LTCS-Report 13-07, Chair for Automata Theory, Institute for Theoretical
Computer Science, Technische Universität Dresden, Dresden, Germany (2013), see
http://lat.inf.tu-dresden.de/research/reports.html.

7. Baader, F., Morawska, B.: Unification in the description logic EL. In: Treinen, R.
(ed.) Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications (RTA
2009). LNCS, vol. 5595, pp. 350–364. Springer-Verlag (2009)

8. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods
in Computer Science 6(3) (2010)

9. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of
Symbolic Computation 31(3), 277–305 (2001)

10. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004). pp. 298–302
(2004)

11. Brandt, S., Model, J.: Subsumption in EL w.r.t. hybrid tboxes. In: Proc. of the
28th German Annual Conf. on Artificial Intelligence (KI’05). pp. 34–48., LNAI,
Springer-Verlag (2005)

12. Küsters, R.: Non-standard Inferences in Description Logics, LNAI, vol. 2100.
Springer-Verlag (2001)

13. Novakovic, N.: Proof-theoretic Approach to Deciding Subsumption and Com-
puting Least Common Subsumer in EL w.r.t. Hybrid TBoxes. Master’s the-
sis, Chair for Automata Theory, Institute for Theoretical Computer Sci-
ence, Technische Universität Dresden, Germany (2007), see http://lat.inf.tu-
dresden.de/research/mas/#Nov-Mas-07.

14. Novakovic, N.: A proof-theoretic approach to deciding subsumption and comput-
ing least common subsumer in w.r.t. hybrid TBoxes. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) Proc. of the 11th Eur. Conf. on Logics in Artificial Intelligence
(JELIA’2004). LNCS, vol. 5293, pp. 311–323. Springer-Verlag (2008)


