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Abstract. Language equations are equations where both the constants occurring in the equations
and the solutions are formal languages. They have first been introduced in formal language theory,
but are now also considered in other areas of computer science. In the present paper, we restrict
the attention to language equations with one-sided concatenation, but in contrast to previous work
on these equations, we allow not just union but all Boolean operations to be used when formulating
them. In addition, we are not just interested in deciding solvability of such equations, but also in
deciding other properties of the set of solutions, like its cardinality (finite, infinite, uncountable) and
whether it contains least/greatest solutions. We show that all these decision problems are EXPTIME-
complete.

1. Introduction

Equations with formal languages as constant parameters and unknowns have been studied since the
1960s, when two basic concepts of the theory of computation, finite automata and context-free grammars,
were respectively represented as systems of equations with union and one-sided concatenation [8] and
with union and unrestricted concatenation [14]. This topic was further studied in the monographs on
algebraic automata theory by Salomaa [34] and Conway [12]. There has been a renewed interest in the
topic over the last two decades, with the state-of-the-art as of 2007 presented in a survey by Kunc [19],
and with more research on various aspects of language equations appearing in the last few years [13, 16,
17, 20, 22, 30].

As an example, consider the equation X = AX ∪ B, where A,B are fixed formal languages. It is
well-known, that this equation has A∗B as a solution. If the empty word does not belong to A, then this
is the only solution. Otherwise, A∗B is the least solution (w.r.t. inclusion), and all solutions are of the
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form C∗B for C ⊇ A. Depending on A and the available alphabet, the equation may thus have finitely
many, countably infinitely many, or even uncountably many solutions. The above equation is an equation
with one-sided concatenation since concatenation occurs only on one side of the variable. In contrast,
the equation X = aXb ∪XX ∪ ε is not one-sided.1 Its least solution is the Dyck language of balanced
parentheses generated by the context-free grammar S → aSb | SS | ε, whereas its greatest solution is
{a, b}∗.

Both examples are resolved equations in the sense that their left-hand sides consist of a single vari-
able. If only monotonic operations (in the examples: union and concatenation) are used, then such
resolved systems of equations Xi = ϕi(X1, . . . , Xn) with i = 1, . . . , n always have a least and a
greatest solution due to the Tarski–Knaster fixpoint theorem [37]. Once the resolved form of equations
is no longer required or non-monotonic operations (like complementation) are used, a given language
equation need no longer have solutions, and thus the problem of deciding solvability of such an equa-
tion becomes non-trivial. The same is true for other decision problems, like asking for the existence of
a least/greatest solution or determining the cardinality of the set of solutions. In some cases, the ba-
sic properties of such equations can be effectively tested: such are, for instance, equations of the form
ϕ(X1, . . . , Xn) = const, studied by Bala [7], where the solution existence problem is EXPSPACE-hard,
while the special case XY = const was proved to be PSPACE-complete by Martens et al. [22]. Another
example is given by resolved systems of equations with concatenation and complementation, investigated
by Okhotin and Yakimova [31], which have NP-complete solvability testing.

In the case of language equations of the general form ϕ(X1, . . . , Xn) = φ(X1, . . . , Xn) with the
operations of union and unrestricted concatenation, the solvability problem becomes undecidable since
the equivalence problem for context-free grammars can easily be encoded [32]. A systematic study of
the hardness of decision problems for such language equations was carried out by Okhotin [26, 27, 28,
29], who also characterized recursive and recursively enumerable sets by solutions of these equations.
Recently these computational completeness results were extended to language equations over a one-letter
alphabet by Jeż and Okhotin [16].

A surprising proof of the computational universality of very simple language equations of the form
LX = XL, where L ⊆ {a, b}∗ is a finite constant language, was given by Kunc [18]. Later, Jeż
and Okhotin [17] and Lehtinen and Okhotin [20] demonstrated that already systems of two equations
{XXK = XXL, XM = N}, with regular constants K,L,M,N ⊆ a∗, possess a full range of
undecidable problems, and can represent an encoding of any recursive (r.e., co-r.e.) set in their unique
(least, greatest) solutions. Though language equations with concatenation as the only operation are
syntactically close to word equations [21], like the equation aX = Xa, there is no strong relationship
between the two types of equations since the unknowns stand for different mathematical objects: a single
word in the case of word equations versus a set of words in the case of language equations.

Language equations with one-sided concatenation usually do not have undecidable decision prob-
lems. In fact, many properties of the solution sets of such equations, such as existence and uniqueness of
their solutions, can be expressed in Rabin’s monadic second-order logic on infinite trees [33]. This im-
plies the decidability of these problems, but only yields a non-elementary complexity upper-bound [36].
Language equations with one-sided concatenation can also be regarded as a particular case of equations
on sets of terms, known as set constraints, which received significant attention [1, 10, 11, 15] since they
can, e.g., be used in program analysis. In fact, language equations with one-sided concatenation corre-

1As usual, we omit set parentheses for singleton languages.
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spond to monadic set constraints, where all function symbols are unary. Thus, decidability results for
set constraints also yield decidability results for the corresponding language equations. However, since
set constraints are in general more complex than monadic set constraints, this does not necessarily yield
optimal complexity bounds.

Language equations with one-sided concatenation and union have been studied in the context of
unification problems in description logics: Baader and Narendran [3] show that the existence of a finite
solution (i.e., a solution where all unknowns are replaced by finite languages) is an EXPTIME-complete
problem; Baader and Küsters [2] show the same for the existence of an arbitrary (possibly infinite)
solution. In the latter work, it is also shown that a solvable equation always has a greatest solution, and
that this solution is regular (i.e., consists of regular languages).

The present paper extends the aforementioned results in two directions. On the one hand, we consider
language equations with one-sided concatenation and all Boolean operations, and on the other hand
we consider additional decision problems, like determining the existence of least/greatest solutions and
the cardinality of the solution set. All these problems turn out to be EXPTIME-complete for language
equations with one-sided concatenation and any set of available Boolean operations between {∪} and
{∪,∩,¬}.

After a preliminary section in which we give the relevant definitions, we first concentrate in Section 3
on showing the EXPTIME upper-bounds for the mentioned decision problems in the case of the most gen-
eral type of one-sided equations where all Boolean operations are available. This is done by translating
language equations into a special kind of looping tree automata, showing a 1–1-relationship between
the solutions of the equation and the runs of the corresponding automaton, and then characterizing the
relevant properties of solution sets by decidable properties of the automaton. Thus, we have a uniform
approach for solving all decision problems by one automaton construction. The decision procedures for
the respective problems only differ in what property of the constructed automaton must be decided. Fur-
thermore, this construction implies an easy proof of the regularity of unique, least and greatest solutions
of such language equations, as well as an effective construction of finite automata for these solutions.

In Section 4, we then show the EXPTIME lower-bounds for the mentioned decision problems in
the case of one-sided language equations with union: the reduction is from the intersection emptiness
problem for deterministic looping tree automata, whose EXPTIME-completeness easily follows from the
EXPTIME-completeness of the same problem for deterministic top-down tree automata on finite trees
[35, 2]. Again, the hardness proofs are uniform: one reduction shows hardness of all decision problems
under consideration.

2. Preliminaries

In this section, we first introduce the language equations investigated in this paper, and show that they
can be transformed into a simpler normal form. Then, we introduce some notions regarding automata
working on infinite trees, which will be important for showing both the upper and the lower complexity
bounds.
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2.1. Language equations with one-sided concatenation

For a fixed finite alphabet Σ, we consider systems of equations of the following general form:
ψ1(X1, . . . , Xn) = ξ1(X1, . . . , Xn),

...
ψm(X1, . . . , Xn) = ξm(X1, . . . , Xn),

(1)

where the form of the expressions ψi and ξi is defined inductively:

• every variable Xi is an expression;

• every regular language L ⊆ Σ∗ is an expression;

• a concatenation Lϕ of a regular constant language L ⊆ Σ∗ with an expression ϕ is an expression;

• if ϕ,ϕ′ are expressions, then so are (ϕ ∪ ϕ′), (ϕ ∩ ϕ′) and (∼ϕ).

We assume that the regular languages in expressions are given by non-deterministic finite automata.
An effective description of a system (1) would contain transition tables and accepting states of these
automata, and thus the number of their states and transitions adds to the size of the description.

If the expressions in such a system contain neither intersection nor complement, then we call it a
system of language equations with one-sided concatenation and union.

The above definition allows concatenation of a constant regular language on the left with an arbi-
trary expression on the right. One could symmetrically restrict the concatenation to be only of the form
ϕL, where ϕ is any expression and L is a constant , and the resulting equations will operate isomorphi-
cally, with all languages replaced by their mirror images. Thus, there is no need to distinguish between
equations with left concatenation and equations with right concatenation: they are handled by the same
methods and algorithms, and shall be referred as equations with one-sided concatenation, without con-
centrating on the direction of concatenation.

A solution of a general system (1) is a vector of languages (L1, . . . , Ln) such that a substitution of
Lj for Xj for all j turns each instantiated equation into an equality. Solutions can be compared w.r.t.
inclusion of their components: we define (L1, . . . , Ln) � (L′1, . . . , L

′
n) if and only if Li ⊆ L′i holds for

i = 1, . . . , n. In addition to the problem of deciding whether a system has a solution or not, we consider
additional decision problems that look more closely at properties of the set of solutions: its cardinality (is
there a unique solution, are there finitely or infinitely many solutions, are there countably or uncountably
many solutions) and whether it contains least/greatest elements w.r.t. �.

In order to design algorithms for solving these decision problems, it is more convenient to consider
language equations in the following normal form: a single equation

ϕ(Z1, . . . , Zk) = ∅, (2)

in the unknownsZ1, . . . , Zk, where the constant regular languages occurring in ϕ are singleton languages
{ε} and {a} for a ∈ Σ, which we simply write as ε and a.

The next lemma implies that w.r.t. all decision problems concerned with the cardinality of the set of
solutions (including the existence of a solution), the restriction to equations of form (2) is without loss
of generality.
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Lemma 1. For every system (1) in the unknowns X1, . . . , Xn we can construct in polynomial time an
equation (2) in the unknowns X1, . . . , Xn, Y1, . . . , Y` for some ` > 0 such that the set of solutions of (2)
is {(

L1, . . . , Ln, η1(L1, . . . , Ln), . . . , η`(L1, . . . , Ln)
) ∣∣ (L1, . . . , Ln) solves (1)

}
for some functions η1, . . . η` : (2Σ∗)n → 2Σ∗ .

Proof:
[Proof sketch:] Regular languages in (1) can be expressed by employing resolved equations for additional
variables Y1, . . . , Y`. For example, the expression (∼X)a∗b can be replaced by Y2 if we add the resolved
equations Y2 = Y1b and Y1 = Y1a ∪ ∼X . Since resolved equations of this form have a unique solution,
any value for X yields unique values for Y1, Y2. The total size of equations added is proportional to the
number of transitions in an NFA, and hence the growth is linear.

Every equation ψi = ξi has the same solutions as (ψi ∩ ∼ξi) ∪ (ξ ∩ ∼ψi) = ∅, and the system
ϕ1 = ∅, ϕ2 = ∅ has the same solutions as ϕ1 ∪ ϕ2 = ∅. ut

Regarding the existence of least/greatest solutions, we must be more careful. For example, when
representing (∼X)a∗b by Y2 and the equations Y2 = Y1b, Y1 = Y1a ∪ ∼X , a larger value for X yields
smaller values for Y1, Y2. Thus, even if the original system has a least/greatest solution, the new one need
not have one. The solution to this problem will be that when defining the relation � on solutions, we do
not necessarily compare solutions w.r.t. all components, but only w.r.t. the components corresponding to
a set of focus variables. In this case, the constructed system (2) with unknowns X1, . . . , Xn, Y1, . . . , Y`
has a least/greatest solution w.r.t. the focus variablesX1, . . . , Xn if and only if the original system (1) has
a least/greatest solution. Note that � is then no longer a partial order, but only a preorder. Accordingly,
a system of language equations may have multiple least (greatest) solutions with respect to �, yet all of
them have to coincide on the focus variables.

2.2. Automata on infinite trees

Given a ranked alphabet Γ, where every symbol has a nonzero rank, infinite trees over Γ are defined in
the usual way, that is, every node in the tree is labeled with an element f ∈ Γ and has as many successor
nodes as is the rank of f . A looping tree automaton2 A = (Q,Γ, Q0,∆) consists of a finite set of states
Q, a ranked alphabet Γ, a set of initial states Q0 ⊆ Q, and a transition function ∆ : Q × Γ → 2Q

∗

that maps each pair (q, f) to a subset of Qk, where k is the rank of f . This automaton is deterministic
if |Q0| = 1 and |∆(q, f)| 6 1 for all pairs (q, f). A run r of A on a tree t labels the nodes of t with
elements of Q, such that the root is labeled with q0 ∈ Q0, and the labels respect the transition function,
that is, if a node v has label t(v) in t and label r(v) in r, then the tuple (q1, . . . , qk) labeling the successors
of v in r must belong to ∆(q, t(v)). The tree t is accepted byA if there is a run ofA on t. The language
accepted by A is defined as

L(A) := {t | t is an infinite tree over Γ that is accepted by A}.

2The difference between looping tree automata and Büchi tree automata [38] is that there is no acceptance condition involving
final states.
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It is well-known that the emptiness problem for looping tree automata, that is, the question whether
the accepted language is non-empty, is decidable in linear time [6]. However, the intersection empti-
ness problem, that is, given looping tree automata A1, . . . ,Ak, is L(A1) ∩ . . . ∩ L(Ak) empty or not,
is EXPTIME-complete even for deterministic automata [35, 2]. This result will be used to show the
complexity lower-bounds in Section 4.

When showing the complexity upper-bounds in Section 3, we actually employ a very restricted form
of looping automata. First, we restrict the attention to a ranked alphabet Γ containing a single symbol
γ of some fixed rank k > 0. Thus, there is only one infinite tree, and the labeling of its nodes by γ
can be ignored. Given an arbitrary finite alphabet Σ := {a1, . . . , ak} of cardinality k, every node in
this tree can uniquely be represented by a word w ∈ Σ∗, where ai corresponds to the ith successor.
Second, we consider not arbitrary looping tree automata working on this tree, but tree automata induced
by word automata. A non-deterministic finite automaton (NFA) A = (Q,Σ, Q0, δ) without accepting
states working on words over Σ induces a looping tree automaton A = (Q,Γ, Q0,∆) working on the
infinite tree over Γ as follows:

∆(q, γ) := {(q1, . . . , qk) | qi ∈ δ(q, ai) for i = 1, . . . , k}.

We call such an automaton a looping tree automaton with independent transitions (ILTA) since in every
component the successor states can be chosen independently from what is chosen in the rest of the
components. In the following, we do not distinguish between the NFA and the ILTA it represents. For
example, we will talk about runs of the NFA, but mean the runs of the corresponding ILTA. The runs of
the NFA A = (Q,Σ, Q0, δ) can thus be represented as functions r : Σ∗ → Q such that r(ε) ∈ Q0 and
r(wa) ∈ δ(r(w), a) for all w ∈ Σ∗ and a ∈ Σ. In addition, when defining an ILTA, we will usually
introduce just the corresponding NFA, and call it ILTA. In the next section, we are not interested in the
tree language accepted by an ILTA (which is either empty or a singleton set); instead, we are interested
in the runs themselves.

Following the definition of looping tree automata, an ILTA is called deterministic if |δ(q, a)| 6 1 for
all q ∈ Q and a ∈ Σ, that is, if the underlying NFA is a partial DFA. Note that a deterministic ILTA has
at most one run; furthermore, having a completely defined function δ is a sufficient condition of having
exactly one run.

We call an NFA A = (Q,Σ, Q0, δ) and the ILTA it represents trim if every state is reachable from
an initial state, and δ(q, a) 6= ∅ for all q ∈ Q and a ∈ Σ. It is easy to see that every NFA can be
transformed into an trim NFA that is equivalent in the sense of having the same runs. In such a trim
NFA, every finite or infinite path can be completed to a run containing it. In addition, it has a run if and
only if Q is non-empty.

Lemma 2. For every ILTA A = (Σ, Q,Q0, δ) an equivalent trim ILTA B = (Σ, Q′, Q′0, δ
′) can be

constructed in polynomial time.

Proof:
The construction proceeds in two steps. First, we construct the set

Qdefin := {q ∈ Q | ∀w ∈ Σ∗. δ(q, w) 6= ∅}.
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The complement of this set can be computed in polynomial time by the following iteration:

Q(0) := {q ∈ Q | ∃a ∈ Σ. δ(q, a) = ∅},
Q(i+1) := Q(i) ∪ {q ∈ Q | ∃a ∈ Σ. δ(q, a) ⊆ Q(i)}.

Since Q is finite, there is an n 6 |Q|, such that Q(n) = Q(n+1) =
⋃

i≥0Q
(i), and it is easy to show that

Qdefin = Q \Q(n).
Let A′ := (Σ, Qdefin, Q0 ∩Qdefin, δ

′) be the ILTA obtained by restricting A to the set of states Qdefin,
that is, δ′(q, a) := δ(q, a) ∩ Qdefin for all q ∈ Qdefin, a ∈ Σ. It is easy to show that A′ satisfies the
second condition in the definition of trim, that is, δ′(q, a) 6= ∅ holds for all q ∈ Qdefin, a ∈ Σ. In
fact, assume that δ′(q, a) = ∅ for some q ∈ Qdefin. Then δ(q, a) ⊆ Qdefin = Q(n), which implies
q ∈ Q(n+1) = Q(n) = Qdefin, contradicting our assumption that q ∈ Qdefin. In addition, A′ has the same
set of runs as A, since it is easy to see that no state in Qdefin can occur in a run: if q = r(u) for a run r of
A, then r(uw) ∈ δ(q, w) for all words w, and thus q ∈ Qdefin.

Second, we construct the set

Qreach := {q ∈ Qdefin | ∃q0 ∈ Q0 ∩Qdefin.∃w ∈ Σ∗. q ∈ δ′(q0, w)}.

This set can obviously be computed by a simple polynomial-time search in the graph corresponding to the
automaton A′: test whether q is reachable from some initial state q0. Now, define B := (Σ, Qreach, Q0 ∩
Qreach, δ

′′) where δ′′(q, a) = δ′(q, a) ∩Qreach for all q ∈ Qreach, a ∈ Σ.
It is easy to see that B is trim. In fact, by the definition of Qreach, every state of B is reachable from

some initial state. In addition, since q ∈ Qreach implies q′ ∈ Qreach for all states q′ ∈ δ′(q, a), the second
condition in the definition of trim remains satisfied. Finally, B has the same set of runs as A′ since any
state in a run r of A′ is reachable from the initial state r(ε). ut

3. The complexity upper-bounds

In this section we show that all the decision problems for language equations with one-sided concate-
nation introduced above can be solved within deterministic exponential time. To this purpose, we show
how to translate a given language equation in normal form, ϕ = ∅, into an ILTA such that there is a one-
to-one correspondence between the solutions of the equation and the runs of the corresponding ILTA.
The states of this ILTA are sets of subexpressions of ϕ.

3.1. Translating language equations into ILTA

Let Σ = {a1, . . . , am} be an alphabet and let X1, . . . , Xn be a set of variables, and consider expressions
of the following form:

• ε is an expression;

• every variable Xi is an expression;

• if ψ is an expression and a ∈ Σ, then ψa is an expresion;

• if ψ and ξ are expressions, then so are (ψ ∪ ξ), (ψ ∩ ξ) and (∼ ψ).
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An arbitrary expression with one-sided concatenation can be transformed to this form by Lemma 1.
Let ϕ(X1, . . . , Xn) be an expression of this form. In the following, we assume that ϕ is fixed, and

denote the set of its subexpressions by Φ. We assume that ε,X1, . . . , Xn ∈ Φ (otherwise, we simply add
them). Let Φ0 = {ψa | ψa ∈ Φ} ∪ {ε} denote the subset of subexpressions from Φ with concatenation
as the top operation, augmented by the constant ε; let the set Φ1 = Φ0 ∪ {X1, . . . , Xn} include the
variables as well. We define two elementary operations on subsets of Φ. The first of them, select, maps
a set q0 ⊆ Φ0 to a finite collection of subsets of Φ1:

select(q0) = {q ⊆ Φ1 | q \ {X1, . . . , Xn} = q0}.

Note that |select(q0)| = 2n, and the elements of select(q0) correspond to different choices of a set of
variables.

The other operation, closure, completes a subset q ⊆ Φ1 by computing all applicable Boolean
operations over these subexpressions. In order to define the set closure(q) ⊆ Φ, we specify for every
expression ξ ∈ Φ whether ξ ∈ closure(q) or not by induction on the structure of ξ:

Base case: For each ξ ∈ {ε,X1, . . . , Xn}, let ξ ∈ closure(q) if and only if ξ ∈ q.

Induction step: Consider ξ ∈ Φ \ {ε,X1, . . . , Xn} and assume that the membership of all proper subex-
pressions of ξ in closure(q) has already been defined. There are four cases depending on the top
operation of ξ:

• If ξ is of the form ψc, then ξ ∈ closure(q) if and only if ξ ∈ q.

• If ξ = ψ ∪ η, then ξ ∈ closure(q) if and only if {ψ, η} ∩ closure(q) 6= ∅.

• If ξ = ψ ∩ η, then ξ ∈ closure(q) if and only if {ψ, η} ⊆ closure(q).

• If ξ = ∼ψ, then ξ ∈ closure(q) if and only if ψ is not in closure(q).

This operator has the following effect: if we take the set of all subexpressions ξ in Φ1 that produce
the word w if applied to the vector L, i.e., that satisfy w ∈ ξ(L), and apply the operator closure to it,
then we obtain the set of all subexpressions in Φ that produce w if applied to L. To be more precise:

Lemma 3. Let L = (L1, . . . , Ln) be a vector of languages and w ∈ Σ∗. Then

closure({ξ ∈ Φ1 | w ∈ ξ(L)}) = {ξ ∈ Φ | w ∈ ξ(L)}.

Proof:
Let q := {ξ ∈ Φ1 | w ∈ ξ(L)}. We prove that any subexpression ξ ∈ Φ is in closure(q) if and only if
w ∈ ξ(L), using induction on the structure of ξ.

Base case. If ξ ∈ Φ1, then, by the definition of closure, ξ ∈ closure(q) if and only if ξ ∈ q. The
latter, according to the definition of q, holds if and only if w ∈ ξ(L).

Induction step. Let ξ = ψ ∪ η. By the definition of closure, ψ ∪ η ∈ closure(q) if and only
if ψ ∈ closure(q) or η ∈ closure(q). By the induction hypothesis, ψ ∈ closure(q) if and only if
w ∈ ψ(L), and η ∈ closure(q) if and only if w ∈ η(L). Therefore, ψ ∪ η ∈ closure(q) if and only
if w ∈ ψ(L) or w ∈ η(L), which is equivalent to w ∈ ψ(L) ∪ η(L) = (ψ ∪ η)(L). The proof for
intersection and complement is analogous. ut
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Definition 1. The ILTA A = (Σ, Q,Q0, δ) induced by the expression ϕ is defined as

• Q := 2Φ,

• Q0 := {closure(q) | q ∈ select({ε})}, and

• δ(q, a) := {closure(q′) | q′ ∈ select({ψa ∈ Φ | ψ ∈ q})}.

Note that |Q0| = 2n and |δ(q, a)| = 2n for all q ∈ Q and a ∈ Σ. Intuitively, the non-determinism is
used to “guess” the values of the variables.

There exists a one-to-one correspondence between the runs of A and n-tuples of languages over
Σ. First, we show how to associate a run with every vector of languages. The run rL : Σ∗ → Q
corresponding to L = (L1, . . . , Ln) is defined inductively as:

rL(ε) = closure({ε} ∪ {Xi | ε ∈ Li}), (3a)

rL(wa) = closure({ψa ∈ Φ | ψ ∈ rL(w)} ∪ {Xi | wa ∈ Li}). (3b)

It is easy to see that rL is indeed a run of A.
Conversely, a given run r : Σ∗ → Q induces the vector of languages Lr := (Lr

1, . . . , L
r
n), where

Lr
i := {w |Xi ∈ r(w)}.

Lemma 4. The mapping of runs to vectors of languages introduced above is a bijection, and the mapping
of vectors of languages to runs is its inverse.

Proof:
First, we prove that going from a vector L = (L1, . . . , Ln) to the corresponding run, and then back to the
corresponding vector is the identity, that is, yields L. Let LrL = (L′1, . . . , L

′
n) be the vector of languages

corresponding to rL. Then we have

L′i = {w |Xi ∈ rL(w)} = {w |Xi ∈ {Xj | w ∈ Lj}} = Li.

The first identity holds by the definition of rL and the fact that closure does not alter the membership
of unknowns Xj . This proves that L = LrL . In particular, this implies that the mapping from runs to
vectors is surjective. To complete the proof, it is enough to show that this mapping is also injective.

We show that different runs correspond to different vectors. If r 6= r′, this means that r(w) 6= r′(w)
for some w ∈ Σ∗. Let w be one of the shortest of such strings. Let L and L′ be the vectors corresponding
to r and r′, respectively. If w = ε, then, by (3a), {Xi | ε ∈ Li} 6= {Xi | ε ∈ L′i}, and so there exists
an index i such that Li 6= L′i. If w = ua for some u ∈ Σ∗ and a ∈ Σ, then, by (3b), {ψa ∈ Φ | ψ ∈
r(u)} ∪ {Xi | ua ∈ Li} 6= {ψa ∈ Φ | ψ ∈ r′(u)} ∪ {Xi | ua ∈ L′i}. Since r(u) = r′(u) (which holds
because r and r′ coincide on all strings shorter than w = ua), the first parts are equal, and therefore
{Xi | ua ∈ Li} 6= {Xi | ua ∈ L′i}, which, as in the previous case, implies that there is an i such that
Li 6= L′i. ut

Next, we prove that, for each run rL, the set of subexpressions in a state rL(w) (for each string
w ∈ Σ∗) contains exactly those subexpressions that produce this string when replacing X1, . . . , Xn by
L1, . . . , Ln:
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Lemma 5. Let L = (L1, . . . , Ln) be a vector of languages and rL be the corresponding run. Then, for
every w ∈ Σ∗ and ξ ∈ Φ, we have w ∈ ξ(L) if and only if ξ ∈ rL(w).

Proof:
Induction on the length of w.

Base case: w = ε. According to (3a), it has to be proved that

closure
(
{ε} ∪ {Xi | ε ∈ Li}

)
= {ξ ∈ Φ | ε ∈ ξ(L)}. (4)

It is easy to see that
{ε} ∪ {Xi | ε ∈ Li} = {ξ ∈ Φ1 | ε ∈ ξ(L)}. (5)

Indeed, looking at the right-hand side of (5), ε ∈ ε(L) by definition, clearly ε /∈ ψc(L) for all ψ and
c, and as for the variables Xi, their membership in both sides is defined identically. By Lemma 3, (5)
implies (4).

Induction step: w = ua for a ∈ Σ. According to (3b) we must prove

closure
(
{ψa ∈ Φ | ψ ∈ rL(u)} ∪ {Xi | ua ∈ Li}

)
= {ξ ∈ Φ | ua ∈ ξ(L)}. (6)

To show this, it is sufficient to establish the correctness of the following statement:

{ψa ∈ Φ | ψ ∈ rL(u)} ∪ {Xi | ua ∈ Li} = {ξ ∈ Φ1 | ua ∈ ξ(L)}. (7)

Again, for the variables Xi, their membership in both sides is defined identically. Obviously, ua /∈ ε(L)
and ua /∈ ψc(L) for any ψ and c 6= a. The statement ua ∈ ψa(L) is equivalent to u ∈ ψ(L), which, by
the induction hypothesis, holds if and only if ψ ∈ rL(u). This shows (7), and thus (6) by Lemma 3. ut

Since the vector L = (L1, . . . , Ln) is a solution of ϕ(X1, . . . , Xn) = ∅ if and only if w 6∈ ϕ(L) for all
w ∈ Σ∗, this lemma implies the following characterization of the runs corresponding to solutions:

Proposition 1. The vector L = (L1, . . . , Ln) is a solution of the equation ϕ(X1, . . . , Xn) = ∅ if and
only if ϕ /∈ rL(w) for every w ∈ Σ∗.

Consequently, if we remove from A all states containing ϕ, then we obtain an automaton whose runs
are in a 1–1-correspondence with the solutions of ϕ(X1, . . . , Xn) = ∅. In addition, we can make this
automaton trim without losing any runs/solutions. Let us call the resulting ILTA Aϕ. Obviously, the size
of Aϕ is exponential in the size of ϕ, and this automaton can be constructed in exponential time.

Proposition 2. For every language equation ϕ(X1, . . . , Xn) = ∅ of the form (2) one can construct in
exponential time a trim ILTA Aϕ whose states are subsets of the set of strict subexpressions of ϕ such
that the mapping r 7→ Lr = (Lr

1, . . . , L
r
n) defined as Lr

i := {w |Xi ∈ r(w)} is a bijection between the
runs of Aϕ and the solutions of ϕ(X1, . . . , Xn) = ∅.

Let us illustrate the construction of Aϕ with a small example. Consider the following language
equation over the alphabet Σ = {a} and in the variables X,Y :

∼(X ∪ Y a) = ∅. (8)
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The set of subexpressions of ϕ := ∼(X ∪ Y a) is

Φ = {ε, Y a, X, Y, X ∪ Y a, ∼(X ∪ Y a)},

and the subsets Φ0 and Φ1 are given by

Φ0 = {ε, Y a} and Φ1 = {ε, Y a, X, Y }.

Figure 1. The trim ILTA for the equation (8), where all arcs are labeled by a.

Instead of first constructing the automaton A, then removing the states containing ϕ, and finally
making the resulting automaton trim, we immediately construct an automaton consisting of those states
not containing ϕ, and where every state is reachable from an initial state. First, consider the initial
states of the original automaton A constructed from ϕ. The set select({ε}) contains four elements:
{ε}, {ε,X}, {ε, Y }, and {ε,X, Y }. After closure is applied, the following initial states are obtained:
q0 = {ε,∼(X ∪ Y a)}, q′0 = {ε,X,X ∪ Y a}, q′′0 = {ε, Y,∼(X ∪ Y a)}, and q′′′0 = {ε,X, Y,X ∪ Y a}.
The states q0 and q′′0 contain ϕ, and thus are not states of Aϕ. Consequently, we begin our construction
with the set of initial states Q0 := {q′0, q′′′0 }.

Consider the transitions from q′′′0 by a. The only concatenation in {ψa ∈ Φ | ψ ∈ q′′′0 } is Y a, and
then closure(q) for all q ∈ select({Y a}) yields the states q1 = {Y a,X∪Y a}, q′1 = {Y a,X,X∪Y a},
q′′1 = {Y a, Y,X ∪ Y a}, and q′′′1 = {Y a,X, Y,X ∪ Y a}. None of these states contains ϕ, and thus we
define δ(q′′′0 , a) := {q1, q

′
1, q
′′
1 , q
′′′
1 }.

Next, consider the transitions from q′0 by a. There is no concatenation in the set {ψa ∈ Φ | ψ ∈ q′0},
and thus we must construct the closures of the sets in select(∅), which yields the states q2 = {∼(X ∪
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Y a)}, q′2 = {X,X ∪ Y a}, q′′2 = {Y,∼(X ∪ Y a)}, and q′′′2 = {X,Y,X ∪ Y a}. If we remove the states
containing ϕ, then we obtain δ(q′0, a) := {q′2, q′′′2 }.

If we continue this process until all states reachable from the initial states are constructed, then we
obtain the ILTA shown in Figure 1. Since this automaton is already trim, it is the automaton Aϕ for the
equation (8).

3.2. Counting the number of solutions

As an immediate consequence of Proposition 2, solvability and unique solvability of a language equation
can be characterized as follows:

Proposition 3. A language equation ϕ = ∅ with one-sided concatenation has

• at least one solution if and only if the corresponding ILTA Aϕ is non-empty.

• exactly one solution if and only if the corresponding ILTA Aϕ is non-empty and deterministic.

Before we can characterize the case of finitely many solutions, we must introduce some notation.

Definition 2. Let A = (Σ, Q,Q0, δ) be an ILTA. A state q ∈ Q is cyclic if q ∈ δ(q, w) for some
w ∈ Σ+, and it is branching if |δ(q, a)| > 1 for some a ∈ Σ.

Paths in an ILTA are defined as usual, that is, a finite path in A is a finite sequence
q1a1q2a2 . . . a`−1q` ∈ Q(ΣQ)∗ such that qi+1 ∈ δ(qi, ai) for all i (1 6 i < `). If there is
such a path, then q` is reachable from q1. Similarly, an infinite path in A is an infinite sequence
q1a1q2a2 . . . ∈ Q(ΣQ)ω such that qi+1 ∈ δ(qi, ai) for all i ≥ 0.

Lemma 6. A trim ILTA A = (Σ, Q,Q0, δ) has finitely many runs if and only if no branching state is
reachable from any cyclic state.

Proof:
If there are no paths from cyclic to branching states, then every infinite path in the ILTA can contain
branching states only among the first |Q| nodes, and after that the transitions become completely deter-
ministic. Therefore, the first |Q| levels of every run determine it completely, and thus the number of
different runs is bounded by the number of different mappings from {w ∈ Σ∗ | |w| 6 |Q|} to Q, which
is finite.

Suppose the condition does not hold, that is, there exists a cyclic state p, with p ∈ δ(p, u) for
u ∈ Σ+, and a branching state q, with q′, q′′ ∈ δ(q, a), q 6= q′, such that q ∈ δ(p, v) for some v ∈ Σ∗.
Let pαp ∈ Q(ΣQ)+ be a path from p to p by u, and let pβq ∈ Q(ΣQ)∗ be a path from p to q by
v. Without loss of generality we may assume that the path pαp contains at most one occurrence of q;
it could be shortened otherwise. For the same reason, we can also assume that the path pβq does not
contain any internal occurrences of q. If pαp contains an occurrence of q, and the next symbol in the
path is a, assume without loss of generality that the next state is q′.

Since A is assumed to be trim, there is a state q0 ∈ Q0 and a string w ∈ Σ∗, such that p ∈ δ(q0, w).
Let q0γp be the corresponding path. Then, for every ` > 0, there exists the following finite path in A:

q0γp(αp)
`βqaq′′ (9)
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Figure 2. A path from a cyclic to a branching state inducing infinitely many runs.

SinceA is trim, we can construct a run r` ofA such that (i) rL contains this path, and (ii) every transition
from q by a except for the last one in this path goes to q′. Then the earliest occurrence of the transition
from q by a to q′′ in r` takes place at the end of the finite path (9), which makes the runs corresponding to
different numbers `1, `2 pairwise distinct. Thus infinitely many different runs have been constructed. ut

The condition in this lemma can obviously be tested in time polynomial in the size of the ILTA since it
is basically a reachability problem. The conditions in the previous proposition can trivially be tested in
time polynomial in the size of Aϕ. Since the size of Aϕ is exponential in the size of ϕ, we thus obtain
the following complexity upper-bounds:

Theorem 1. The problems of testing whether a language equation with one-sided concatenation has a
solution, a unique solution, or finitely many solutions are decidable in deterministic exponential time.

An EXPTIME decision procedure for the solvability problem was already sketched by Aiken et al. [1].
The other two results are new. Regarding the cardinality of the solution set, it remains to show how we
can decide whether an equation has countably or uncountably many solutions. For this purpose, we
adapt Niwiński’s [24] condition for countability of the language accepted by a Rabin tree automaton to
our situation of counting runs of ILTAs.3 If A is an ILTA and q one of its states, then a q-run is defined
like a run, with the only exception that instead of requiring that the root is labeled with an initial state we
require that it is labeled with q. Two q-runs r1, r2 are called essentially different, if there are words v1,
v2, w, such that

• r1(v1) = q = r2(v2) and v1, v2 are not the empty word,

• r1(w) 6= r2(w) and w has neither v1 nor v2 as prefix.

Proposition 4. (Niwiński)
A trim ILTA has uncountably many runs if and only if it has two essentially different q-runs, for some
state q.

In contrast to the previous conditions, it is not immediately clear how this condition can be decided in
time polynomial in the size of the ILTA. The proposed solution is to reduce this problem to the emptiness
problem for Büchi tree automata, which is done in the following lemma.

Lemma 7. For a given ILTA A we can decide in polynomial time whether it has uncountably many runs
or not.
3Actually, we never use that the automaton has independent transitions, and thus the results shown below also hold for arbitrary
looping tree automata.
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Proof:
Given two runs r1, r2, we denote by (r1, r2) the tree whose nodes u ∈ Σ∗ are labeled with (r1(u), r2(u)).
For every state q of A we construct a Büchi automaton Bq that accepts exactly the trees (r1, r2) where
r1, r2 are essentially different q-runs. We can then apply the emptiness test for Büchi automata to Bq
for each states q to test whether there are essentially different q-runs of A. Recall that a Büchi tree
automaton differs from a looping tree automaton in that it has a set of final states, and that a run of such
an automaton is accepting if in every path at least one final state occurs infinitely often. Also recall that
the emptiness test for Büchi tree-automata is polynomial in the size of the automaton [39].

The states of the Büchi automaton Bq are of the form (q1, q2,M) where q1, q2 are states of A and
M is a subset of {qfirst?, qsecond?, diff?, initial}. The idea underlying the third component M is the
following:

• if M contains qfirst?, then we are looking for a node in the subtree below with q in the first
component: this is a search for v1 in the definition of essentially different runs;

• if M contains qsecond?, then we are looking for a q in the second component of some node in the
subtree below;

• diff? says that we are looking for a node in the subtree below with different first and second
components;

• initial is present only in the initial state.

The automaton Bq starts with the initial state (q, q, {qfirst?, qsecond?, diff?, initial}). If it is in the state
(q1, q2,M) and it reads the corresponding symbol (q1, q2), then it can make the following transitions:4

(q1, q2,M), (q1, q2)→ ((p11, p21,M1), . . . , (p1m, p2m,Mm))

whenever the following conditions are satisfied:

1. q1 → (p11, . . . , p1m) and q2 → (p21, . . . , p2m) are transitions in the ILTA (now represented as a
tree automaton, not an NFA).

2. M1, . . . ,Mn are subsets of M \ {initial}.

3. If qfirst? ∈M , then

• qfirst? belongs to exactly one of M1, . . . ,Mm, or

• q1 = q and diff?, initial 6∈M , and qfirst? belongs to none of M1, . . . ,Mm.

Note that the choice of which alternative to take realizes the non-deterministic decision whether
the current node is v1 (second case) or not (first case). In case we have diff? ∈ M , we cannot
choose the second case since this would then violate the condition that v1 cannot be a prefix of
w. The same is true if initial is in M , because this would violate the condition that v1 is not the
empty word. In the first case, we also make a non-deterministic decision, in which a successor tree
containing v1 will be guessed.

4If it reads a symbol different from the first two components of its state, then no transition is possible.
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4. If qsecond? ∈M , then

• qsecond? belongs to exactly one of M1, . . . ,Mm, or

• q2 = q and diff?, initial 6∈M , and qsecond? belongs to none of M1, . . . ,Mm.

The explanation for this is analogous to the one for qfirst?. Note that we can, of course, also decide
that v1 = v2 if both q1 and q2 are equal to q.

5. If diff? in M then

• diff? belongs to exactly one of M1, . . . ,Mm, or

• q1 6= q2 and diff? belongs to none of M1, . . . ,Mm.

We are looking for the difference in the first or second subtree. If q1 is different from q2, we can
also decide that this is w.

This completes the description of the transition relation of Bq. The set of final states of Bq consists of all
the states (q1, q2,M) where M is empty.

It is easy to see that this automaton indeed accepts exactly the trees (r1, r2) where r1 and r2 are
essentially different q-runs of A. In fact, in a run of Bq we eventually get rid of all states with non-empty
M in all paths, if appropriate nodes v1, v2, w are found. ut

As an immediate consequence of this proposition we obtain:

Theorem 2. The problem of testing whether a language equation with one-sided concatenation has
countably many solutions is decidable in exponential time.

Let us apply our method to determine the cardinality of the set of solutions of the equation (8), whose
trim ILTA is given in Figure 1. The ILTA is non-empty, and hence the equation has solutions. It is non-
deterministic (actually, it has two initial states, and each of its states has multiple transitions by a), and
hence the equation has multiple solutions. There are paths from cyclic states to branching states. For
example, consider the state {X,X ∪ Y a}, which is cyclic because of the self-loop, and which is itself
branching. Consequently, there are infinitely many solutions.

Finally, let us construct a pair of essentially different q-runs, corresponding to the condition of Propo-
sition 4. Let q = {X,X ∪ Y a}, w = a, v1 = aa and v2 = aaa. The required runs are as follows (since
the branching is unary, trees degrade to paths):

{X,X ∪ Y a} a−→ {X,X ∪ Y a} a−→ {X,X ∪ Y a} a−→ · · ·
w l v1 ↑ v2 ↓

{X,X ∪ Y a} a−→ {X,Y,X ∪ Y a} a−→ {X,Y a,X ∪ Y a} a−→ {X,X ∪ Y a} a−→

The existence of these paths implies that the ILTA has uncountably many runs, and therefore the equation
has uncountably many solutions.
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3.3. Least and greatest solutions

As pointed out at the end of Subsection 2.1, we must compare solution vectors not on all components, but
only on those components corresponding to a set of focus variables. Let ϕ(X1, . . . , Xn, Y1, . . . , Y`) =
∅ be a language equation with one-sided concatenation, and {X1, . . . , Xn} be the set of fo-
cus variables. Given vectors of languages L = (L1, . . . , Ln, Ln+1, . . . , Ln+`) and L′ =
(L′1, . . . , L

′
n, L

′
n+1, . . . , L

′
n+`), we define L � L′ if and only if Li ⊆ L′i for all i = 1, . . . , n. Unless

` = 0, the relation � is not a partial order, but only a pre-order, because any two vectors of languages
that coincide on the focus variables are deemed equivalent. Accordingly, a language equation may have
multiple least or greatest solutions with respect to �, but these least or greatest solutions will always
coincide on the focus variables.

Let Aϕ = (Σ, Q,Q0, δ) be the ILTA corresponding to the above language equation with focus vari-
ables X1, . . . , Xn. We define a preorder on its set of states Q as follows:

q 4 q′ if and only if q ∩ {X1, . . . , Xn} ⊆ q′ ∩ {X1, . . . , Xn}.

This preorder on states defines the following preorder on runs of A: for any r, r′ : Σ∗ → Q we say that
r 4 r′ if r(w) 4 r′(w) for all w ∈ Σ∗.

As an easy consequence of the definition of the mapping L 7→ rL we obtain that this mapping is a
preorder isomorphism:

Lemma 8. Let L,L′ be vectors of languages. Then L � L′ if and only if rL 4 rL′ .

Consequently, to decide whether the equation ϕ = ∅ has a least/greatest solution with respect to �, it is
enough to decide whether Aϕ has a least/greatest run with respect to 4. In the following, we show how
to decide in polynomial time whether a given ILTA has a least run with respect to any preorder on its
states. Greatest runs can be represented by applying the same construction to the preorder <.

Definition 3. Let A = (Σ, Q,Q0, δ) be an ILTA, let 4 be a preorder on Q. Define another relation @ on
Q as follows: q @ q′ if and only if there exists a run r with root label q, such that, for every run r′ with
root label q′, we have r 4 r′.

The relation @ is transitive, but it is not necessarily reflexive, and hence, strictly speaking, is not
a preorder. Nevertheless, we will use it as if it were a preorder, and, in particular, least elements with
respect to @ will be considered. A subset S ⊆ Q is said to have a least element q ∈ S, if q @ q′ for all
q′ ∈ S. Note that this condition also covers the case where q = q′, i.e., for a least element q we require
in particular q @ q.

The following lemma is an immediate consequence of the definition of @.

Lemma 9. An ILTA A = (Σ, Q,Q0, δ) has a least run with respect to the preorder 4 on Q if and only
if Q0 has a least element with respect to @.

The next lemma presents an algorithm for constructing @.

Lemma 10. For every trim ILTA A = (Σ, Q,Q0, δ) and for every polynomial-time decidable preorder
4 on Q, the corresponding relation @ on Q can be constructed in time polynomial in |Q|.
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Proof:
We show that the complement of @ can be computed as

R =
∞⋃
k=0

Rk, (10a)

where

R0 = {(q, q′) | q 64 q′}, (10b)

Rk+1 = Rk ∪ {(q, q′) | ∃a ∈ Σ.∀qa ∈ δ(q, a).∃q′a ∈ δ(q′, a). Rk(qa, q
′
a)} (10c)

From this definition it immediately follows that R, and thus also its complement @, can be computed in
polynomial time.

By (10b,10c), R satisfies the following equation

R = {(q, q′) | q 64 q′ or ∃a ∈ Σ.∀qa ∈ δ(q, a).∃q′a ∈ δ(q′, a). R(qa, q
′
a)},

and therefore

¬R = {(q, q′) | q 4 q′ and ∀a ∈ Σ.∃qa ∈ δ(q, a).∀q′a ∈ δ(q′, a). ¬R(qa, q
′
a)}. (11)

It is sufficient to prove that (i) R(q, q′) implies q 6@ q′ and (ii) ¬R(q, q′) implies q @ q′.
Part i: We prove that Rk(q, q′) for some k > 0 implies q 6@ q′ by induction on k.
Base case: if R0(q, q′), then q 64 q′ by (10b). Therefore, for every run r with root label q and for

every run r′ with root label q′ we know that r(ε) = q 64 q′ = r′(ε), and thus, clearly, q 6@ q′.
Induction step: let (q, q′) ∈ Rk+1 \ Rk, and let a ∈ Σ be the symbol promised in (10c). In order to

show that q 6@ q′, consider an arbitrary run r starting from q. Let qa = r(a) and define a run ra with root
qa as ra(u) = r(au) for all u ∈ Σ∗.

According to (10c), for the state qa there exists a state q′a ∈ δ(q′, a), such that Rk(qa, q
′
a). By the

induction hypothesis, this implies qa 6@ q′a. That is, for the run ra with root qa there exists a run r′a with
root q′a such that ra 64 r′a, that is, ra(w) 64 r′a(w) for some w ∈ Σ∗. Construct a run r′ with root q′, such
that r′(au) = r′a(u) for all u ∈ Σ∗; since A is trim, this run can also be defined in some way for strings
beginning from symbols other than a. We thus have r(aw) = ra(w) 64 r′a(w) = r′(aw), and hence
r 64 r′, which completes the proof that q 6@ q′.

Part ii: We show that ¬R(q, q′) implies q @ q′.
Let us construct a run r starting from q and simultaneously verify that for every run r′ starting from

q′ we have r 4 r′. The run r is defined inductively on the length of w such that, for every r′ starting
from q′, we have ¬R(r(u), r′(u)) for all prefixes u of w.

Base case: w = ε. Here r(ε) = q, r′(ε) = q′ and ¬R(q, q′) by assumption.
Induction step. Consider a string w ∈ Σ∗ and assume ¬R(r(u), r′(u)) for all prefixes of w. In

particular, ¬R(r(w), r′(w)), and, by (11), for every a ∈ Σ there exists a certain state qa ∈ δ(r(w), a)
satisfying the property stated in (11). Define r(wa) as qa, and consider the state q′a := r′(wa) ∈
δ(r′(w), a): because of our choice of qa we have for this q′a that ¬R(qa, q

′
a) holds. This finishes the

induction step.
Having constructed such a run r, it is left to notice that, by (11), ¬R(r(w), r′(w)) for all w ∈ Σ∗

implies r(w) 4 r′(w) for all w, and hence r 4 r′, which proves q @ q′. ut
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Since the size of Aϕ is exponential in the size of ϕ, we thus obtain the following complexity upper
bound for deciding the existence of a least solution. (Greatest solutions can be treated analogously.)

Theorem 3. The problem of testing whether a language equation with one-sided concatenation has a
least (greatest) solution is decidable in EXPTIME.

Figure 3. The automaton from Figure 1 with its states numbered, showing the variables only.

Let us return to our example: the equation (8) and the corresponding ILTA given in Figure 1. In order
to determine whether the ILTA has a least run, we need to construct the preorder 4 and the corresponding
relation @. Let us name the states of this automaton by numbers, as shown in Figure 3. Note that we
have only represented the variables contained in each state, since this is the relevant information for
determining both relations.

The preorder 4 is computed simply by containment of variable components, and hence, for instance,
0 4 0, 0 4 1, 0 4 3, 0 4 5, 0 4 7, 1 4 3, 1 4 7, etc. On the other hand, 0 64 4, 0 64 6, 1 64 0, etc.

The computation of 6@ begins with computing the negation of 4:

R0 = {(0, 4), (0, 6), (1, 0), (1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (3, 0),

(3, 2), (3, 4), (3, 5), (3, 6), (5, 4), (5, 6), (6, 0), (6, 2), (6, 4), (6, 5),

(7, 0), (7, 2), (7, 4), (7, 5), (7, 6)}.

More elements are added toR in the next steps of the iteration. For instance, consider the pair (2, 3) /∈ R0

and consider all transitions (with a) from 2, which yield the states 2 and 3. For the transition from 2 to
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3, there exists a transition from 3 to 6, and we have (3, 6) ∈ R0. For the transition from 2 to 2, the same
transition from 3 to 6 yields the pair (2, 6) ∈ R0. Therefore, (2, 3) ∈ R1.

Using this pair, we can determine that (0, 2) ∈ R2. Indeed, for the transition from 0 to 2 there is a
transition from 2 to 3, and we have (2, 3) ∈ R1. For the transition from 0 to 3 there exists a transition
from 2 to 2, and we have (3, 2) ∈ R0 ⊆ R1.

Proceeding in this way, we eventually conclude that R = Q × Q, that is, @ = ∅. Therefore, the
elements of Q0 are incomparable with respect to @ (this would be the case even if there were only one
state in Q0), and hence Lemma 9 implies that the automaton does not have a least run. Consequently, the
equation does not have a least solution.

Figure 4. The automaton from Fig. 3, but now showing only the focus variable X .

Let us now consider the case where X is the only focus variable. The revised version of Figure 3
is given in Figure 4, where only the focus variable X is shown (thick lines will be explained later in
Section 3.4). The values of the relation 4 are presented on the left-hand side of Table 1. In this case,
q 4 q′ for most pairs of states, except for those, where q contains X , while q′ does not. Thus, we have

R0 = {(0, 4), (0, 6), (1, 4), (1, 6), (2, 4), (2, 6),

(3, 4), (3, 6), (5, 4), (5, 6), (7, 4), (7, 6)}.

We can determine that (2, 3) ∈ R1 in the same way as in the previous case. However, (3, 2) 6∈ R0, and
thus (0, 2) is not put into R2. Overall, the iteration adds only the following pairs to R:

R \R0 = {(0, 1), (0, 3), (0, 7), (2, 1), (2, 3), (2, 7), (4, 1),

(4, 3), (4, 6), (4, 7), (5, 1), (5, 3), (5, 7)}.
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The relation @ contains the remaining 39 pairs. It is given on the right-hand side of Table 1.

4 0 1 2 3 4 5 6 7

0 + + + + − + − +

1 + + + + − + − +

2 + + + + − + − +

3 + + + + − + − +

4 + + + + + + + +

5 + + + + − + − +

6 + + + + + + + +

7 + + + + − + − +

@ 0 1 2 3 4 5 6 7

0 + − + − − + − −
1 + + + + − + − +

2 + − + − − + − −
3 + + + + − + − +

4 + − + − + + − −
5 + − + − − + − −
6 + + + + + + + +

7 + + + + − + − +

Table 1. The relations 4 and @ for the case of the focus variable X .

Since 1 @ 0 and 1 @ 1, the set Q0 = {0, 1} has 1 as least element. By Lemma 9, this implies that
the automaton has a least run, and thus the equation has a least solution with respect to the focus variable
X .

3.4. Computing regular solutions

Until now, we have considered only decision problems, which require a yes or no answer. If a language
equation has a (unique, least, greatest) solution, one might also be interested not just in knowing that
it exists, but also in computing such a solution. However, solutions are vectors of possibly infinite
languages, so how can one represent such solutions in a finite way? If the solution is regular, that is, if
all its components are regular languages, then it can be represented by finite automata for the component
languages. Although, in general, solutions of language equations with one-sided concatenation need
not be regular, one can show that a solvable language equation always has a regular solution, and that
least and greatest solutions are always regular. One way of showing this is to express (least, greatest)
solutions in Rabin’s monadic second-order logic [33], and use well-known results for this logic. Our
representation of solutions by runs of an effectively constructable ILTA provides an easy and natural way
of determining regular solutions. It also yields a standalone proof of regularity of unique/least/greatest
solutions of language equations with one-sided concatenation.

Given a non-empty trim ILTA A = (Σ, Q,Q0, δ), the deterministic ILTA B = (Σ, Q, {q0}, δ′) is
called a deterministic subautomaton of A if q0 ∈ Q0 and δ′(q, a) ⊆ δ(q, a) with |δ′(q, a)| = 1 for all
q ∈ Q and a ∈ Σ. Obviously, a non-deterministic ILTA can have exponentially many deterministic
subautomata, but we can compute a single one of them by choosing an arbitrary element q0 of Q0 and,
for every q ∈ Q and a ∈ Σ, an arbitrary element of q′ of δ(q, a) and defining δ′(q, a) := {q′}.

Lemma 11. Assume that the language equation ϕ(X1, . . . , Xn) = ∅ is solvable. Let Bϕ be a determin-
istic subautomaton of Aϕ and let B(i)

ϕ be the DFA obtained from Bϕ by using the set Fi := {q | Xi ∈ q}
(i = 1, . . . , n) as the set of final states. Then the vector (L1, . . . , Ln) with Li = L(B

(i)
ϕ ) is a regular

solution of ϕ(X1, . . . , Xn) = ∅.
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Proof:
Since Bϕ is deterministic, it has a unique run r, and since it is a subautomaton of Aϕ, r is also a run
of Aϕ. Thus, the corresponding vector of languages Lr = (Lr

1, . . . , L
r
n) with Lr

i = {w | Xi ∈ r(w)}
is a solution of ϕ(X1, . . . , Xn) = ∅. Obviously, we have Lr

i = L(B
(i)
ϕ ), and thus (L1, . . . , Ln) =

(Lr
1, . . . , L

r
n) is a regular solution of ϕ(X1, . . . , Xn) = ∅. ut

The following theorem is an immediate consequence of this lemma.

Theorem 4. Let ϕ(X1, . . . , Xn, Y1, . . . Y`) = ∅ be a solvable language equation with one-sided con-
catenation. Then it has a regular solution (L1, . . . , Ln) such that deterministic finite automata recogniz-
ing the languages L1, . . . , Ln can be constructed in exponential time.

For the case of a unique solution, the trim ILTAAϕ is deterministic, and thus is the only deterministic
subautomaton of itself.

Theorem 5. Assume that the language equation ϕ(X1, . . . , Xn) = ∅ has a unique solution
(L1, . . . , Ln). Then this solution is regular, and deterministic automata accepting the languages Li can
be obtained as follows: for each i = 1, . . . , n, let A(i)

ϕ be the DFA obtained from Aϕ by using the set
Fi := {q | Xi ∈ q} as the set of final states; then Li = L(A

(i)
ϕ ).

In order to obtain automata representing a least solution, we must modify the constructed ILTA into
an ILTA that has a unique least run. Let A = (Σ, Q,Q0, δ) be an ILTA, which has one or more least runs
with respect to the preorder 4. Define the corresponding relation @ as in Section 3.3.

Construct another ILTAB = (Σ, Q,Q′0, δ
′) as follows. Its initial set is defined asQ′0 := {q0}, where

q0 ∈ Q0 is any least element of Q0 with respect to @: such a q0 exists by Lemma 9. The transitions are
defined by

δ′(q, a) :=


{q′}, where q′ is any least element of δ(q, a) with respect to @,

if such an element exists

∅, if δ(q, a) has no least element

for each q ∈ Q and a ∈ Σ.

Lemma 12. Let A be an ILTA that has at least one least run with respect to 4, and let B be an ILTA
constructed from A as defined above. Then the automaton B has a unique run, which is among the least
runs of A.

Proof:
Since |Q′0| 6 1 and |δ′(q, a)| 6 1 for all q and a, B has at most one run. It has to be proved that B has a
run r and this run is one of the least runs of A.

We define r(w) for w ∈ Σ∗ by induction on the length of w. Simultaneously, we prove that, for
every n > 0, there exists a least run r̂ of A such that r(u) = r̂(u) for very u ∈ Σ∗ with |u| 6 n.

Base case. Let r̂ be any least run of A and define r(ε) := r̂(ε).
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Induction step. Let r(u) = r̂(u) for all u ∈ Σ∗ such that |u| 6 n, where r̂ is a least run of A.
We need to define r(wa) for every w ∈ Σ∗ of length n and for every a ∈ Σ. For every such w and a,
consider the state q := r(w). (Note that r(w) = r̂(w) by the induction hypothesis.)

Let us first show that δ(q, a) contains a least element with respect to @. Let q̂a = r̂(wa) and define
the run r̂a from q̂a as r̂a(v) = r̂(wav) for all v ∈ Σ∗. If δ(q, a) does not contain a least element, then
for this state q̂a there exists a state q′a, such that q̂a 6@ q′a. The latter implies that for the run r̂a from q̂a
there exists a run r′a from q′a, such that r̂a 64 r′a, i.e., r̂a(v0) 64 r′a(v0) for some v0 ∈ Σ∗. Construct a
new run r′ as follows: r′(wav) = r′a(v) for all v ∈ Σ∗ and r′(u) = r̂(u) for all v ∈ Σ∗ \ waΣ∗. Then
r̂(wav0) 64 r′(wav0), and therefore r̂ 64 r′, which contradicts the assumption that r̂ is one of the least
runs.

We have thus proved that there are least elements with respect to @ in δ(q, a), and therefore δ′(q, a) =
{qa}, where qa is one of these least elements. Then there exists a run ra from qa such that ra 4 r′a for
every run r′a from q′a; in particular, ra 4 r̂a. Define r(wa) as ra(ε) and also denote rw,a := ra.

In order finish the induction step, we need to show that there exists another least run r̃ ofA, such that
r(u) = r̃(u) for all u of length up to n+ 1. Define such a run r̃ as follows:

r̃(u) = r̂(u) (for all u ∈ Σ∗ such that |u| 6 n),

r̃(wav) = rw,a(v) (for all w ∈ Σn, a ∈ Σ and v ∈ Σ∗).

Then r̃ 4 r̂, and since r̂ is one of the least runs of A, r̃ is also one of the least runs of A. This completes
the induction step. ut

Using this lemma, one can construct finite automata for components of a least or greatest solution of
a language equation by processing the corresponding ILTA. This is stated in the following theorem.

Theorem 6. Let ϕ(X1, . . . , Xn, Y1, . . . Y`) = ∅ be a language equation with one-sided concatenation,
and assume that it has a least (greatest) solution with respect to focus variables X1, . . . , Xn, with X1 =
L1, . . . , Xn = Ln. Then the languages L1, . . . , Ln are regular, and finite automata recognizing them can
be constructed in exponential time.

Proof:
Consider the preorder � on (n + `)-tuples of languages defined as (L1, . . . , Ln, Ln+1, . . . , Ln+`) �
(L′1, . . . , L

′
n, L

′
n+1, . . . , L

′
n+`) if Li ⊆ L′i for all i ∈ {1, . . . , n} and assume that ϕ = ∅ has one or

more least solutions with respect to this preorder. Consider the ILTA Aϕ corresponding to this language
equation, and define the preorder 4 on the set of states of Aϕ, corresponding to the preorder �, as
introduced above. By Lemma 8, Aϕ has one or more least runs with respect to 4, and these runs
correspond to the least solutions of ϕ = ∅.

According to Lemma 10, construct the relation @ on the set of states of Aϕ, corresponding to 4.
Using this relation, construct an ILTA B from Aϕ as described in the above Lemma 12. By this lemma,
the unique run of B is one of the least runs of Aϕ, and accordingly represents the languages L1, . . . , Ln

from the least solutions of the language equation ϕ = ∅. Since B is a deterministic subautomaton of
Aϕ, Lemma 11 asserts the regularity of these languages and yields DFAs recognizing them. ut

Let us now conclude our example by constructing a DFA for the least solution of the equation (8)
with respect to the focus variable X . The relevant ILTA is shown in Figure 4. The least element in
Q0 = {0, 1} is 1.



F. Baader, A. Okhotin / On language equations with one-sided concatenation 23

Let us determine least elements in δ(q, a) for all states q. Consider the transitions from 1 to 4, 5, 6
and 7. According to Table 1, 6 @ 4, 6 @ 5, 6 @ 6 and 6 @ 7, and therefore 6 is a least element in δ(1, a)
(in fact the only least element). Hence, the deterministic transition from 1 by a is routed to 6. Proceeding
in this way, we obtain the transitions marked by thick lines in Figure 4. Further setting the states 4 and 6
as non-accepting and the rest as accepting yields a DFA recognizing the value of X in the least solution.

Once the unreachable states are eliminated, we obtain an automaton with the states 1 and 6, which
recognizes the language {ε}. This is the value of X in the least solution, with respect to the set of focus
variables {X}. Note that, in this solution, the non-focus variable Y receives the value a∗.

4. The complexity lower-bounds

We show that the decision problems for language equations introduced in Section 2 are EXPTIME-hard
already for language equations with one-sided concatenation and union as the only Boolean operation.
For solvability, this was already established by Baader and Küsters [2]. In the latter paper, it was also
proved that such an equation has a solution if and only if it has a greatest solution, and hence the
EXPTIME-hardness of the existence of a greatest solution follows from this result as well.

In the following we will concentrate on the remaining decision problems. Similarly to Baader and
Küsters [2], we show their EXPTIME-hardness by a reduction from the intersection emptiness problem
for deterministic looping tree automata. A tree processed by such an automaton is represented as a
language, and the acceptance of the tree by the automaton is defined by language equations. First, we
define this representation and establish its basic properties used in later proofs.

4.1. Representing infinite trees by languages

Given a ranked alphabet Γ, we use the alphabet ΣΓ := {f [i] | f ∈ Σ, 1 6 i 6 rank f} as the alphabet
underlying our language equations. For every infinite tree t over Γ, we define a representation of t as a
string language over ΣΓ:

S(t) = {f [i1]
1 . . . f

[i`]
` | ` > 0, t has a path with labels f1, . . . , f`, f`+1, in

which f1 labels the root of t, and each fj+1 labels

the ij-th successor of the node with label fj}.
(12)

The strings in S(t) unambiguously encode finite prefixes of paths in t. The representation of every infinite
tree f(t1, . . . , tk) can be expressed through the representations of its subtrees t1, . . . , tk as follows:

S(f(t1, . . . , tk)) = {ε} ∪
k⋃

i=1

{f [i]u | u ∈ S(ti)}

This representation is illustrated in Figure 5, where Γ = {f, g}, with rank f = 2 and rank g = 1.
The following lemma characterizes the languages of the form S(t):

Lemma 13. The language L ⊆ Σ∗Γ is of the form L = S(t) for some infinite tree t iff

I. ε ∈ L;
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Figure 5. Representing an infinite tree t as a language S(t): the nodes in the selected path are represented by the
strings ε, f [2], f [2]f [1], f [2]f [1]g[1].

II. for every w ∈ L there exists a unique symbol f ∈ Γ, such that wf [1] ∈ L;

III. if wf [i] ∈ L, then wf [j] ∈ L for every j (1 6 j 6 rank f );

IV. for every w ∈ Σ∗Γ and f [i] ∈ ΣΓ, wf [i] ∈ L implies w ∈ L.

Proof:
First, we show the “only-if” direction. Thus, assume that L = S(t).
(I) ε ∈ S(t) by (12).
(II) If w = f

[i1]
1 . . . f

[i`]
` ∈ S(t), then, by (12), there exists a corresponding path in t; the symbol f we

are looking for is the i`-th successor of the last vertex in this path, that is, the one labeled with f`. Since
f has rank at least one, wf [1] also belongs to S(t).
(III) If wf [i] ∈ S(t), then the condition in (12) is met, and it is the same for wf [j].
(IV) If the condition in (12) is met for wf [i], then this obviously implies that the condition is also satisfied
for w.

Second, we show the “if” direction. Thus assume that L satisfies the conditions I–IV. Let us con-
struct an infinite tree t with vertices labeled with Γ, maintaining the following invariant:

For every constructed vertex v labeled with f , consider the path leading to this vertex. If
this path is labeled with f1, . . . , f`, f`+1 where f1 labels the root, f`+1 = f labels v, and
each fj+1 labels the ij-th successor of fj , then the string f [i1]

1 . . . f
[i`]
` f [1] belongs to L.

Base case. By conditions I and II, there is a unique symbol f0 ∈ Γ, such that f [1]
0 ∈ L. Let us label the

root with f0.
Induction step. Consider a path to any vertex labeled with a symbol f of rank n and the corresponding

string f [i1]
1 . . . f

[i`]
` f [1] ∈ L, and let w = f

[i1]
1 . . . f

[i`]
` . By condition III, wf [2], . . . , wf [n] ∈ L. By

condition II applied n times, there exist unique symbols g1, . . . , gn ∈ Γ, such that wf [i]g
[1]
i ∈ L for all i.

Let us supply the vertex labeled with f with n successors, which are respectively labeled with g1, . . . , gn.
By our choice of the symbols gi, the invariant is also satisfied for the paths leading to these new vertices.
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This completes our description of the inductive definition of the tree t. It remains to be shown that
L = S(t). First note that, by construction, all strings corresponding to finite paths in t belong to L.
Hence we have S(t) ⊆ L. Second, assume that L 6= S(t), and let wf [i] be the shortest string in L that
is not in S(t). Then, wf [1] ∈ L by condition III. In addition, by condition IV, we have w ∈ L, and also
w ∈ S(t) since it is shorter than wf [i]. Thus, when extending the vertex in t corresponding to the last
node on the path represented by w, we would have chosen the (unique) symbol f with wf [1] ∈ L to label
the corresponding successor node. But then wf [i] ∈ S(t). ut

The mapping S is extended in the obvious way to sets of trees: S(T ) :=
⋃

t∈T S(t). We also consider
the set of pre-images of this operation

S−1(L) := {t | S(t) ⊆ L}, (13)

which acts as an “inverse” of S, in the sense given in the following lemma.

Lemma 14. For every set of trees T , T ⊆ S−1(S(T )) and S(S−1(S(T ))) = S(T ).

Proof:
(I) If t ∈ T , then S(t) ⊆ S(T ) by the definition of S(T ), and hence t ∈ S−1(S(t)) according to (13).

(II) “⊆” If w ∈ Σ∗Γ is in S(S−1(S(T ))), then there exists a tree t ∈ S−1(S(T )), such that w ∈ S(t).
Hence, S(t) ⊆ S(T ), and therefore w ∈ S(T ).

“⊇” By the first part of the proof, T ⊆ S−1(S(T )), which implies S(T ) ⊆ S(S−1(S(T ))) by the
monotonicity of S. ut

4.2. Representing looping tree automata by language equations

Let A = (Q,Γ, {q0},∆) be a deterministic looping tree automaton over Γ, where ∆ is represented as
a partial function from Q × Γ to Q∗. We introduce another partial function q : Σ∗Γ → Q that simulates
the operation of A on a finite prefix of a single path encoded as in (12). Define q(w) inductively on the
length of w:

• q(ε) = q0, and

• q(uf [i]) is defined as the i-th component of ∆(q(u), f) if this transition is defined, and undefined
otherwise.

Basically, if q(u) is defined, then it gives the unique label of the node corresponding to u in a run of A
on a tree containing the path encoded by u.

Now define a system of language equations (14) over the alphabet ΣΓ ∪ Q, which simulates the
computation of the automaton A. The set of variables of this equation is {Xq,f | ∆(q, f) is defined} ∪
{X0}, and the system consists of the two equations⋃

∆(q, f) is defined

Xq,f · {q} = {q0} ∪
⋃

∆(q,f)=(q1,...,qk)

Xq,f · {f [1]q1, . . . , f
[k]qk}, (14a)

X0 =
⋃

∆(q, f) is defined

Xq,f . (14b)

The following lemma establishes some basic properties of solutions of this system.
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Lemma 15. Let (. . . , Lq,f , . . . , L0) be any solution of (14). Then, for all w ∈ Σ∗Γ, q ∈ Q and f ∈ Γ,

I. w ∈ Lq,f if and only if q(w) = q and wf [i] ∈ L0 for all i ∈ {1, . . . , rank f}.

II. If w ∈ Lq,f for some q, then there exists an infinite tree t, such that {wf [1], . . . , wf [rank f ]} ⊆
S(t) ⊆ L0.

Proof:
Denote by L ⊆ Σ∗ΓQ the common value of the left-hand side and the right-hand side of (14a) under the
substitution Xq,f = Lq,f .

Part I. Let us first show by induction on the length of w that w ∈ Lq,f implies that q(w) is defined and
equals q.

Base case. If ε ∈ Lq,f , then, by the left-hand side of the equation, q ∈ L. According to the right-hand
side, this implies q = q0 = q(ε).

Induction step. Let w = uh[i], where u ∈ Σ∗Γ and h[i] ∈ ΣΓ. Since uh[i] ∈ Lq,f , we obtain
uh[i]q ∈ L by the left-hand side. Therefore, by the right-hand side, there exists a state p ∈ Q such that
u ∈ Lp,h, ∆(p, h) = (q1, . . . , qk) and q = qi. By the induction hypothesis, u ∈ Lp,h implies q(u) = p.
Combining this with the value of ∆(p, h), we obtain q(uh[i]) = qi = q.

Now let us demonstrate that w ∈ Lq,f implies wf [i] ∈ L0 for all i. Since the variable Xq,f exists,
the transition ∆(q, f) is defined, and thus yields a tuple (q1, . . . , qk) ∈ Qk, where k = rank f . By the
right-hand side of the equation, wf [i]qi ∈ L, and therefore, by the left-hand side, there exists a symbol
g ∈ Γ, such that wf [i] ∈ Lqi,g ⊆ L0.

It remains to prove the converse claim that wf [i] ∈ L0 implies w ∈ Lq(w),f . If wf [i] ∈ L0, then
wf [i] ∈ Lp,h for some p ∈ Q and h ∈ Γ such that ∆(p, h) is defined. Hence, by the left-hand side,
wf [i]p ∈ L. By the right-hand side, there exists a state q ∈ Q, such that ∆(q, f) = (q1, . . . , qk), where
p = qi and w ∈ Lq,f . As shown in the proof of the “only-if” direction, w ∈ Lq,f implies q(w) = q, and
thus we have w ∈ Lq(w),f . This concludes the proof of Part I of the lemma.

Part II. Let w ∈ Lq,f for some q ∈ Q. We construct a tree t by induction on the length of paths, while
satisfying as an invariant that all paths in t are represented by strings in L0.

Base case. The empty path is represented by ε. The empty word ε is in L0 since the right-hand
side of the equation yields q0 ∈ L, and thus there must be a symbol f such that ∆(q0, f) is defined and
ε ∈ Lq0,f ⊆ L0.

Induction step. Let the tree contain a finite path represented by x ∈ Σ∗Γ. By the induction hypothesis,
x ∈ L0, and hence x ∈ Lp,h for some p ∈ Q, h ∈ Γ. By Part I, p = q(x). The symbol h is defined not
necessarily uniquely. If wf has a prefix xg, then xg ∈ L0. In fact, one can use the implication from right
to left of Part I to show that any prefix of an element of L0 also belongs to L0. But then xg ∈ L0 and
p = q(x) yield x ∈ Lp,g by Part I. Hence, we can choose h = g. Otherwise the choice of h is arbitrary.

We continue the path represented by x with a vertex with label h. This yields rankh longer strings
of the form xh[j] (1 6 j 6 rankh). Since x ∈ Lp,h, by Part I, xh[i] ∈ L0, which shows that the invariant
of the construction remains true. ut

Based on this lemma and the properties of the mapping S mentioned above, we can show the follow-
ing characterization of the solutions of (14). In particular, this characterization shows that the value L0

of the variable X0 determines the whole solution (. . . , Lq,f , . . . , L0).
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Lemma 16. A vector of languages (. . . , Lq,f , . . . , L0) is a solution of (14) if and only if

∅ ⊂ S−1(L0) ⊆ L(A), (15)

Lq,f = {w | q(w) = q, wf [i] ∈ L0 for all i} (q ∈ Q, f ∈ Γ), (16)

and there exists a set of trees T , such that L0 = S(T ).

Proof:
First, we show the “only-if” direction. Consider an arbitrary solution (. . . , Lq,f , . . . , L0) of (14). For
everyw ∈ L0, let Tw be the set of all trees t such thatw ∈ S(t) ⊆ L0. According to Part II of Lemma 15,
there exists at least one such tree, and thus we obtain

{w} ⊆ S(Tw) ⊆ L0.

Summing up these inequalities for all w ∈ L0, we obtain⋃
w∈L0

{w} ⊆
⋃

w∈L0
S(Tw) ⊆

⋃
w∈L0

L0

|| || ||

L0 ⊆ S(
⋃

w∈L0
Tw) ⊆ L0,

which shows that L0 = S(
⋃

w∈L Tw). Thus, if we define T :=
⋃

w∈L0
Tw, then the last assertion in the

statement of the lemma is satisfied. It remains to show that the conditions (15–16) hold as well.

• To see that S−1(L0) 6= ∅, note that q0 ∈
⋃

q,f Lq,f · {q} by (14a), and hence ε ∈
⋃

f Lq0,f ⊆ L0.
The tree tε associated with ε by Part II of Lemma 15 is in Tε ⊆ T , and hence, by Lemma 14,
tε ∈ S−1(S(T )) = S−1(L0).

• Next, we prove the containment S−1(L0) ⊆ L(A). Suppose there exists a tree t ∈ S−1(L0) (that
is, S(t) ⊆ L0), such that t /∈ L(A). Because t is not accepted by the looping automaton A, there
is no run of A on t, that is, when trying to construct the (unique) run of A on t, starting from
the root, we encounter a node in which there are no possible transitions. By the definition of the
function q, this means that there is a string w ∈ S(t), on which q(w) is undefined. However, we
have w ∈ S(t) ⊆ L0, and thus there exists a pair (q, f) with w ∈ Lq,f . But then, according to
Part I of Lemma 15, q(w) = q, which yields a contradiction.

• The condition (16) is given by Part I of Lemma 15.

To show the “if” direction, let us start by considering the case where L0 = S(t) for a tree t ∈ L(A).
The first claim is that substituting

Lt
q,f := {w | q(w) = q, wf [i] ∈ S(t) for all i} (17)

for Xq,f (for q ∈ Q and f ∈ Γ with ∆(q, f) defined) turns (14a) into an equality.
The value of the left-hand side of (14a) under this substitution is⋃

∆(q, f) is defined

Lt
q,f · {q} = {w · q(w) | ∃f.∀i. wf [i] ∈ S(t)} = {w · q(w) | w ∈ S(t)}.
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The latter equality follows from Lemma 13: if wf [i] ∈ S(t), then w ∈ S(t) by Part IV of that lemma;
conversely, if w ∈ S(t), then wf [1] ∈ S(t) for some f by Part II, and then wf [i] ∈ S(t) for all i by
Part III.

The right-hand side of (14a) looks as follows under this substitution:

{q0} ∪
⋃

∆(q,f)=(q1,...,qk) L
t
q,f · {f [1]q1, . . . , f

[k]qk} =

= ε · q(ε) ∪ {uf [i] · q(uf [i]) | ∀i. uf [i] ∈ S(t)} =

= {w · q(w) | w ∈ S(t)}.

This proves that the substitution that replaces Xt
q,f by Lt

q,f satisfies the equation (14a). In order to
show that the equation (14b) is satisfied as well if we replace X0 by L0 = S(t), we must prove that
S(t) =

⋃
q,f L

t
q,f :

“⊆” If w ∈ S(t), then q(w) is defined, since t ∈ L(A). By Lemma 13 (Parts II and III), there exists a
symbol f ∈ Γ with wf [i] ∈ S(t) for all i ∈ {1, . . . , rank f}. Therefore, w ∈ Lt

q(w),f .

“⊇” If w ∈ Lt
q,f for some pair (q, f), then wf [1] ∈ S(t). Hence, by Part IV of Lemma 13, we have

w ∈ S(t).

This completes the proof of the “if” direction for the case where T = {t} for a tree t ∈ L(A).
Now, let L0 = S(T ) for an arbitrary set of trees T such that (15) holds. Then T ⊆ S−1(S(T )) =

S−1(L0) ⊆ L(A), where the first inclusion holds by Lemma 14 and the second by the assumption (15),
and therefore T ⊆ L(A).

For every t ∈ T ⊆ L(A), consider the vector of languages (. . . , Lt
q,f , . . . , L

t
0) corresponding to t,

defined by (17) and by Lt
0 := S(t). We have shown above that this vector is a solution of the system (14).

Consider the componentwise union of these vectors for all t ∈ T , that is, the vector (. . . , Lq,f , . . . , L0)
defined as Lq,f :=

⋃
t∈T L

t
q,f and L0 :=

⋃
t∈T L

t
0 = S(T ). As a union of solutions, it is a solution as

well.5

It remains to show that the components Lq,f defined above are indeed the ones induced by L0 =
S(T ) according to (16):

Lq,f =
⋃
t∈T
{w | q(w) = q, wf [i] ∈ S(t) for all i}

= {w | q(w) = q, wf [i] ∈ S(T ) for all i}.

This completes the proof of the “if” direction. ut

4.3. Complexity of the decision problems

The next theorem summarizes the main results of this paper.

Theorem 7. The problems of testing, for a given system of language equations with one-sided concate-
nation and any set of Boolean operations containing union, whether
5Note that the system (14) is a system of language equations with one-sided concatenation and union, for which this property
is well-known [2].
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1. it has a solution,

2. it has a unique solution,

3. it has finitely many solutions,

4. it has countably many solutions,

5. it has a least (greatest) solution with respect to componentwise inclusion

are all EXPTIME-complete.

Given the results shown in Section 3 and in [1, 2], it is enough to prove that testing whether a
language equation with one-sided concatenation and union has a unique solution, finitely many solutions,
countably many solutions, and a least solution, respectively, are EXPTIME-hard problems.

All four cases are proved by a single reduction from the EXPTIME-complete intersection emptiness
problem for deterministic looping tree automata [35, 2]. Let A1, . . . ,An be deterministic looping tree
automata over a common ranked alphabet Γ, and assume without loss of generality that their sets of
states Q1, . . . , Qn are pairwise disjoint and that the initial state q(i)

0 of every Ai is not reenterable, that
is, it never occurs on the right-hand side of a transition.

We augment Γ with a new unary symbol ftriv, and transform each automaton Ai into an automaton
A′i over the alphabet Γ′ = Γ ∪ {ftriv} by adding the extra transition (q

(i)
0 , ftriv)→ q

(i)
0 . The set of trees

accepted by A′i equals {f `triv(t)) | ` > 0, t ∈ L(Ai)} ∪ {ttriv}, where ttriv denotes an infinite branch
with all vertices labeled by ftriv. Consequently, the intersection

⋂n
i=1 L(A′i) is equal to {f `triv(t)) | ` >

0, t ∈
⋂n

i=1 L(Ai)} ∪ {ttriv}.
For each automaton A′i, construct two language equations of the form (14), and consider the result-

ing system of 2n equations, which share a common variable X0. It is easy to show that the vector of
languages Ltriv := (. . . , L

(i)
q,f , . . . , L0) defined by

L0 := S(ttriv) and

L
(i)
q,f determined by L0 and A′i according to (16) in Lemma 16

is always a solution of the system. In fact, S(ttriv) = (f
[1]
triv)∗, and therefore S−1(L0) = S−1((f

[1]
triv)∗) =

{ttriv}, which is a subset of L(A′i) for all i. Thus, the condition (15) in Lemma 16 is also satisfied, and
n applications of that lemma show that the constructed vector satisfies each pair of equations, and is
therefore a solution of the whole system.

Whether the system has any other solutions depends on whether
⋂n

i=1 L(Ai) is empty or not.

Lemma 17. If
⋂n

i=1 L(Ai) = ∅, then the system of language equations has a unique solution.

Proof:
If
⋂n

i=1 L(Ai) = ∅, then
⋂n

i=1 L(A′i) = {ttriv}. We prove that in this case the system has the unique
solution Ltriv.
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Consider any solution (. . . , L
(i)
q,f , . . . , L0), and let us apply Lemma 16 to the i-th pair of equations.

We obtain:

∅ ⊂ S−1(L0) ⊆ L(A′i) (1 6 i 6 n), (18a)

L0 = S(Ti) (for some set of trees Ti) (18b)

and that all the languages L[i]
q,f are completely determined by L0.

Intersecting (18a) for all i yields S−1(L0) ⊆
⋂n

i=1 L(A′i), where the latter equals {ttriv} by assump-
tion. The inclusions ∅ ⊂ S−1(L0) ⊆ {ttriv} imply

S−1(L0) = {ttriv}.

Application of S to both sides yields

S(S−1(L0)) = S(ttriv).

Recalling that L0 = S(Ti) for some set of trees Ti (where i ∈ {1, . . . , n} is arbitrary), we obtain

S(S−1(S(Ti))) = S(ttriv).

The left-hand side of the last equality equals S(Ti) by Lemma 14, and hence we have

L0 = S(Ti) = S(ttriv).

Therefore, L0 is uniquely determined, and since the rest of the components of the solution are in turn
completely determined by L0, the solution is unique. ut

Lemma 18. If
⋂n

i=1 L(Ai) 6= ∅, then the system of language equations has uncountably many solu-
tions.

Proof:
If
⋂n

i=1 L(Ai) 6= ∅, then there exists a tree t0 ∈
⋂n

i=1 L(Ai), and f `triv(t0) ∈
⋂n

i=1 L(A′i) for all ` > 0.
We construct uncountably many solutions of the system as follows.

For every non-empty set of integers ∅ ⊂ N ⊆ N, define the set of trees

TN = {f `triv(t0) | ` ∈ N}. (19)

Note that TN is a subset of
⋂n

i=1 L(A′i). We prove that the vector of languages (. . . , L
(i)
q,f,N , . . . , L0,N )

determined by L0,N := S(TN ) according to (16) is a solution of the system, and that different sets N
yield different solutions.

First, let us show that this vector satisfies the conditions of Lemma 16 for every i-th pair of equations
constructed with respect to A′i, and hence is a solution of the system:

• S−1(L0,N ) 6= ∅ since ∃` ∈ N , and hence f `triv(t0) ∈ TN ⊆ S−1(S(TN )) = S−1(L0,N ), where
the inclusion is by Lemma 14.
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• Let us prove that S−1(L0,N ) ⊆ L(A′i). Consider any tree t ∈ S−1(L0,N ) and let us consider
its starting chain (possibly empty) of nodes labeled ftriv. There are two cases: either the chain
of ftriv is infinite, in which case t = ttriv ∈ L(A′i) and the claim is proved, or the tree can be
represented in the form f `triv(t′), where ` > 0 and the root node of t′ is not ftriv.

By definition, t ∈ S−1(L0,N ) implies S(t) ⊆ L0,N = S(TN ). On the other hand, S(t) =

(f
[1]
triv)` · S(t′), where none of the strings in S(t′) begins with f [1]

triv. Then, by (19), all strings in
S(t) must be in (f

[1]
triv)` ·S(t0) = S(f `triv(t0)), and therefore S(t′) ⊆ S(t0). We claim that t′ = t0.

Suppose to the contrary that t′ 6= t0. Then there is a (possibly empty) common finite path in t′ and
t0, encoded as w = f

[i1]
1 . . . f

[ik]
k , which is extended with a node labeled g in t′, and with a node

labeled h 6= g in t0. Then wg[1] must be in S(t′) ⊆ S(t0). Thus we obtain wg[1] ∈ S(t0), which
means that the path w in t0 is extended with both a node labeled g and a node labeled h 6= g, which
contradicts Part II of Lemma 13.

Now, t′ = t0 implies t = f `triv(t′) = f `triv(t0) ∈ L(A′i).

The second claim is that solutions corresponding to different sets of integers are different. It has to be
proved that, for any sets N 6= N ′, S(TN ) 6= S(TN ′). Let w ∈ S(t0)\{ε}. Consider any number ` in the
symmetric difference of N and N ′, and suppose without loss of generality that ` ∈ N and ` /∈ N ′. Then
(f

[1]
triv)`w ∈ S(TN ) \ S(TN ′). Thus we have constructed uncountably many pairwise distinct solutions

of the system. ut

Since the constructed system of language equations has either exactly one solution or uncountably
many solutions, we can conclude that it has a unique solution (finitely many solutions, countably many
solutions) if and only if the intersection of the languages generated by the n given deterministic looping
tree automata is empty. This proves that the problem of deciding whether a system of language equations
with one-sided concatenation and union has a unique solution (finitely many solutions, countably many
solutions) is EXPTIME-hard. It remains to consider the case of a least solution.

Lemma 19. If
⋂n

i=1 L(Ai) 6= ∅, then the system of language equations does not have a least solution.

Proof:
Consider the two solutions induced byL0 := S(ttriv) andL′0 := S(T{0}) = S(t0), where t0 and T{0} are
defined as in the proof of the previous lemma. If the system has a least solution, then its X0-component
must be a subset of both L0 and L′0, that is, less or equal to

S(ttriv)︸ ︷︷ ︸
=(f

[1]
triv)∗

∩S(t)︸︷︷︸
⊆Σ∗Γ

= {ε}.

However, according to Lemma 16, this component must be of the form S(T ) for some non-empty set of
trees T , and thus has to be infinite, which yields a contradiction. Therefore, no solution of the system can
be less than both solutions given above, which shows that there is no least solution among the solutions
of the system. ut

Since the constructed system of language equations has either exactly one solution (and thus a least
solution) or no least solution, we can conclude that it has a least solution if and only if the intersection
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of the languages generated by the n given deterministic looping tree automata is empty. This proves that
the problem of deciding whether a system of language equations with one-sided concatenation and union
has a least solution is EXPTIME-hard. This completes the proof of Theorem 7.

5. Conclusion

We have shown that several interesting decision problems for language equations with one-sided concate-
nation are EXPTIME-complete: solvability, existence of a unique (least, greatest) solution, and determin-
ing the cardinality (finite, countable, uncountable) of the set of solutions. The complexity upper-bounds
are shown for all decision problems by a uniform translation into a looping tree automaton with inde-
pendent transitions, i.e., a non-deterministic finite automaton that is viewed as a looping tree automaton.
Accordingly, the complexity lower-bounds are shown by a uniform reduction from the intersection empti-
ness problem for deterministic looping tree automata. Though the translation of deterministic looping
tree automata into language equations is identical to the one given in [2], we believe that the proof of cor-
rectness of the reduction is simpler and much easier to comprehend than the one given there. In addition,
our translation is also used to show EXPTIME-hardness of decision problems other than solvability.

The decision procedures based on the construction of an ILTA have been implemented. This imple-
mentation does not just answer yes or no. In case there is a unique (least, greatest) solution, we know that
its components are regular languages, and the implementation constructs deterministic finite automata
for these components (see Section 3.4).

In [4] we have shown that the bijection between solutions of a language equation ϕ(X1, . . . , Xn) =
∅ with one-sided concatenation and runs of the corresponding trim ILTA Aϕ (Proposition 2) can also
be used to solve disequations, i.e., systems consisting of one equation ϕ(X1, . . . , Xn) = ∅ and finitely
many inequations of the form ψ(X1, . . . , Xn) 6= ∅. However, to take care of the inequations, a new type
of automata working on infinite trees, called looping automata with colors, had to be introduced.
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