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Abstract We study the complexity of reasoning in fuzzy
description logics with semantics based on finite residuated
lattices. For the logic SHI, we show that deciding satisfia-
bility and subsumption of concepts, with or without a TBox,
are EXPTIME-complete problems. InALCHI and a variant
of SI, these decision problems become PSPACE-complete
when restricted to acyclic TBoxes. This matches the known
complexity bounds for reasoning in crisp description logics
between ALC and SHI.
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1 Introduction

To enable automatic systems to draw inferences about a situ-
ation, the knowledge of the application domain is often rep-
resented in a logical calculus. Description Logics (DLs) [1]
are a family of such logical formalisms that describe knowl-
edge with the help of concepts (unary predicates) and roles
(binary predicates). For example, the concept Human can
be used to model the set of all human beings and the role
hasChild to express the parentage relationship between indi-
vidual humans.

Complex concepts can then be built using logical con-
structors like conjunction (u) and existential restriction (∃).
For example, one can express the set of all parents through
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the concept Humanu∃hasChild.Human, i.e. the set of all
humans that have at least one child that is also human.

Description logics are determined by the set of construc-
tors that they allow. The smallest propositionally closed DL
is called ALC. The logic that extends ALC with transi-
tive roles is denoted by S. Two other important construc-
tors are inverse roles and role hierarchies; logics including
these constructors bear the letters I and H, respectively, in
their names. Thus, SHI is the DL that extends ALC with
transitive and inverse roles, and role hierarchies. The relative
expressivity of these logics is depicted in Figure 1.1.

In description logics, knowledge is represented through
a set of axioms, called an ontology, that restrict the class of
possible interpretations. It is possible, for example, to ex-
press that every person having a child must be a parent with
the axiom ∃hasChild.HumanvParent. Two of the main rea-
soning tasks in DLs are deciding subsumption (is concept C
always included in concept D?) and satisfiability (is concept
C non-contradictory?). The precise complexity of answering
these and similar questions is one of the major issues in DL
research.

DLs have been successfully applied to represent knowl-
edge, in particular in the biomedical domain, where very
large ontologies such as SNOMED CT1 and Galen2 are used
in practice. Moreover, the current standard ontology lan-
guage for the semantic web, OWL 2,3 is based on the DL
SROIQ(D), whose expressivity goes beyond SHI.

The traditional way to interpret description logic con-
cepts as subsets of a domain is often ill-suited to express
vague or imprecise concepts like HighTemperature: there is
no clear-cut point where a temperature becomes “high,” but
we know that 36◦C should belong to this concept to a “lower

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.opengalen.org/
3 http://www.w3.org/TR/owl2-overview/
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degree” than, say 39◦C. This poses a big problem for the use
of medical ontologies, where most of the observations are
necessarily vague. Fuzzy Description Logics have been in-
troduced to alleviate this problem by allowing an element to
belong to a concept with a certain membership degree. The
underlying notions are adapted from Fuzzy Set Theory [33]
and Mathematical Fuzzy Logic [22]. A more detailed de-
scription on the applicability of fuzzy semantics for medical
applications can be found in [27].

Fuzzy extensions of DLs have been studied for more
than a decade, and the literature on the topic is very ex-
tensive (see [26] for a survey). However, most of those ap-
proaches are based on the simple Zadeh semantics with truth
values ranging over the interval [0,1] of rational numbers,
where conjunction is interpreted as the minimum. The last
lustrum has seen a shift towards more general semantics for
the treatment of vagueness. On the one hand, the use of
continuous t-norms as the underlying interpretation function
for conjunction was proposed in [23]. On the other hand,
[30] allows lattice-based truth values, but still restricts to
Zadeh-like semantics.

Most of the work since then has focused on t-norm based
semantics over the unit interval; yet, ontologies are usually
restricted to be unfoldable or acyclic [6,8,9]. Indeed, we
have shown that removing this restriction easily leads to un-
decidability. If general concept inclusion axioms (GCIs) are
allowed, then reasoning in ALC over infinite lattices be-
comes undecidable [15]. Similar results have been shown
for several fuzzy DLs based on ALC with t-norms over the
unit interval [3,4,16,18]. These results motivate restricting
the logics, e.g. to finitely-valued semantics.

If one considers the Łukasiewicz t-norm over finitely
many values, then reasoning is decidable even for very ex-
pressive DLs, as shown in [11] through a reduction to crisp
reasoning. When restricted to ALC without terminological
axioms, concept satisfiability is PSPACE-complete as in the
crisp case [17].4

When the underlying semantics is generalized to lattices,
we denote the resulting DLs with the prefix L-, for exam-
ple L-ALC. For L-ALC with general TBoxes, reasoning is
EXPTIME-complete [12,14], again matching the complex-
ity of the crisp case, even if arbitrary (finite) lattices and
t-norms are allowed. However, the complexity of subsump-
tion of concepts has not yet been studied, since the stan-
dard reduction used in crisp DLs does not work with general
t-norm semantics.

In [13], these results were generalized to the fuzzy logic
L-ALCI. Concept satisfiability in this logic is EXPTIME-
complete w.r.t. general TBoxes, and PSPACE-complete w.r.t.
acyclic TBoxes. Moreover, the same complexity bounds are

4 The paper [17] actually considers the modal logic K, but the results
can be easily transferred to ALC.
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Fig. 1.1 The relative expressivity of the description logics between
ALC and SHI.

also shown to hold for deciding subsumption between con-
cepts.

In this paper, we extend the results from [13] and analyze
the complexity of reasoning in the fuzzy description logics
between L-ALC and L-SHI (see Figure 1.1). In most cases,
the complexity bounds of the crisp case can be matched.
More precisely, we show that the following complexity re-
sults for crisp DLs also hold for semantics based on finite
residuated lattices:

1. satisfiability and subsumption w.r.t. general TBoxes is
EXPTIME-complete in every DL between L-ALC and
L-SHI;

2. reasoning w.r.t. acyclic TBoxes is PSPACE-complete in
all DLs between L-ALC and L-ALCHI and in the sub-
logic L-SIc of L-SI;5

3. even if the TBox is empty, reasoning in the logics L-SH
and L-SHI is EXPTIME-complete.

All the lower bounds are given by the complexity results
for crisp DLs. To prove 1. and 3., we provide an automata-
based EXPTIME reasoning procedure for L-SHI w.r.t. gen-
eral TBoxes (Section 4). For 2., we show in Section 5 that
the automata can be modified into a so-called PSPACE-on-
the-fly construction when restricted to the logics L-SIc and
L-ALCHI, thus obtaining the PSPACE upper bound. The
precise complexity of full L-SI is left open.

To the best of our knowledge, the precise complexity of
(crisp)ALCHI has not yet been studied. Thus, our analysis
of the complexity of fuzzy DLs also yields a new, although
not surprising, complexity result for this crisp DL.

To improve the readability of this paper, some of the
more technical proofs have been moved to an appendix.

2 Preliminaries

We first recall some results from automata theory that will
allow us to obtain tight upper bounds for the complexity of

5 In L-SIc, roles are restricted to be crisp.
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reasoning in some special fuzzy DLs. The full proofs and
main intuitions behind these results can be found in [2]. To
aid the understanding of the notions introduced, we include
a small example in the appendix (Example B.1).

We then provide a short introduction to residuated lat-
tices, which are the basis for the semantics of our logic. For
a more comprehensive view on this topic, we refer the reader
to [19,21].

2.1 PSPACE Automata

We will obtain the main results through a reduction to the
emptiness problem of looping automata on infinite trees (see
Section 4). These automata receive as input the (unlabeled)
infinite k-ary tree with k ∈ N. The nodes of this tree are
words in K∗, where K := {1, . . . ,k}: the empty word ε rep-
resents the root node, and ui represents the i-th successor of
the node u. A path is a sequence v1, . . . ,vm of nodes such
that v1 = ε and vi+1 is a successor of vi for every i≥ 1.

Definition 2.1 (looping automaton) A looping automaton
(LA) is a tupleA= (Q, I,∆) where Q is a finite set of states,
I ⊆ Q a set of initial states, and ∆ ⊆ Qk+1 the transition
relation. A run of A is a mapping r : K∗ → Q assigning
states to each node of K∗ such that r(ε) ∈ I and for every
u ∈ K∗, (r(u),r(u1), . . . ,r(uk)) ∈ ∆ . The emptiness problem
for looping automata is to decide whether a given looping
automaton has a run.

The emptiness of looping automata can be decided in (deter-
ministic) polynomial time using a bottom-up approach that
finds all the states that can appear in a run [32]. In some
cases, it is convenient to use a non-deterministic top-down
approach, which relies on the fact that if there is a run, then
there is also a periodic run. This method guesses a period
and verifies that it does correspond to a run. To speed up
this search, the period should be as short as possible. This
motivates the notion of blocking automata.

Definition 2.2 (m-blocking) Let A = (Q,∆ , I) be a loop-
ing automaton and � a binary relation over Q called the
blocking relation. The automatonA is called �-invariant if
q � p and (q0,q1, . . . ,qi−1,q,qi+1, . . . ,qk) ∈ ∆ always im-
ply (q0,q1, . . . ,qi−1, p,qi+1, . . . ,qk) ∈ ∆ .

A �-invariant automaton is m-blocking for m ∈N if ev-
ery path v1, . . . ,vm of length m in a run r of A contains two
nodes vi and v j (i < j) such that r(v j)� r(vi).

Every looping automaton is =-invariant and m-blocking for
every m > |Q|. However, the main interest in blocking au-
tomata arises when one can find a smaller bound on m. Al-
though this is not always possible, one can try to reduce this
limit with the help of a so-called faithful family of functions.

Definition 2.3 (faithful) LetA= (Q,∆ , I) be a looping au-
tomaton on k-ary trees. The family of functions fq : Q→ Q
for q ∈ Q is faithful w.r.t. A if for all q,q0,q1, . . . ,qk ∈ Q,
if (q,q1, . . . ,qk) ∈ ∆ , then (q, fq(q1), . . . , fq(qk)) ∈ ∆ , and
if (q0,q1, . . . ,qk) ∈ ∆ , then ( fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆ .
The subautomaton AS = (Q,∆ S, I) of A induced by this
family has the transition relation

∆
S = {(q, fq(q1), . . . , fq(qk)) | (q,q1, . . . ,qk) ∈ ∆}.

Lemma 2.4 ([2]) Let A be a looping automaton and AS its
subautomaton induced by a faithful family of functions. Then
A has a run iff AS has a run.

The construction that we will present in Section 4 produces
automata that are exponential in the size of the input. For
such cases, it has been shown that if the automata are m-
blocking for some m bounded polynomially in the size of the
input (that is, logarithmically in the size of the automaton),
then the emptiness test requires only polynomial space.

Definition 2.5 (PSPACE on-the-fly construction) Assume
that we have a set I of inputs and a construction that yields,
for every i ∈ I, an mi-blocking automaton Ai = (Qi,∆i, Ii)
working on ki-ary trees. This construction is a PSPACE on-
the-fly construction if there is a polynomial P such that, for
every input i of size n

(i) mi ≤ P(n) and ki ≤ P(n),
(ii) every element of Qi has size bounded by P(n), and

(iii) one can non-deterministically guess in time bounded
by P(n) an element of Ii, and, for a state q ∈ Qi, a
transition from ∆i with first component q.

Theorem 2.6 ([2]) If the looping automataAi are obtained
from the inputs i ∈ I by a PSPACE on-the-fly construction,
then emptiness of Ai can be decided in PSPACE.

In Section 5, we will use this theorem to give PSPACE upper
bounds for some reasoning problems. Example B.1 in the
appendix presents a small looping automaton and a PSPACE

on-the-fly construction.

2.2 Residuated Lattices

A lattice is an algebraic structure (L,∨,∧) over a carrier
set L with the two binary operations join ∨ and meet ∧ that
are idempotent, associative, and commutative and satisfy the
absorption laws `1 ∨ (`1 ∧ `2) = `1 = `1 ∧ (`1 ∨ `2) for all
`1, `2 ∈ L. These operations induce a partial order ≤ on L,
defined by `1 ≤ `2 iff `1∧`2 = `1 for all `1, `2 ∈ L. As usual,
we write `1 < `2 if `1 ≤ `2 and `1 6= `2. A subset T ⊆ L
is called an antichain (in L) if there are no two elements
`1, `2 ∈ T with `1 < `2.
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Fig. 2.1 The De Morgan lattice L2 with ∼`a = `a and ∼`b = `b.

The lattice (L,∨,∧) is called distributive if ∨ and ∧ dis-
tribute over each other, finite if L is finite, and bounded if it
has a minimum and a maximum element, denoted as 0 and
1, respectively. It is complete if joins and meets of arbitrary
subsets T ⊆ L, denoted by

∨
`∈T ` and

∧
`∈T ` respectively,

exist. As a simple consequence of these definitions, every
finite lattice is also complete, and every complete lattice is
bounded, with 0 =

∧
`∈L ` and 1 =

∨
`∈L `. Whenever it is

clear from the context, we will simply use the carrier set L
to represent the lattice (L,∨,∧).

A De Morgan lattice is a bounded distributive lattice L
extended with an involutive, anti-monotonic unary operation
∼, called (De Morgan) negation, satisfying the De Morgan
laws ∼(`1 ∨ `2) = ∼`1 ∧∼`2 and ∼(`1 ∧ `2) = ∼`1 ∨∼`2
for all `1, `2 ∈ L. Figure 2.1 shows a simple De Morgan lat-
tice, where ∼`a = `a, ∼`b = `b, ∼1 = 0 and ∼0 = 1. This
lattice was originally introduced in [5] to reason about in-
complete and contradictory knowledge. The truth value `a
indicates missing information, while `b labels a statement
that is both true and false, e.g. according to different sources
of information.

Given a lattice L, a t-norm is an associative and commu-
tative binary operator on L that is monotonic and has 1 as its
unit. A residuated lattice is a lattice L with a t-norm ⊗ and
a binary operator ⇒ (called residuum) such that for every
three elements `1, `2, `3 ∈ L we have

`1⊗ `2 ≤ `3 iff `2 ≤ `1⇒ `3.

A simple consequence of this definition is that for all pairs
of elements `1, `2 ∈ L we have

– 1⇒ `1 = `1, and
– `1 ≤ `2 iff `1⇒ `2 = 1.

In a complete lattice L, a t-norm⊗ is called continuous if for
all `∈ L and T ⊆ L we have `⊗(

∨
`′∈T `

′) =
∨

`′∈T (`⊗`′). In
this case, L is residuated with the unique residuum defined
by

`1⇒ `2 =
∨
{x | `1⊗ x≤ `2}.

For a residuated De Morgan lattice L, the t-conorm ⊕ is
defined as `1⊕ `2 := ∼(∼`1⊗∼`2). It is easy to see that
the meet operator `1 ∧ `2 always defines a t-norm (called
the Gödel t-norm), whose t-conorm is the join `1 ∨ `2. This
t-norm is continuous if L is completely distributive. Thus,
if we extend the lattice L2 from Figure 2.1 with the Gödel
t-norm, we obtain a residuated lattice, and e.g. `a⇒ `b = `b.

A prominent example of a residuated lattice is the real
interval [0,1] with the usual order and Gödel t-norm that is
the basis of fuzzy set theory [33]. This theory defines fuzzy
sets as a generalization of classical sets and uses the lattice
operations to generalize the set operations such as intersec-
tion, union, and complement. Fuzzy set theory has also been
extended to complete residuated De Morgan lattices [20,34],
as we now briefly describe.

Given a residuated De Morgan lattice L, a fuzzy set is a
function A : D→ L that maps the elements of a domain D to
values in L. The value A(d) for d ∈D specifies the degree to
which d belongs to A. The fuzzy intersection C of two fuzzy
sets A,B over the domain D is defined by

C(d) = A(d)⊗B(d)

for all d ∈ D. Similarly, fuzzy union is defined using the
t-conorm ⊕ and fuzzy complement using the De Morgan
negation ∼.

Given two fuzzy sets A,B over the domain D, the inclu-
sion degree of A in B is∧
d∈D

A(d)⇒ B(d).

This value is 1 iff A(d)≤ B(d) holds for all d ∈D. The idea
is that, the higher the inclusion degree is, the closer A is to
being “properly included” in B.

A fuzzy binary relation is a fuzzy set R : D×D→ L on
the domain D×D. This function is called transitive if for all
d,e, f ∈ D we have R(d,e)⊗R(e, f )≤ R(d, f ).

3 The Fuzzy Description Logic L-SHI

For the rest of this paper, L denotes a complete residuated De
Morgan lattice with the t-norm ⊗. The fuzzy DL L-SHI is
a generalization of the crisp DL SHI that uses the elements
of L as truth values, instead of just the Boolean true and
false. The syntax of L-SHI is the same as that of SHI.

Definition 3.1 (syntax) Let NC and NR be two disjoint sets
of concept names and role names, respectively, and the sub-
set N+

R ⊆ NR be the set of transitive role names. The set of
(complex) roles is NR∪{r− | r ∈ NR}. The set of (complex)
concepts is defined inductively as follows:

– every concept name A ∈ NC is a concept;
– if C and D are concepts and s is a complex role, then the

conjunction CuD, the disjunction CtD, the implication
C→D, the negation ¬C, the existential restriction ∃s.C,
the value restriction ∀s.C, the top concept >, and the
bottom concept ⊥ are also concepts.

The inverse of a complex role s (denoted by s) is s− if s∈NR

and r if s = r−. A role s is transitive if either s or s belongs
to N+

R .
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The semantics of fuzzy description logics is based on
interpretation functions that map every concept C to a fuzzy
set over L that specifies the membership degree of every do-
main element to the concept C.

Definition 3.2 (semantics) An interpretation is a pair of the
form I = (∆I , ·I) where ∆I is a non-empty set, called the
domain of I, and ·I is a function that assigns to every con-
cept name A a fuzzy set AI : ∆I→ L and to every role name
r a fuzzy binary relation rI : ∆I ×∆I → L that is transitive
whenever r ∈ N+

R .
The function ·I is extended to complex roles and con-

cepts as follows for every x,y ∈ ∆I :

– (r−)I(x,y) = rI(y,x),
– >I(x) = 1,
– ⊥I(x) = 0,
– (CuD)I(x) =CI(x)⊗DI(x),
– (CtD)I(x) =CI(x)⊕DI(x),
– (C→ D)I(x) =CI(x)⇒ DI(x),
– (¬C)I(x) =∼CI(x),
– (∃s.C)I(x) =

∨
z∈∆I (sI(x,z)⊗CI(z)), and

– (∀s.C)I(x) =
∧

z∈∆I (sI(x,z)⇒CI(z)).

We emphasize that SHI is a special case of L-SHI, where
concepts are interpreted by classical sets. That is, the under-
lying lattice contains only the elements 0 and 1, which are
interpreted as false and true, respectively, and the t-norm,
the t-conorm, and the residuum are conjunction, disjunction,
and implication, respectively.

For an arbitrary lattice L, existential and value restric-
tions need not be dual to each other, i.e. (¬∃s.C)I might
be different from (∀s.¬C)I , as illustrated by the following
example.

Example 3.3 Consider the simple lattice L2 from Figure 2.1
with the Gödel t-norm and I be an interpretation over the
domain ∆I = {x} with AI(x) = `b and sI(x,x) = `a. Then
(∃s.A)I(x) = `a ∧ `b = 0, and thus (¬∃s.A)I(x) = 1, but
(∀s.¬A)I(x) = `a⇒∼`b = `b 6= 1.

In DLs, the knowledge of a domain is represented by a set
of axioms that restrict the set of interpretations that can be
considered for reasoning. In the presence of fuzzy seman-
tics, these axioms can also have an associated value from
the lattice L, which intuitively expresses the degree to which
they must be satisfied.

Definition 3.4 (axioms) Terminological axioms are concept
definitions of the form 〈A .

= C, `〉 or general concept inclu-
sions (GCIs) 〈C v D, `〉, where A ∈ NC, C,D are L-SHI
concepts, and ` ∈ L. A general TBox is a finite set of GCIs.
An acyclic TBox is a finite set of concept definitions such
that every concept name occurs at most once as the left-
hand side of an axiom, and there is no cyclic dependency

between defined concept names, where a concept name A
depends on another concept name B if B occurs in a defini-
tion of the form 〈A .

= C, `〉 in the TBox. A TBox is either a
general TBox or an acyclic TBox.

Role inclusions are of the form sv s′, where s and s′ are
complex roles. An RBox is a finite set of role inclusions. An
ontology (T ,R) consists of a TBox T and an RBoxR.

An interpretation I satisfies the GCI 〈CvD, `〉 if for ev-
ery x ∈ ∆I , CI(x)⇒ DI(x) ≥ ` holds. It satisfies the con-
cept definition 〈A .

= C, `〉 if for every x ∈ ∆I , it holds that
(AI(x) ⇒ CI(x))⊗ (CI(x) ⇒ AI(x)) ≥ `. It satisfies the
role inclusion sv s′ if sI(x,y)≤ s′I(x,y) for every x,y∈∆I .
I is a model of the ontology (T ,R) if it satisfies all axioms
in T andR.

Notice that general TBoxes are indeed more general than
acyclic TBoxes: the concept definition 〈A .

=C, `〉 can be ex-
pressed by the GCI 〈> v (A→C)u (C→ A), `〉.

If T is an acyclic TBox, then all concept names occur-
ring on the left-hand side of some axiom of T are called de-
fined, all others are called primitive. If T is a general TBox,
then all concept names appearing in it are primitive.

Given an RBox R, the role hierarchy vR over the set
of complex roles is the reflexive and transitive closure of the
relation

{(s,s′) | sv s′ ∈R or sv s′ ∈R}.

Using a reachability algorithm, the role hierarchy can be
computed in polynomial time in the size of R. An RBox R
is acyclic if it induces no cycles of the form svR s′, s′vR s
for two complex roles s 6= s′.

We also consider several sublogics of L-SHI. If tran-
sitive roles are not allowed in L-SHI, i.e. N+

R = /0, then
we obtain the fuzzy DL L-ALCHI. Disallowing role inclu-
sions, i.e. setting R= /0, yields the logic L-SI. Leaving out
both role inclusions and transitive roles, produces the logic
L-ALCI. Disallowing the inverse role constructor from this
last logic leaves L-ALC. Other logics like L-ALCH, L-S,
and L-SH (see Figure 1.1) can also be produced by disal-
lowing some of the constructors or axioms used in L-SHI.
The description logic L-SIc further restricts the semantics
of L-SI by forcing roles to be crisp, i.e. rI(x,y)∈ {0,1} for
all interpretations I, r ∈ NR, and x,y ∈ ∆I .

The standard reasoning problems for crisp DLs can be
generalized to also take into account the membership de-
grees provided by the lattice-based semantics. We will fo-
cus on the problem of local consistency, which generalizes
classical satisfiability and is equivalent to satisfiability in the
crisp case. It can be used to also decide strong `-satisfiability
and `-subsumption w.r.t. finite lattices [12,13].

Definition 3.5 (decision problems) Let C and D be two
concepts,O an ontology, and `∈ L. We say that C is strongly
`-satisfiable w.r.t.O if there is a model I ofO and an x∈∆I
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such that CI(x)≥ `. C is `-subsumed by D w.r.t. O if every
model I of O satisfies 〈C v D, `〉.

A local ABox A is a finite set of pairs (C, `), where C is a
concept, and `∈ L. Such a local ABox A is locally consistent
w.r.t. O if there is a model I of O and x ∈ ∆I such that
CI(x) = ` for all (C, `) ∈ A.

A local ABox is a special form of a finite set of assertions,
called ABox, which is often used in DL reasoning. ABoxes
are more expressive than local ABoxes, as they can express
restrictions on several domain elements and restrict the role
connections between these individuals. Moreover, inequal-
ity restrictions of the form CI(x)≥ ` are usually allowed in
ABoxes [9,30]. From this point of view, a local ABox can
be seen as an ABox that is restricted to equality assertions
on one individual.

For infinite lattices, local consistency has been shown to
be undecidable even in the logic L-ALC [15]. We therefore
restrict our attention to finite residuated De Morgan lattices.

Notice that in the case of a finite lattice L, strong satisfia-
bility and (non-)subsumption of concepts can be reduced to
local consistency as follows. A concept C is strongly `-satis-
fiable iff there is an `′ ≥ ` such that {(C, `′)} is locally con-
sistent, and C is not `-subsumed by D iff there is an `′ 6≥ `

such that {(C → D, `′)} is locally consistent. In the crisp
case, local consistency is in fact equivalent to satisfiability:
the local ABox A is locally consistent iff the concept

u
(C,1)∈A

Cu u
(C,0)∈A

¬C

is satisfiable.
Recall that the semantics of the quantifiers require the

computation of a supremum or infimum of the membership
degrees of a possibly infinite subset of the domain. To ob-
tain effective decision procedures, it is customary to restrict
reasoning to witnessed models [23].

Definition 3.6 (witnessed interpretation) Let n ∈ N. An
interpretation I is called n-witnessed if for every x∈ ∆I and
every concept C and role r there are elements x1, . . . ,xn ∈∆I

and y1, . . . ,yn ∈ ∆I such that

(∃r.C)I(x) =
n∨

i=1

rI(x,xi)⊗CI(xi), and

(∀r.C)I(x) =
n∧

i=1

rI(x,yi)⇒CI(yi).

In particular, if n = 1, then the suprema and infima from the
semantics of ∃r.C and ∀r.C become maxima and minima,
respectively. In this case, we say that I is witnessed.

We will show in the following sections that most of the fuzzy
description logics introduced above exhibit the same com-
plexity upper bounds for deciding local consistency as their
crisp counterparts, i.e. the lattice-based semantics does not
increase the complexity of reasoning in these logics.

4 Deciding Local Consistency

Recall that we deal only with finite residuated De Morgan
lattices. For the special case of finite total orders, a popular
approach is to reduce the fuzzy ontology to a crisp one [7,
10,11,30], and a similar method would work also for arbi-
trary finite lattices. This approach allows to employ existing
optimized reasoners for the actual reasoning. The main idea
is to translate every concept name A into finitely many crisp
concept names A≥`, one for each membership degree `, with
the intention that A≥` collects all those individuals that be-
long to A with a membership degree ≥ `. Then, for every
concept name A and every pair (`1, `2) of lattice elements
such that `2 is a minimal element above `1, one has to intro-
duce a GCI A≥`2 v A≥`1 to express the lattice structure. A
similar translation is done for role names and all axioms are
then recursively translated into crisp axioms that use only
the introduced crisp concept and role names. The resulting
crisp ontology is consistent in the classical sense iff the orig-
inal fuzzy ontology is consistent.

However, in general such a translation yields an ineffi-
cient reasoning procedure. Depending on the t-norm cho-
sen, there might be |L|2 different combinations of elements
of L whose t-norm is a given ` ∈ L, and similarly for all the
other constructors. All these possibilities must be expressed
in the translation, which then produces an ontology of size
in the order of |L|2|O|. Since the reasoning algorithm for
crisp DLs is exponential on the size of the input ontology,
this yields a runtime exponential in |L|2|O|.6 As we will
see, our automata-based approach allows us to reduce this
bound to be exponential in log(|L|)|O|. Moreover, even if
the original TBox is acyclic, the translation produces a gen-
eral crisp TBox for which reasoning remains exponential.
This is suboptimal since, as we show in Section 5, reasoning
w.r.t. acyclic TBoxes is in PSPACE.

We now show that deciding local consistency in L-SHI
is EXPTIME-complete. This matches the complexity of crisp
SHI [31]. We assume for now that the lattice L is fixed,
and thus do not consider the size of L in our complexity
analysis. This is not a strong assumption, since usually the
truth degrees are decided and fixed for a given application.
In Section 6, we will comment briefly on the influence of L
on the complexity of our algorithms.

Without loss of generality, we consider reasoning w.r.t.
n-witnessed models: since L is finite, L-SHI always has
the |L|-witnessed model property. It is possible to obtain a
smaller bound on the number of required witnesses, depend-
ing on the structure of the lattice.

Lemma 4.1 If the maximal cardinality of an antichain of L
is n, then every interpretation in L-SHI is n-witnessed.

6 For special lattices, in particular total orders with the so-called
Zadeh semantics, this blowup can be avoided [30].
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Proof Let m be the smallest natural number such that there
exist y1, . . . ,ym ∈ ∆I with

(∃r.C)I(x) =
m∨

i=1

(rI(x,yi)⊗CI(yi)).

From the minimality of m, we know that this supremum
cannot be reached using only m− 1 different values of the
form rI(x,yi)⊗CI(yi). Thus, removing any element from
{y1, . . . ,ym} decreases this supremum. This can only be the
case if the values rI(x,yi)⊗CI(yi) are all incomparable, i.e.
for every i 6= j it holds that

rI(x,yi)⊗CI(yi) 6≤ rI(x,y j)⊗CI(y j);

otherwise, removing yi would yield the same supremum.
This means that the set {rI(x,yi)⊗CI(yi) | 1≤ i≤m} forms
an antichain of cardinality m. By assumption, m ≤ n. This
shows that I is n-witnessed.7 ut

For example, if L is a total order, then L-SHI has the wit-
nessed model property. To simplify the description of the al-
gorithm, in the following we consider only the special case
n = 1, i.e. we restrict reasoning to witnessed models only.
As shown in Example 4.2 below, in general L-ALC does not
have the witnessed model property; however, the algorithm
and the proofs of correctness can easily be adapted for any
other n ∈ N (see Section 6).

Example 4.2 Consider the lattice L2 from Figure 2.1 with
the Gödel t-norm, and the TBox

T = {〈> v (Au¬A)t (Bu¬B),1〉}.

The local ABox A = {(∃r.A,1)} is locally consistent w.r.t.
T since the interpretation I0 = ({x,y1,y2}, ·I0) with

rI0(x,y1) = rI0(x,y2) = 1,

AI0(x) = AI0(y1) = BI0(y2) = `a, and

BI0(x) = BI0(y1) = AI0(y2) = `b

is a model of T and (∃r.A)I0(x) = AI0(y1)∨AI0(y2) = 1.
However, A is not locally consistent in any witnessed model
of T : since `∧∼` 6= 1 for every ` ∈ L2, the only axiom in
T can only be satisfied if for every y ∈ ∆I , it holds that
{AI(y),BI(y)} = {`a, `b}, and in particular if AI(y) < 1.
Thus, there can be no unique witness for the concept ∃r.A
having degree 1.

Even if L-SHI does not have the witnessed model property,
one might want to restrict reasoning to witnessed models to
avoid unintuitive consequences. For example, an interpreta-
tion might satisfy the axiom 〈>v∃r.>,1〉, but it is not guar-
anteed that every domain element has a “true” r-successor,

7 It is easy to find the remaining n−m witnesses. For each y ∈ ∆I

we have rI(x,y)⊗CI(y) ≤ (∃r.C)I(x) and thus, any choice of addi-
tional elements of the domain would suffice.

i.e. one with degree 1. Restricting reasoning to witnessed
models is a standard assumption in fuzzy description logics
(see for example [4,6,23]).

Our algorithm for deciding local consistency exploits
the fact that an ontology O has a (witnessed) model iff it
has a well-structured tree-shaped model, called a Hintikka
tree. Intuitively, Hintikka trees are abstract representations
of models that explicitly express the membership value of
all “relevant” concepts. We will construct automata that have
exactly these Hintikka trees as their runs, and use the initial
states to verify that an element in the model verifies the local
consistency condition. Reasoning is hence reduced to testing
emptiness of these automata.

The set subR(C) of subconcepts of an L-SHI concept
C w.r.t. an RBoxR is defined inductively as follows:

– subR(A) = {A} if A is a concept name, >, or ⊥,
– subR(C) = {C}∪ subR(D)∪ subR(E)

if C is of the form DuE, DtE, or D→ E,
– subR(¬C) = {¬C}∪ subR(C),
– subR(∃s.C) = {∃s.C}∪ subR(C)

∪{∃s′.C | s′vR s, s′ is transitive}
– subR(∀s.C) = {∀s.C}∪ subR(C)

∪{∀s′.C | s′vR s, s′ is transitive}

For a local ABox A and an ontology O = (T ,R), the set of
all subconcepts of every concept appearing in A or O is

sub(A,O) =
⋃

(C,`)∈A
subR(C)∪

⋃
〈EvF,`〉∈T

(subR(E)∪ subR(F))∪

⋃
〈A .=F,`〉∈T

({A}∪ subR(F)).

The nodes of Hintikka trees are labeled with so-called
Hintikka functions, which are fuzzy sets over the domain
sub(A,O)∪{ρ}, where ρ is an arbitrary new element that
will be used to express the degree with which the role rela-
tion to the parent node holds.

Definition 4.3 (Hintikka function) A Hintikka function for
A,O is a partial function H : sub(A,O)∪{ρ}→ L such that:

(i) H(ρ) is defined,
(ii) if H(>) is defined, then H(>) = 1,

(iii) if H(⊥) is defined, then H(⊥) = 0,
(iv) if H(DuE) is defined, then H(D) and H(E) are also

defined and H(DuE) = H(D)⊗H(E),
(v) if H(DtE) is defined, then H(D) and H(E) are also

defined and H(DtE) = H(D)⊕H(E),
(vi) if H(D→ E) is defined, then H(D) and H(E) are also

defined and H(D→ E) = H(D)⇒ H(E),
(vii) if H(¬D) is defined, then H(D) is also defined and

H(¬D) =∼H(D),
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H is compatible with the concept definition 〈A .
= E, `〉 if,

whenever H(A) is defined, then H(E) is defined and we
have (H(A)⇒ H(E))⊗ (H(E)⇒ H(A)) ≥ `. It is compat-
ible with the GCI 〈E v F, `〉 if H(E) and H(F) are defined
and H(E)⇒ H(F)≥ `.

The set support(H) contains all concepts C in sub(A,O)
for which H(C) is defined.

Hintikka trees have a fixed arity k determined by the num-
ber of existential and value restrictions, i.e. concepts of the
form ∃s.F or ∀s.F , in sub(A,O). Intuitively, each successor
will act as the witness for one of these restrictions. As in
Section 2.1, we define K to be the index set {1, . . . ,k} of all
successors. Since we need to know which successor in the
tree is the witness of which restriction, we fix an arbitrary
bijection

ϕ : {E | E ∈ sub(A,O) is of the form ∃s.F or ∀s.F}→ K.

Definition 4.4 (Hintikka condition) The tuple of Hintikka
functions (H0,H1, . . . ,Hk) satisfies the Hintikka condition if:
for every existential restriction ∃s.G ∈ sub(A,O), the fol-
lowing hold:

a) If ∃s.G ∈ support(H0), then
– G ∈ support(Hϕ(∃s.G)) and
– H0(∃s.G) = Hϕ(∃s.G)(ρ)⊗Hϕ(∃s.G)(G).

b) If ∃s.G ∈ support(H0), then for every E ∈ sub(A,O) of
the form ∃s′.F or ∀s′.F with s′vR s,
– G ∈ support(Hϕ(E)) and
– H0(∃s.G)≥ Hϕ(E)(ρ)⊗Hϕ(E)(G).

Moreover, for all transitive roles r with s′vR rvR s,
– ∃r.G ∈ support(Hϕ(E)) and
– H0(∃s.G)≥ Hϕ(E)(ρ)⊗Hϕ(E)(∃r.G).

c) For every E ∈ sub(A,O) of the form ∃s′.F or ∀s′.F with
s′vR s and ∃s.G ∈ support(Hϕ(E)),

– G ∈ support(H0) and
– Hϕ(E)(∃s.G)≥ Hϕ(E)(ρ)⊗H0(G).

Moreover, for all transitive roles r with s′vR rvR s,
– ∃r.G ∈ support(H0) and
– Hϕ(E)(∃s.G)≥ Hϕ(E)(ρ)⊗H0(∃r.G), and

for every value restriction ∀s.G ∈ sub(A,O), the following
hold:

a’) If ∀s.G ∈ support(H0), then
– G ∈ support(Hϕ(∀s.G)) and
– H0(∀s.G) = Hϕ(∀s.G)(ρ)⇒ Hϕ(∀s.G)(G).

b’) If ∀s.G ∈ support(H0), then for every E ∈ sub(A,O) of
the form ∃s′.F or ∀s′.F with s′vR s,

– G ∈ support(Hϕ(E)) and
– H0(∀s.G)≤ Hϕ(E)(ρ)⇒ Hϕ(E)(G).

Moreover, for all transitive roles r with s′vR rvR s,
– ∀r.G ∈ support(Hϕ(E)) and
– H0(∀s.G)≤ Hϕ(E)(ρ)⇒ Hϕ(E)(∀r.G).

c’) For every E ∈ sub(A,O) of the form ∃s′.F or ∀s′.F with
s′vR s and ∀s.G ∈ support(Hϕ(E)),
– G ∈ support(H0) and
– Hϕ(E)(∀s.G)≤ Hϕ(E)(ρ)⇒ H0(G).

Moreover, for all transitive roles r with s′vR rvR s,
– ∀r.G ∈ support(H0) and
– Hϕ(E)(∀s.G)≤ Hϕ(E)(ρ)⇒ H0(∀r.G).

The tuple is compatible with the axiom t if the Hintikka
functions H0, . . . ,Hk are compatible with t.

We briefly explain the intuition behind this definition. Con-
dition a) makes sure that an existential restriction ∃s.G is
witnessed by its designated successor ϕ(∃s.G). Condition b)
ensures that the degree of the existential restriction is indeed
the supremum of the degrees of all s-successors. Further-
more, for all transitive subroles r of s the restriction ∃r.G
has to be propagated since by transitivity every r-successor
of this r-successor must also be an r-successor. Finally, Con-
dition c) deals with the consequences of the restriction ∃s.G
along inverse role connections. Conditions a’) to c’) state the
dual notions for value restrictions. Notice that if it holds that
Hϕ(E)(ρ) = 0, then the inequalities from Conditions b), c),
b’), and c’) are trivially satisfied.

A Hintikka tree for A,O is an infinite k-ary tree T la-
beled with Hintikka functions for A,O such that T(ε)(C)

is defined for all (C, `) ∈ A and for every node u ∈ K∗, the
tuple (T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condi-
tion and is compatible with all axioms in O. Compatibility
ensures that all axioms are satisfied at any node of the Hin-
tikka tree, while the Hintikka condition makes sure that the
tree is in fact a witnessed model.

The proof of the following theorem uses arguments that
generalize those used in [2] for crisp SI. The Hintikka con-
dition in [2] is much simpler since Hintikka functions are
only sets of subconcepts, no successors witnessing the value
restrictions are needed, and there is no role hierarchy. The
full proof of this theorem appears in the appendix.

Theorem 4.5 Let A be a local ABox and O an ontology. A
is locally consistent w.r.t. O iff there is a Hintikka tree T for
A,O with T(ε)(C) = ` for all (C, `) ∈ A.

Thus, local consistency of L-SHI concepts can be re-
duced to deciding the existence of a Hintikka tree with addi-
tional restrictions in the root. By building looping automata
whose runs correspond exactly to those Hintikka trees, we
reduce reasoning in L-SHI to the emptiness problem of
these automata.

In Section 5.2, we will additionally need to know the
index of each node relative to its siblings in the tree. We
thus use as states of the automaton pairs of the form (H, i)
where H is a compatible Hintikka function and i ∈ K.

Definition 4.6 (Hintikka automaton) Let O be an ontol-
ogy and A a local ABox. The Hintikka automaton for A,O
is AA,O = (Q, I,∆), where
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– Q is the set of all pairs (H, i) of compatible Hintikka
functions for A,O and indices i ∈ K,

– I is the set of all pairs (H, i)∈Q with H(C) = ` for every
(C, `) ∈ A, and

– ∆ is the set of all tuples ((H0, i0),(H1,1), . . . ,(Hk,k))
such that (H0, . . . ,Hk) satisfies the Hintikka condition.

The first components of the runs of AA,O form exactly the
Hintikka trees T with T(ε)(C) = ` for all (C, `) ∈ A. The
second component simply stores the index of the existen-
tial or universal restriction for which a node acts as a wit-
ness for its parent, but does not influence the transition re-
lation. Thus, A is locally consistent w.r.t. O iff AA,O is not
empty. In Example B.2, we describe a simple local consis-
tency problem and the resulting Hintikka automaton.

Recall that k is bounded by the number |sub(A,O)| of
subconcepts in A and O, which is polynomial in the size of
A and O. Since there are at most (|L|+ 1)|sub(A,O)|+1 Hin-
tikka functions, the size of the automaton AA,O is therefore
exponential in the input A,O.8 Hence, local consistency in
L-SHI can be decided in exponential time. This gives a
tight upper bound for the complexity of local consistency
since deciding satisfiability w.r.t. general TBoxes is already
EXPTIME-hard for crisp ALC [28].

Theorem 4.7 In all logics between L-ALC and L-SHI, de-
ciding local consistency, strong satisfiability, and subsump-
tion w.r.t. general TBoxes is EXPTIME-complete.

This shows that reasoning w.r.t. general TBoxes is not harder
than in crisp description logics and extends our previous re-
sult for L-ALCI [13].

Recall that concept satisfiability is EXPTIME-complete
for crisp SH, even if the TBox is empty [25]. It thus fol-
lows that local consistency, and hence strong satisfiability
and subsumption, is EXPTIME-complete for L-SHI w.r.t.
acyclic or empty TBoxes. In the following section we show
that for the sublogics L-SIc and L-ALCHI, the restriction
to acyclic TBoxes reduces the complexity of reasoning.

5 PSPACE Results for Acyclic TBoxes

When restricted to acyclic TBoxes, reasoning in crisp SI
becomes PSPACE-complete [2,25]. This implies that local
consistency in L-SI w.r.t. acyclic TBoxes is PSPACE-hard,
leaving a gap to the EXPTIME upper bound shown in the
previous section.

We can close this gap if we restrict to L-SIc, i.e. lo-
cal consistency is then decidable in PSPACE. We show the
same for L-ALCHI w.r.t. acyclic TBoxes, which yields a
new result about the complexity of reasoning in the crisp
description logic ALCHI.

8 Recall that we consider the lattice L to be fixed, and thus it is not
part of the input.

In the following, letO=(T ,R) be an ontology where T
is an acyclic TBox. Our goal is to obtain PSPACE decision
procedures by modifying the construction of the Hintikka
automata into PSPACE on-the-fly constructions. Notice that
AA,O satisfies all but one of the conditions of Definition 2.5:

(i) the arity k of the automata is given by the number of
existential and value restrictions in sub(A,O),

(ii) every Hintikka function (and hence every state of the
automaton) has size bounded by |sub(A,O)|+1 since
it consists of |sub(A,O)|+1 lattice values, and

(iii) building a state or a transition requires only to guess
|sub(A,O)|+1 or k(|sub(A,O)|+1) lattice values, re-
spectively, and then verifying that this is indeed a valid
state or transition of the automaton, which can be done
in time polynomial in |sub(A,O)|.

However, one can easily find runs of AA,O where blocking
occurs only after exponentially many transitions, violating
the first condition of PSPACE on-the-fly constructions. We
will use a faithful family of functions to obtain a reduced au-
tomaton that guarantees blocking after at most polynomially
many transitions, thus obtaining the PSPACE upper bound.

5.1 Acyclic TBoxes in L-ALCHI

In the case of L-ALCHI, the faithful family of functions
only needs to guarantee that the maximal role depth de-
creases with each transition. For the acyclic TBox T , the
role depth w.r.t. T (rdT ) of concepts is recursively defined
as follows:

– rdT (A) = rdT (>) = rdT (⊥) = 0 for each primitive con-
cept name A,

– rdT (A) = rdT (C) for every definition 〈A .
=C, `〉 ∈ T ,9

– rdT (CuD) = rdT (CtD) = max{rdT (C), rdT (D)},
– rdT (C→ D) = max{rdT (C), rdT (D)},
– rdT (¬C) = rdT (C), and
– rdT (∃r.C) = rdT (∀r.C) = rdT (C)+1.

We use rdT (H) to denote the maximal role depth rdT (D)

of a concept D in support(H). For a non-negative integer
n, sub≤n(A,O) denotes the set of all concepts in sub(A,O)
with role depth less than or equal to n.

Definition 5.1 (functions f(H,i)) Let (H, i) and (H ′, i′) be
two states of AA,O and n = rdT (H). We define the function
f(H,i)(H ′, i′) = (H ′′, i′), where

H ′′(D) =

{
H ′(D) if D ∈ sub≤n−1(A,O),
undefined otherwise,

H ′′(ρ) =

{
0 if support(H) = /0,
H ′(ρ) otherwise.

9 The acyclicity of T ensures that this is well-defined.
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Since T is acyclic, H ′′ as defined above is still a Hintikka
function for A,O and compatible with all the axioms in O.
The proof of the following lemma can be found in the Ap-
pendix.

Lemma 5.2 The family f(H,i) from Definition 5.1 is faithful
w.r.t. AA,O.

By Lemma 2.4, it now follows that AA,O is empty iff the
subautomaton AS

A,O induced by the family f(H,s) is empty.
It remains to show that this can be decided in PSPACE.

Lemma 5.3 The construction ofAS
A,O from a local ABox A

and an ontology O = (T ,R) with an acyclic TBox T is a
PSPACE on-the-fly construction.

Proof We show that the automata AS
A,O are m-blocking for

m = max{rdT (D) | D ∈ sub(A,O)}+ 2, with equality as
the blocking relation. The other conditions of Definition 2.5
have already been shown above.

By definition of AS
A,O, every transition decreases the

maximal role depth of the support of the state. Hence, after
at most max{rdT (D) | D ∈ sub(A,O)} transitions, we must
reach a state H for which H(D) is undefined for all concepts
D ∈ sub(A,O), and hence support(H) = /0. From the next
transition on, all states additionally satisfy that H(ρ) = 0.
Hence, after at most m transitions, we find two states that are
equal. Since m is bounded by a polynomial in the combined
size of A andO, the automataAS

A,O satisfy the requirements
for a PSPACE on-the-fly construction. ut

Theorem 2.6 yields the desired PSPACE upper bound for lo-
cal consistency w.r.t. acyclic TBoxes in the lattice-based de-
scription logic L-ALCHI.

5.2 Acyclic TBoxes in L-SIc

In the logic L-SI, we cannot directly reduce the role depth
as in the previous section, due to the transitivity conditions.
However, if we restrict to crisp roles only, we can still pro-
vide a PSPACE upper bound using a faithful family of func-
tions.

Since the interpretations of roles are restricted to have
values from {0,1}, all Hintikka functions H now need to
satisfy the additional condition that H(ρ) ∈ {0,1}. It is easy
to see that Theorem 4.5 also holds in the presence of this
modification. Given a Hintikka function H and a complex
role s, we define the sets

H|s :={D ∈ support(H) | D is ∃s.E or ∀s.E},
H−s :={D ∈ support(H) | ∃s.D or ∀s.D ∈ sub(A,O)}.

Definition 5.4 (functions g(H,i)) Let (H, i) and (H ′, i′) be
two states of AA,O and n = rdT (H). We define the function

g(H,i)(H ′, i′) = (H ′′, i′), where i′ = ϕ(E) for E ∈ sub(A,O)
of the form ∃s.F or ∀s.F ,

P =

{
sub≤n(A,O)∩H ′|s if s is transitive,
/0 otherwise,

H ′′(D) =

{
H ′(D) if D ∈ sub≤n−1(A,O)∪P,
undefined otherwise,

H ′′(ρ) =

{
0 if support(H) = /0,
H ′(ρ) otherwise.

These functions are a natural generalization of the functions
used in [2] to provide a PSPACE upper bound for crisp SI.
The proof of the following lemma can also be found in the
Appendix.

Lemma 5.5 The family g(H,s) from Definition 5.4 is faithful
w.r.t. AA,O.

To show that the automata AS
A,O can be built by a PSPACE

on-the-fly construction, we employ the following blocking
relation �SIc .

Definition 5.6 (�SIc ) Let (H, i) and (H ′, i′) be two states
ofAS

A,O. We define (H, i)�SIc (H
′, i′) iff i = i′ = ϕ(E) for

E ∈ sub(A,O) of the form ∃s.F or ∀s.F and either

(i) H = H ′,
(ii) H(ρ) = H ′(ρ) = 0 and the sets H|s ∪H−s ∪H|s and

H ′|s∪H ′−s∪H ′|s are equal, or
(iii) 1. s is transitive, H(ρ) = H ′(ρ) = 1, H(F) = H ′(F),

2. H(D) = H ′(D) for every concept D in

Q(H,H ′,s) := H|s∪H ′|s∪H|s∪H ′|s, and

3. we have H ′(G) ≤ H ′(∃s.G) for every ∃s.G ∈ H ′|s
and H ′(G)≥ H ′(∀s.G) for every ∀s.G ∈ H ′|s.

To see that the automataAS
A,O are �SIc -invariant, we ana-

lyze the three conditions above:

(i) The equality relation trivially satisfies the notion of
�SIc -invariance.

(ii) Recall that if H(ρ) = 0, then all the inequalities in the
Conditions b), c), b’) and c’) from Definition 4.4 are
satisfied. Furthermore, conditions a) and a’) remain
satisfied when replacing one successor H of H0 with
H(ρ) = 0 by H ′ which also satisfies H ′(ρ) = 0. Thus,
one only needs to ensure that H ′ is defined for the rel-
evant concepts, which is expressed by the second part
of this condition.

(iii) The first condition ensures that Conditions a) and a’) of
Definition 4.4 remain satisfied. The second condition
restricts all the quantified concepts that are transferred
by the transitive role s to be evaluated by identical val-
ues. Thus, Conditions c) and c’) and the last inequal-
ities of Condition b) and b’) of Definition 4.4 are still
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satisfied. Finally, the third condition ensures that the
first inequalities from Conditions b) and b’) are satis-
fied: Since H0(∀s.G) ≤ H ′(ρ)⇒ H ′(∀s.G) is already
satisfied, the additional condition H ′(∀s.G) ≤ H ′(G)

ensures that also H0(∀s.G) ≤ H ′(ρ)⇒ H ′(G) holds,
and dually for the existential restrictions.

That the subautomata are polynomially blocking w.r.t.
�SIc can be shown using the following facts:

– The role depth of the Hintikka sets strictly decreases
along non-transitive role connections. The same is true
if on two consecutive transitions two different roles are
used, regardless of whether they are transitive or not.

– For a chain of successors H0,H1, . . . through the same
transitive role s, we have Hi|s ⊆Hi+1|s and Hi|s ⊇Hi+1|s
for all i≥ 0. Additionally, if Hi+1(ρ) = 1, then we have
Hi(∀s.G)≤ Hi+1(∀s.G) and Hi(∃s.G)≥ Hi+1(∃s.G) for
any ∀s.G∈ sub(A,O) or ∃s.G∈ sub(A,O), respectively.

It is important to point out that this last argument only holds
when the degree of the role relation between successors is
exactly 1. Thus, this proof cannot be used to prove a poly-
nomial bound on blocking for the more general fuzzy DL
L-SI. The full details can be found in the appendix.

Lemma 5.7 The construction ofAS
A,O from a local ABox A

and an ontology O = (T ,R) with an acyclic TBox T is a
PSPACE on-the-fly construction.

As before, this yields a PSPACE upper bound for local con-
sistency in L-SIc. Thus, local consistency, strong satisfia-
bility, and subsumption w.r.t. acyclic TBoxes are PSPACE-
complete in L-ALCHI and L-SIc. This follows from the
fact that these problems are already PSPACE-hard in ALC
w.r.t. the empty TBox [29].

Theorem 5.8 In all logics above ALC and below L-SIc or
L-ALCHI, deciding local consistency, strong satisfiability,
and subsumption w.r.t. acyclic TBoxes is PSPACE-complete.

In particular, if we restrict to crisp ALCHI, we obtain a
previously unknown, although not surprising result.

Corollary 5.9 In ALCHI, satisfiability and subsumption
w.r.t. acyclic TBoxes can be decided in PSPACE.

6 Dealing with Different Semantics and Extensions

The constructions used in the previous sections provide a
mechanism for reasoning w.r.t. witnessed models. This is
in fact a restriction, since most fuzzy DLs do not have the
witnessed model property (recall Example 4.2). However,
Lemma 4.1 ensures the existence of a finite n, which de-
pends exclusively on the lattice L, such that L-SHI has the
n-witnessed model property.

One can build analogous automata for reasoning w.r.t.
n-witnessed models, for any n ∈ N. To do this, one needs to
consider (nk)-ary automata, where n successors are used to
witness each of the quantified concepts in sub(A,O). Thus,
the arity of these automata grows polynomially in n. More-
over, the blocking relations and limits on the lengths paths
may have before blocking is triggered remain unchanged.
This means that the complexity results from Theorems 4.7
and 5.8 still hold.

Up to now, we have considered the lattice L to be fixed.
We now want to shortly analyze the influence of L on the
complexity results. We first assume that L is given as an ex-
plicit list of all its elements and that the lattice operations ∨,
∧, ∼, ⊗, ⊕,⇒ can be computed in polynomial time in the
size of the given lattice elements. Under these assumptions,
the construction of the Hintikka automata in Section 4 is still
exponential since these automata have (|L|+ 1)|sub(A,O)|+1

states, where |L| is the cardinality of L, which is polynomial
in the size of the input.

For the results of Section 5, we observe the following:

(i) the arity of the automata is not affected by L,
(ii) every Hintikka function is (|sub(A,O)|+1)-times the

size of a single lattice element, and thus still polyno-
mial in the size of the input, and

(iii) guessing one or k+ 1 Hintikka functions can thus be
done in polynomial time and verifying the conditions
of Definitions 4.3 and 4.4 is also possible in polyno-
mial time by our assumption on the complexity of the
lattice operations.

To conclude, it can be seen from the proofs of Lemmata 5.3
and 5.7 that the maximal length of non-blocked paths in the
respective subautomata is also bounded polynomially in the
size of the input. In fact, the bound used in the proof of
Lemma 5.3 does not depend on L at all. Thus, also the com-
plexity results of Section 5 are not affected by L.

If the cardinality |L| is exponential in the size of the in-
put representation of L, then all complexity results except
Lemma 5.7 still hold. The bound established in the proof of
this lemma would then be exponential. If |L| is even doubly
exponential in the input, then also the other results do not
hold anymore. However, as mentioned before, we think that
for application purposes one can view the lattice L as fixed
since it will be specified in the beginning and then used in
all ontologies.

We also point out that our semantics is general enough to
cover other seemingly different approaches. First, one could
think of extending the notion of acyclic TBoxes to allow
also axioms of the form 〈AvC, `〉, as long as the acyclicity
condition is still satisfied.

Lemma 6.1 The GCI 〈AvC, `〉 is equivalent to the concept
definition 〈A .

=CuD, `〉, where D is a new concept name, if
the t-norm is continuous.
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Table 7.1 The complexity of reasoning in the DLs between ALC and
SHI with crisp and finitely-valued fuzzy semantics.

acyclic TBox general TBox
base logic crisp finite L crisp finite L
–ALCHI PSPACE PSPACE EXPTIME EXPTIME

Sc–SIc PSPACE
PSPACE EXPTIME

EXPTIME
S–SI ? EXPTIME

SH– EXPTIME EXPTIME EXPTIME EXPTIME

Regarding the interpretation of the constructors, differ-
ent ideas have been considered in the literature. On the one
hand, in Mathematical Fuzzy Logic, negation is usually in-
terpreted through the residual negation defined as `⇒ 0 for
all `∈ L. This operator can be expressed by the concept con-
struction C → ⊥. On the other hand, GCIs are sometimes
interpreted using a different kind of implication, which is
defined as ∼`1⊕ `2. For the Gödel t-norm, this is called the
Kleene-Dienes implication. This semantics can be simulated
in our approach by the axiom 〈> v ¬CtD, `〉.

This shows that our complexity upper bounds also ap-
ply to the syntactic and semantic variants of fuzzy DLs over
lattices that have been studied previously.

We have so far focused only on deciding local consis-
tency. In general, one is often interested in deciding consis-
tency of general ABoxes, which can express restrictions be-
tween several individuals, and their role connections [9,30].
As it was shown in [15], if local consistency is NP-hard,
then consistency of general ABoxes belongs to the same
complexity class as local consistency. In particular, this im-
plies that for the logics studied in this paper, deciding gen-
eral consistency is as hard as local consistency.

Corollary 6.2 Consistency of general ABoxes in L-SH and
L-SHI with or without TBoxes is EXPTIME-complete.

For any logic above L-ALC and below L-ALCHI or
L-SIc, ABox consistency is PSPACE-complete if the TBox is
acyclic, and EXPTIME-complete otherwise.

7 Conclusions

We have studied the complexity of reasoning in L-SHI and
several of its sublogics and shown that the semantics based
on finite residuated De Morgan lattices does not make rea-
soning harder compared to their crisp versions. More pre-
cisely, strong satisfiability and subsumption in L-SHI w.r.t.
general TBoxes can be decided in exponential time. This
yields EXPTIME-completeness for reasoning in this logic,
even if the TBox is empty. For this, we generalized the re-
sults from [2] to deal with fuzzy concepts and roles and a
role hierarchy.

If we restrict to acyclic TBoxes in the logics L-ALCHI
and L-SIc, then we obtain a PSPACE upper bound. This ex-
tends the complexity results that have previously been ob-

tained for special cases of these logics [12,13,17]. The con-
struction of the faithful family of functions for L-SIc is ob-
tained by generalizing the one from [2] to allow a fuzzy in-
terpretation of concepts.

Furthermore, combining the obtained results with the
tableau construction from [15] shows that the same com-
plexity bounds also hold for the more general consistency
problem with arbitrary ABoxes. The results are summarized
in Table 7.1. As can be easily seen from the table, the com-
plexity of reasoning with semantics based on finite lattices
matches the known complexity bounds for crisp reasoning.
Recall that under crisp semantics, Sc/SIc and S/SI denote
the same logics.

To implement the presented algorithms, one would first
need to find a smart way to deal with the blow-up that comes
from the enumeration of all combinations of lattice values.
In this respect, our approach suffers from the same problems
as previous reductions to crisp reasoning [10,11]. However,
for the special case of Zadeh semantics, these reductions are
polynomial [10,30], and much better suited for implementa-
tion than an automata-based approach. The main advantage
of our technique is that it allows us to obtain tight complex-
ity bounds for the case of an arbitrary finite lattice.

Our analysis leaves open the precise complexity of rea-
soning in L-SI w.r.t. acyclic TBoxes and fuzzy roles. While
it is possible that similar techniques as in Section 5.2 can
be used to show a PSPACE upper bound, the argument used
in this paper fails whenever roles are not crisp. In fact, even
if roles were allowed to assume just one value ` different
from 0 and 1, we would obtain only an exponential bound
for blocking. We also did not consider labeled role inclu-
sions 〈r v s, `〉 that allow to specify an inclusion degree as
in GCIs. We plan to cover these issues in future work.

We also plan to extend our complexity analysis to more
complex fuzzy DLs, such as L-SROIQ. This is not a triv-
ial task for several reasons. First of all, it is not clear how
qualified cardinality restrictions (Q) should be defined in
the absence of the witnessed model property: if an existen-
tial restriction ∃r.C can only be satisfied using three succes-
sors, then what is the meaning of an expression of the form
(≤ 2 r.C)? Following the semantics proposed in [11] for
finite-valued Łukasiewicz semantics w.r.t. witnessed mod-
els, this concept could never have a value of 1. However, it
might be desirable to evaluate it “modulo” the number of
witnesses needed to produce the value of ∃r.C. Addition-
ally, complex role inclusion axioms (R) and nominals (O)
make the use of tree-like structures, and hence of tree au-
tomata, much harder. For these cases, we plan to develop a
tableaux-based decision procedure that can produce general
graph-like models.
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A Proofs

This appendix contains some of the more technical proofs for the re-
sults presented in the paper.

Proof of Theorem 4.5

To improve readability, we prove Theorem 4.5 using three lemmata.
Lemma A.1 provides an auxiliary result that allows us to restrict the
remaining arguments to acyclic RBoxes. Lemmata A.2 and A.3 then
show the two directions of Theorem 4.5.

Lemma A.1 Local consistency in L-SHI is polynomially reducible
to local consistency in L-SHI w.r.t. acyclic RBoxes. This also holds
when the TBox is restricted to be acyclic.

Proof This claim can be shown similarly to the corresponding result
for crisp SHI [31]. Let A = {(C1, `1), . . . ,(Cm, `m)} be a local ABox
and O = (T ,R) an ontology. One can construct an acyclic RBox R′
from R in polynomial time as follows. Consider the role hierarchyvR
as a directed graph. One can find the strongly connected components
of this graph in quadratic time. For each such component {s1, . . . ,sn},
choose a representative s such that s is transitive whenever at least one
role of {s1, . . . ,sn} is transitive.

It is easy to see that for every component {s1, . . . ,sn} and every
model I of O, we have sIi = sIj for all i, j ∈ {1, . . . ,n}. Furthermore,
if this component contains a transitive role, then all sIi are transitive.
The local ABox A′ and the ontology O′ = (T ′,R′) are created from
A and O by replacing each role s by the representative chosen for its
strongly connected component. Thus, whenever A is locally consistent
w.r.t. O, then A′ is locally consistent w.r.t. O′, and vice versa. Finally,
note that T ′ is acyclic iff T is. ut

In the following, let A be a local ABox and O = (T ,R) an ontology
with an acyclic RBox R.

Lemma A.2 If there is a Hintikka tree T for A,O with T(ε)(C) = `
for all (C, `) ∈ A, then A is locally consistent w.r.t. O.

Proof We will define a model I of O over the domain ∆I = K∗ such
that CI(ε) = ` for every (C, `) ∈ A.

For a role name r, we define the fuzzy binary relation rT on ∆I by

– rT(x,xϕ(E)) =T(xϕ(E))(ρ) if E ∈ sub(A,O) is of the form ∃s.F
or ∀s.F for some svR r;

– rT(xϕ(E),x) = T(xϕ(E))(ρ) if E ∈ sub(A,O) of the form ∃s.F
or ∀s.F for some svR r;

– rT(x,y) = 0, otherwise.

For x1, . . . ,xn ∈ ∆I , we define

rT(x1, . . . ,xn) = rT(x1,x2)⊗ . . .⊗ rT(xn−1,xn).

We define the interpretation of a role name r as follows.10 If r is tran-
sitive, rI is the transitive closure of rT, i.e. for all x,y ∈ ∆I ,

rI(x,y) =
∨
n≥0

∨
z1,...,zn∈∆I

rT(x,z1, . . . ,zn,y).

If r is not transitive, we define

rI(x,y) = rT(x,y)∨
∨

svR r, s6=r

sI(x,y).

10 This definition is based on the construction for crisp SHI [24].

This complex expression is necessary to correctly account for the tran-
sitive sub-roles of r. It is well-defined since R is acyclic. This defini-
tion can be summarized as

rI(x,y) = rT(x,y)∨
∨

svR r
s transitive

∨
n≥1

∨
z1,...,zn∈∆I

sT(x,z1, . . . ,zn,y).

It is easy to show that the same equations hold for an inverse role s= r−

if we define sT(x,y) = rT(y,x) for all x,y ∈ ∆I and

sT(x1, . . . ,xn) = sT(x1,x2)⊗ . . .⊗ sT(xn−1,xn)

for all x1, . . . ,xn ∈ ∆I .
For a primitive concept name A, we set AI(x) = T(x)(A) for all

x ∈ ∆I . To show that I can be extended to defined concept names
such that it agrees with T on complex concepts, we define a weight
function o(D) for concepts:

– o(>) = o(⊥) = o(A) = 0 for a primitive concept name A;
– o(B) = o(D)+1 if 〈B .

= D,m〉 ∈ T ;
– o(¬D) = o(D)+1;
– o(DuE) = o(DtE) = o(D→ E) = max{o(D),o(E)}+1;
– o(∃r.D) = o(∀r.D) = o(D)+1.

If there are concept definitions in T , then they have an acyclic depen-
dency relation. Thus, the order on concepts induced by their weights
is well-founded. We show by induction on the weight of D that, if
T(x)(D) is defined for some x ∈ ∆I , then DI(x) = T(x)(D):

– Primitive concept names,>, and⊥ are interpreted correctly by the
definition of I and Hintikka sets.

– If T(x)(B) is defined for a concept name B with 〈B .
= D,m〉 ∈ T ,

since T(x) is compatible with 〈B .
= D,m〉, T(x)(D) is also defined.

Furthermore, (T(x)(B)⇒ T(x)(D))⊗(T(x)(D)⇒ T(x)(B))≥m.
Since o(D)< o(B), we have DI(x) =T(x)(D) by induction. Thus,
defining BI(x) = T(x)(B) ensures that I satisfies 〈B .

= D,m〉.
– If T(x)(¬D) is defined, then T(x)(D) is also defined. By induction,

we have (¬D)I(x) =∼DI(x) =∼T(x)(D) = T(x)(¬D).
– The claims for DuE, DtE and D→ E follow similarly.
– If T(x)(∃r.D) = m, let y := xϕ(∃r.D). By the Hintikka condition,

T(y)(D) is defined, and by induction DI(y) =T(y)(D). Moreover,
m = T(y)(ρ)⊗T(y)(D) = rT(x,y)⊗DI(y) ≤ rI(x,y)⊗DI(y).
We now show that for every z ∈ ∆I , rI(x,z)⊗DI(z) ≤ m holds.
This in particular implies that y is a witness for (∃r.D)I(x).
By definition of rI and monotonicity of ⊗, it suffices to show that
(a) rT(x,z)⊗DI(z) ≤ m and (b) sT(x,y1, . . . ,yn,z)⊗DI(z) ≤ m
for all transitive roles svR r and all z1, . . . ,zn ∈ ∆I , n≥ 1.
a) If rT(x,z) = 0, the claim is trivial; otherwise, there must be a

restriction E ∈ sub(A,O) of the form ∃s′.F or ∀s′.F such that
either z = xϕ(E) and s′vR r or x = zϕ(E) and s′vR r.
In the first case, by the Hintikka condition T(z)(D) is defined
and m=T(x)(∃r.D)≥T(z)(ρ)⊗T(z)(D) = rT(x,z)⊗DI(z),
by induction. In the second case, the Hintikka condition im-
plies that T(z)(D) is defined and

m = T(x)(∃r.D)≥ T(x)(ρ)⊗T(z)(D) = rT(x,z)⊗DI(z).

b) Again, the claim for sT(x,y1, . . . ,yn,z) = 0 is trivial. If this
is not the case, then sT(x,y1), sT(y1,y2), . . . , sT(yn−1,yn),
sT(yn,z) are all greater than 0.
Since sT(x,y1)> 0, there must be a restriction E ∈ sub(A,O)
of the form ∃s′.F or ∀s′.F such that either y1 = xϕ(E) and
s′vR s or x = y1ϕ(E) and s′vR s. In the first case, we have
T(x)(∃r.D) ≥ T(y1)(ρ)⊗ T(y1)(∃s.D); in the second case,
T(x)(∃r.D) ≥ T(x)(ρ)⊗T(y1)(∃s.D). Thus, in both cases it
holds that T(x)(∃r.D)≥ sT(x,y1)⊗T(y1)(∃s.D).
Analogously, one can show that for every i ∈ {1, . . . ,n− 1},
T(yi)(∃s.D) ≥ sT(yi,yi+1)⊗T(yi+1)(∃s.D) holds, and addi-
tionally as in case a), T(yn)(∃s.D) ≥ sT(yn,z)⊗DI(z). This
implies that m = T(x)(∃r.D)≥ sT(x,y1, . . . ,yn,z)⊗DI(z) by
monotonicity of ⊗.
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– The case of ∀r.D can be handled similarly to the previous case
since dual Hintikka conditions hold for the value restrictions.

Thus, I is an interpretation that satisfies all concept definitions in T .
We now show that I satisfies every GCI 〈D v E,m〉 ∈ T . Since ev-
ery Hintikka set in T must be compatible with this GCI, T(x)(D) and
T(x)(E) are always defined and we have T(x)(D)⇒ T(x)(E)≥ m for
every x ∈ K∗. By construction, we thus have DI(x)⇒ EI(x) ≥ m for
every x ∈ ∆I , i.e. I satisfies this GCI.

Consider now a role inclusion s v s′ ∈R and x,y ∈ ∆I . By defi-
nition of sT and s′T, we have sT(x,y)≤ s′T(x,y). Since every transitive
role r with rvR s also satisfies rvR s′, we have sI(x,y)≤ s′I(x,y).

We have thus shown that I is a model of O. Moreover, for every
(C, `)∈A we have CI(ε) = T(ε)(C) = `. Thus, A is locally consistent
w.r.t. O. ut
It remains to show the other direction of Theorem 4.5

Lemma A.3 If A is locally consistent w.r.t. O, then there is a Hintikka
tree T for A,O with T(ε)(C) = ` for all (C, `) ∈ A.

Proof Let I be a model of O and x∈∆I such that for every (C, `)∈A,
CI(x)= `. By our assumption on L, I is witnessed. We show that I can
be “unraveled” into a Hintikka tree T for A,O with T(ε)(C) = `. For
this, we inductively define a mapping g : K∗ → ∆I that will specify
which elements of ∆I are represented by the nodes of T. We begin
with g(ε) := x.

Let now ν ∈ K∗ be such that g(ν) has already been defined. We
set T(ν)(D) :=DI(g(ν)) for each D∈ sub(A,O). Since I satisfies T ,
this defines a Hintikka function that is compatible with all axioms of T .
For each restriction ∃r.D ∈ sub(A,O), there is a witness y ∈ ∆I with
(∃r.D)I(g(ν)) = rI(g(ν),y)⊗DI(y). We set g(νϕ(∃r.D)) := y and
T(νϕ(∃r.D))(ρ) := rI(g(ν),y). For every ∀r.D∈ sub(A,O), there is a
y∈ ∆I such that (∀r.D)I(g(ν)) = rI(g(ν),y)⇒DI(y) and we define
g(νϕ(∀r.D)) := y and T(νϕ(∀r.D))(ρ) := rI(g(ν),y).

We show that T satisfies the Hintikka condition at every transition
(T(ν),T(ν1), . . . ,T(νk)). Let ∃s.G ∈ sub(A,O) and µ := νϕ(∃s.G).
Then T(µ)(G) is defined by construction and

T(ν)(∃s.G) = (∃s.G)I(g(ν)) = rI(g(ν),g(µ))⊗GI(g(µ))

= T(µ)(ρ)⊗T(µ)(G).

Let now E ∈ sub(A,O) be of the form ∃s′.F or ∀s′.F with s′vR s and
µ ′ := νϕ(E). Then T(µ ′)(G) is defined by construction and we have

T(ν)(∃s.G) = (∃s.G)I(g(ν))

≥ sI(g(ν),g(µ ′))⊗GI(g(µ ′))

≥ s′I(g(ν),g(µ ′))⊗GI(g(µ ′))

= T(µ ′)(ρ)⊗T(µ ′)(G).

If r is a transitive role with s′vR rvR s, then

T(ν)(∃s.G) = (∃s.G)I(g(ν))

=
∨

y∈∆I

sI(g(ν),y)⊗GI(y)

≥
∨

y∈∆I

rI(g(ν),y)⊗GI(y)

≥
∨

y∈∆I

rI(g(ν),g(µ ′))⊗ rI(g(µ ′),y)⊗GI(y)

= rI(g(ν),g(µ ′))⊗ (∃r.G)I(g(µ ′))

≥ s′I(g(ν),g(µ ′))⊗ (∃r.G)I(g(µ ′))

= T(µ ′)(ρ)⊗T(µ ′)(∃r.G),

and thus T(µ ′)(∃r.G)≤ T(µ ′)(ρ)⇒ T(ν)(∃s.G).
The claim for E ∈ sub(A,O) of the form ∃s′.F or ∀s′.F with

s′vR s can be shown similarly and for value restrictions ∀s.G, anal-
ogous arguments can be used.

Finally, if (C, `) ∈ A, then T(ε)(C) =CI(g(ε)) =CI(x) = `. ut

Proof of Lemma 5.2

Consider the Hintikka functions H,H0, . . . ,Hk and i, i0 ∈ K and let
(H ′0, i0) := f(H,i)(H0, i0) and (H ′j, j) := f(H,i)(H j, j) for all j,1≤ j≤ k.
We show that if (H,H1, . . . ,Hk) satisfies the Hintikka condition, then
(H,H ′1, . . . ,H

′
k) also satisfies it. We show this only for the existential

restrictions (Conditions a)–c) of Definition 4.4). The conditions for the
value restrictions can be shown by dual arguments.

For Condition a), let ∃s.G ∈ sub(A,O) be such that H(∃s.G) is
defined. Since rdT (G)< rdT (∃s.G)≤ rdT (H) and Hϕ(∃s.G)(G) is de-
fined, the value H ′

ϕ(∃s.G)(G) is also defined and equal to Hϕ(∃s.G)(G).
Moreover, support(H) 6= /0, and thus H ′

ϕ(∃s.G)(ρ) = Hϕ(∃s.G)(ρ). This
shows that the equality in Condition a) remains satisfied.

To show Condition b), let ∃s.G ∈ support(H) and E ∈ sub(A,O)
be of the form ∃s′.F or ∀s′.F with s′vR s. We can show as above
that H ′

ϕ(E)(G) and H ′
ϕ(E)(ρ) are defined and equal to Hϕ(E)(G) and

Hϕ(E)(ρ), respectively. Thus, the required inequality is still satisfied
after applying f(H,s). Since in L-ALCHI there are no transitive roles,
the rest of this condition is trivially satisfied.

For Condition c), let E ∈ sub(A,O) be of the form ∃s′.F or ∀s′.F
with s′vR s and ∃s.G∈ support(H ′

ϕ(E)). Thus, Hϕ(E)(∃s.G) is defined
and equal to H ′

ϕ(E)(∃s.G), which implies that G∈ support(H). This in
turn implies support(H) 6= /0, which yields H ′

ϕ(E)(ρ) =Hϕ(E)(ρ). This
shows that all concerned values are the same as before applying f(H,s),
i.e. the inequality is still satisfied.

To show the second condition of Definition 2.3, assume that the
tuple (H0,H1, . . . ,Hk) satisfies the Hintikka condition. We show that
(H ′0,H

′
1, . . . ,H

′
k) also satisfies it.

Let ∃s.G ∈ support(H ′0). By definition of f(H,s) this implies that
H0(∃s.G)=H ′0(∃s.G) and that rdT (G)< rdT (∃s.G)< rdT (H). Thus,
Hϕ(∃s.G)(G) is also defined and H ′

ϕ(∃s.G)(G) = Hϕ(∃s.G)(G). Moreover,
support(H) 6= /0, and thus H ′

ϕ(∃s.G)(ρ) = Hϕ(∃s.G)(ρ). This shows that
Condition a) is still satisfied.

Condition b) can again be shown by similar arguments, replacing
ϕ(∃s.G) by ϕ(E) and the equality condition by an inequality.

For Condition c), let E ∈ sub(A,O) be of the form ∃s′.F or ∀s′.F
with s′vR s and ∃s.G∈ support(H ′

ϕ(E)). Thus, Hϕ(E)(∃s.G) must also
be defined and equal to H ′

ϕ(E)(∃s.G). This implies that H0(G) is de-
fined and rdT (G) < rdT (∃s.G) < rdT (H), and thus H ′0(G) is also
defined and equal to H0(G). Since support(H) 6= /0, we again have
H ′

ϕ(E)(ρ) = Hϕ(E)(ρ). ut

Proof of Lemma 5.5

Consider the Hintikka functions H,H0, . . . ,Hk and i, i0 ∈ K and let
(H ′0, i0) := f(H,i)(H0, i0) and (H ′j, j) := f(H,i)(H j, j) for all j,1≤ j≤ k.
We show that if (H,H1, . . . ,Hk) satisfies the Hintikka condition, then
(H,H ′1, . . . ,H

′
k) also satisfies it. Once again, we show this only for the

existential restrictions.
Condition a) and the first parts of Conditions b) and c) can be

shown as for Lemma 5.2. Since in L-SIc the RBox is empty, for the
second part of Condition b) we only have to consider the case where
∃s.G ∈ support(H), E ∈ sub(A,O) is of the form ∃s.F or ∀s.F , and
s is transitive. Since in this case ∃s.G ∈ support(Hϕ(E)), it follows
that ∃s.G ∈ Hϕ(E)|s and the value H ′

ϕ(E)(∃s.G) is defined and equal to
Hϕ(E)(∃s.G). As support(H) 6= /0, we also have H ′

ϕ(E)(ρ) = Hϕ(E)(ρ),
and thus the required inequality is still satisfied.

For the second part of Condition c), assume that s is transitive,
∃s.G ∈ support(H ′

ϕ(E)) for some E ∈ sub(A,O) of the form ∃s.F
or ∀s.F . This implies that ∃s.G ∈ sub≤n−1(A,O) and the value of
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Hϕ(E)(∃s.G) is defined and equal to H ′
ϕ(E)(∃s.G). By the Hintikka con-

dition, this implies that ∃s.G ∈ support(H) and H ′
ϕ(E)(ρ) = Hϕ(E)(ρ),

and thus the inequality remains satisfied.
To show the second condition of Definition 2.3, assume that the

tuple (H0,H1, . . . ,Hk) satisfies the Hintikka condition. To show that
(H ′0,H

′
1, . . . ,H

′
k) also satisfies it, we again only consider the second

parts of Conditions b) and c); the other conditions follow from previous
or dual arguments.

Let ∃s.G ∈ support(H ′0), E ∈ sub(A,O) be of the form ∃s.F or
∀s.F , and s be transitive. This implies that also H0(∃s.G) is defined
and equal to H ′0(∃s.G). From the Hintikka condition, it follows that
∃s.G ∈ support(Hϕ(E)). Thus, H ′

ϕ(E)(∃s.G) is also defined and equal
to Hϕ(E)(∃s.G). Finally, we have support(H) 6= /0, which implies that
H ′

ϕ(E)(ρ) = Hϕ(E)(ρ).
Let now ∃s.G ∈ support(H ′

ϕ(E)) for some E ∈ sub(A,O) of the

form ∃s.F or ∀s.F and s be transitive. Thus, ∃s.G ∈ sub≤n−1(A,O)
and the value Hϕ(E)(∃s.G) is defined and equal to H ′

ϕ(E)(∃s.G). By the
Hintikka condition, we have ∃s.G ∈ support(H0), and thus the value
H ′0(∃s.G) is also defined and equal to H0(∃s.G). Finally, the values
Hϕ(E)(ρ) and H ′

ϕ(E)(ρ) must also be equal. ut

Proof of Lemma 5.7

We have to show that the automata AS
A,O induced by the functions in

Definition 5.4 are polynomially blocking w.r.t. the blocking relation
�SIc . Let (H0, i0),(H1, i1),(H2, i2) be the states of three consecutive
nodes in a path of a run of AS

A,O and s0,s1,s2 be the roles of the re-
strictions designated by the indices i0, i1, i2, respectively. Recall first
that the faithful family of functions ensures that

rdT (H0)≥ rdT (H1)≥ rdT (H2).

If s1 is not transitive, then rdT (H0) > rdT (H1). Moreover, if s1 6= s2,
then rdT (H0)> rdT (H2), regardless of whether s1,s2 are transitive or
not. Thus, a path in a run can have at most

max{rdT (D) | D ∈ sub(A,O)}+1

states using a non-transitive role, or using different roles for consecu-
tive transitions before reaching a state (H,s) with support(H) = /0.

If s1 = s2 is a transitive role, then the role depth of the Hintikka
functions may remain constant through both transitions. From the Hin-
tikka condition, H1|s ⊆ H2|s, H−s

1 ⊆ H−s
2 , and H2|s ⊆ H1|s must hold.

This means that there can be at most |sub(A,O)| states (H,s) with
H(ρ) = 0 before Condition (ii) of the blocking relation triggers.

Finally, if H1(ρ) = 1, the Hintikka condition implies that

H0(∀s.G)≤ H1(ρ)⇒ H1(∀s.G) = H1(∀s.G)

for any ∀s.G ∈ support(H0), and dually

H0(∃s.G)≤ H1(ρ)⊗H1(∃s.G) = H1(∃s.G)

whenever ∃s.G∈ support(H0). This means that after a chain of at most
|L||sub(A,O)| transitions with role s to degree 1, we find two states
(H,s),(H ′,s) such that H(D) = H ′(D) for every D in Q(H,Hi,s). The
Hintikka condition ensures that H0(∀s.G)≤H1(ρ)⇒H1(G) = H1(G)
and H0(∃s.G) ≤ H1(G), which shows that the last condition is also
satisfied after at most |L||sub(A,O)| transitions.

An additional factor of |L||sub(A,O)| enables us to ensure the
existence two nodes (H, i) and (H ′, i′) that satisfy the remaining con-
dition of �SIc , namely that i = i′ = ϕ(E) for some E ∈ sub(A,O) of
the form ∃s.F or ∀s.F and that H(F) = H ′(F).

Hence, in total, every path of length at least (|L||sub(A,O)|)5 will
contain two nodes that are in the blocking relation. This number is
obviously polynomial in the size of A,O. ut

Proof of Lemma 6.1

If an interpretation I satisfies the concept definition 〈A .
= C uD, `〉,

then we have AI(x)⇒ (CI(x)⊗DI(x))≥ `, and thus

CI(x)≥CI(x)⊗DI(x)≥ AI(x)⊗ `,

for every x ∈ ∆I . This implies that AI(x)⇒ CI(x) ≥ ` holds for all
x ∈ ∆I , i.e. I satisfies the GCI 〈AvC, `〉.

Assume now that I satisfies 〈AvC, `〉 and let x ∈ ∆I . We extend
I to the new concept name D by defining DI(x) := CI(x)⇒ AI(x).
We will first show the following claim, which generalizes a well-known
result for continuous t-norms over the real interval [0,1] and implies
that CI(x)⊗DI(x) = AI(x)∧CI(x):

Claim If `,m ∈ L, then `⊗ (`⇒ m) = `∧m.
Proof Since ⊗ is monotone, we have `⊗ (`⇒ m) ≤ `, and by
continuity of ⊗, we get `⊗ (`⇒ m) =

∨
{`⊗ x | `⊗ x≤ m} ≤ m.

Let now x ∈ L be such that x≤ ` and x≤ m. Then `⊗ x≤ x≤ m,
and thus x≤ `⇒ m. By continuity of ⊗, these facts imply that

x∨ (`⊗ (`⇒ m)) = (x∨ `)⊗ (x∨ (`⇒ m)) = `⊗ (`⇒ m),

which shows that x≤ `⊗ (`⇒ m). ut
We now have

(CI(x)⊗DI(x))⇒ AI(x) = (AI(x)∧CI(x))⇒ AI(x) = 1. (A.1)

Since I satisfies 〈A v C, `〉, we have AI(x)⇒ CI(x) ≥ `, and thus
CI(x) ≥ AI(x)⊗ `. Furthermore, we know that AI(x) ≥ AI(x)⊗ `,
which implies that

CI(x)⊗DI(x) = AI(x)∧CI(x)≥ AI(x)⊗ `,

and thus

AI(x)⇒ (CI(x)⊗DI(x))≥ `. (A.2)

Together, Equations (A.1) and (A.2) imply that I satisfies the concept
definition 〈A .

=CuD, `〉 at x. ut

B Examples

Example B.1 We now provide a simple stepwise construction of an
automaton giving a PSPACE upper bound to reasoning.

Suppose we want to determine the complexity of the following
number theoretical problem: given a finite set N of positive integers,
can it be partitioned into two subsets A1,A2 such that 2∑A1 = ∑A2,
and each A1 and A2 can also be recursively partitioned in this way,
unless the cardinality of the set is smaller than 3?

This problem can be solved by deciding the emptiness of the loop-
ing automaton AN = (QN , IN ,∆N) over binary trees, where

– QN :=P(N),
– IN := {N}, and
– ∆N := {(A,B,C) | |A| ≤ 2 or B∩C = /0, B∪C = A, 2∑B = ∑C}.

Figure B.1 depicts a run of AN for the input N = {1,3,4,5,6,8}. It is
clear that such an automaton has a run iff the problem stated above has
a solution. The number of states is exponential in the size of N. Since
emptiness of looping automata can be decided in PTIME, this problem
is in EXPTIME.

However, it is easy to see that the following family of functions
fA : QN → QN for A ∈ QN is faithful w.r.t. AN :

fA(A′) :=

{
A′ if |A|> 2
/0 if |A| ≤ 2

.
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{1,3,4,5,6,8}

{3,6}

...
...

{1,4,5,8}

{1,5}

...
...

{4,8}

...
...

Fig. B.1 A run of A{1,3,4,5,6,8}, where each node that is not depicted is
assigned an arbitrary state of cardinality 2

The example run from Figure B.1 can easily be transformed into a run
of the induced subautomaton AS

N by labeling the nodes that are not
depicted by /0.

Furthermore, we can show that the construction of AS
N from the

input N is a PSPACE on-the-fly construction:
(i) With equality as the blocking relation, AS

N is (|N|+1)-blocking
since every transition must reduce the cardinality of the set by at
least 1, and thus after at most |N| transitions the empty set must
be reached. The arity of AS

N is always constant (2).
(ii) Every element of QN has size polynomial in the size of N.

(iii) We do not have to guess elements of IN since it contains only
one element that is clearly of size polynomial in the size of N.
For a given state A ∈ QN of cardinality greater than 2 one can
guess a partition of A into two subsets B,C and check whether
they satisfy the conditions of ∆N in polynomial time.

This shows that the problem is also in PSPACE. This example illus-
trates that a naive modeling of a problem using looping automata can
be easy to describe, but might not yield a good complexity bound. By a
subsequent faithful reduction to a PSPACE on-the-fly-construction, the
complexity bound can be improved.

Example B.2 Consider the lattice L2 from Figure 2.1 with the Gödel
t-norm, the ontology O = (T ,R), where T = {〈A .

= ∀s.¬B,1〉} and
R = {r v s}, and the local ABox A = {(Bu ∃r.A, `b)}. The set of
subconcepts sub(A,O) consists of the elements A, B, ∃r.A, ¬B, ∀s.¬B,
and Bu∃r.A. The arity k of the Hintikka automaton is 2 since we only
have the restrictions ∃r.A and ∀s.¬B. We fix the mapping ϕ by setting
ϕ(∃r.A) = 1 and ϕ(∀s.¬B) = 2.

Figure B.2 depicts the beginning of a run of the Hintikka automa-
ton AA,O . The Hintikka function H0 labeling the root must be an ini-
tial state, i.e. we must have H0(Bu∃r.A) = `b. Definition 4.3 forces
us to assign to B and ∃r.A two values whose infimum is `b. Here, we
guess H0(B) = H0(∃r.A) = `b. Thus, the Hintikka function H1 label-
ing the first successor must satisfy Definition 4.4a), which implies that
H1(ρ)⊗H1(A) must be `b. If we guess H1(A) = `b, the compatibil-
ity condition (see Definition 4.3) requires that H1(∀s.¬B) is also `b.
Finally, since rvR s, Definition 4.4c’) requires that

H1(∀s.¬B)≤ H1(ρ)⇒ H0(¬B).

This can be satisfied by setting H0(¬B) to `b. This assignment satisfies
Definition 4.3 since H0(¬B) = `b =∼`b =∼H0(B).

All other requirements of Definitions 4.3 and 4.4 are trivially sat-
isfied, and thus A is locally consistent w.r.t. O. On the other hand,
{(Bu∃r.A,1)} is not locally consistent w.r.t. O since we cannot as-
sign 1 to both B and ¬B at the root.
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3. Baader, F., Peñaloza, R.: Are fuzzy description logics with general
concept inclusion axioms decidable? In: Proc. of the 2011 IEEE
Int. Conf. on Fuzzy Systems (FUZZ-IEEE’11), pp. 1735–1742.
IEEE Computer Society Press (2011). DOI 10.1109/FUZZY.2011.
6007520
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16. Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description
logics. In: G. Brewka, T. Eiter, S.A. McIlraith (eds.) Proceedings
of the 13th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2012), pp. 232–242. AAAI
Press, Rome, Italy (2012)

17. Bou, F., Cerami, M., Esteva, F.: Finite-valued Łukasiewicz modal
logic is PSPACE-complete. In: T. Walsh (ed.) Proc. of the
22nd Int. Joint Conf. on Artifical Intelligence (IJCAI’11), pp.
774–779. AAAI Press (2011). DOI 10.5591/978-1-57735-516-8/
IJCAI11-136

18. Cerami, M., Straccia, U.: On the undecidability of fuzzy descrip-
tion logics with GCIs with Łukasiewicz t-norm (2011). URL
http://arxiv.org/abs/1107.4212

19. De Cooman, G., Kerre, E.E.: Order norms on bounded partially
ordered sets. J. Fuzzy Math. 2, 281–310 (1993)

20. Goguen, J.A.: L-fuzzy sets. Journal of Mathematical Anal-
ysis and Applications 18(1), 145–174 (1967). DOI 10.1016/
0022-247X(67)90189-8

21. Grätzer, G.: General Lattice Theory, Second Edition. Birkhäuser
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