
Situation Recognition for Service Management
Systems Using OWL 2 Reasoners

Waltenegus Dargie†, Eldora∗, Julian Mendez∗, Christoph Möbius†,
Kateryna Rybina†, Veronika Thost∗, Anni-Yasmin Turhan∗

∗, Chair for Automata Theory †, Chair of Computer Networks,
Institute for Theoretical Computer Science Institute of Systems Architecture

Technische Universität Dresden Technische Universität Dresden

email: lastname@tcs.inf.tu-dresden.de email: firstname. lastname@tu-dresden.de

Abstract— For service management systems the early recog-
nition of situations that necessitate a rebinding or a migration
of services is an important task. To describe these situations on
differing levels of detail and to allow their recognition even if
only incomplete information is available, we employ the ontology
language OWL 2 and the reasoning services defined for it. In this
paper we provide a case study on the performance of state of the
art OWL 2 reasoning systems for answering class queries and
conjunctive queries modeling the relevant situations for service
rebinding or migration in the differing OWL 2 profiles.

I. INTRODUCTION

Service management systems (SMS) are systems that,
broadly speaking, orchestrate the execution of complex ser-
vices in distributed (cluster) computing environments. The
prime goal of these systems is to ensure that computing
resources are efficiently utilized while functional and non-
functional requirements of individual services expressed in so-
called service level agreements (SLAs) are respected. One of
the resources managed by an SMS is power.

Unfortunately, a significant portion of the power consump-
tion of Internet-based servers is wasted due to underutilization
[6]—often Internet-based servers are utilized only between
30 to 70% of their full capacity even though their idle
power consumption amounts up to 60% of their peak power
consumption [2], [1]. An SMS can be employed in a cluster
environment to ensure that power is frugally consumed by
servers. In this regard, a key aspect of the SMS is its ability
to adapt the use of hardware resources according to the present
and anticipated workload. Depending on the type of services
that are being hosted and the priority and magnitude of the
processed workload, an SMS can carry out different forms of
adaptations to save power.

A. Service Management

One of the essential adaptation strategies is to switch
off underutilized machines as often as possible. This can
be achieved by consolidating services running on different
machines onto a selected number of machines, which are

This work is supported in a part by the German Research Foundation (DFG)
in the Collaborative Research Center 912 ‘Highly Adaptive Energy-Efficient
Computing’.

then optimally configured. Service consolidation in turn can
be achieved by either carrying out runtime service migration
[10] or service rebinding [11]. In a service migration, the
main memory content of a service is transferred from one
physical machine to another at runtime while the service is still
executing. In virtualized environments, this can be achieved by
encapsulating the service inside a virtual machine (VM) and
then migrating the VM itself. If the service is stateless, an SMS
may prefer the adaptation technique of service-rebinding. In
this case, another instance (service B) of a service being run
on an underutilized server (service A) will be started elsewhere
and all future requests directed to service A will be redirected
to service B. The aim is to gradually terminate service A and
switch off the server on which service A was running.

Clearly, adaptation techniques can be carried out if there are
‘symptoms’ indicating a need for adaptation. These symptoms
may refer to potential SLA violations or to some utilization
thresholds that are being crossed or, to put it more generally,
to some critical situations that can be sensed in the system.
The time between recognizing a critical situation and finishing
all necessary adaptation tasks can be considerably long – for
example, the migration of a VM can take several seconds or
even minutes, depending on its size and the available network
bandwidth [23]. During this delay, the performance of the
service may degrade and the power consumption of both the
target and the source servers may increase.

Ideally, the SMS should be notified in advance about situa-
tions, where a server is overloaded or underutilized and carry
out the appropriate adaptations. To this end, it is desirable to
describe contextual information that sufficiently characterizes
the execution environment (i.e., context pertaining to SLAs,
workloads, services, and servers etc.), then recognize situations
in the actual system that potentially lead to the violation of
one of the predefined thresholds, and decide on the suitable
adaptation strategy to alleviate this violation.

In order to do so the situations need to be represented on
differing levels of detail—a task Description Logics (DLs)
ontologies [5] are designed for. Moreover, the various aspects
of the overall managed system’s status are supplied by dif-
ferent information sources. For instance, the properties of the
different implementations of services may be given by the



software providers and can be stored in a database, while other
information such as the layout of the hardware and the current
system parameters can be retrieved from the OS directly. These
information sources yield information of different levels of
detail. Data integration can be performed by using DLs, see
[9], [7]. Most importantly, DL systems can handle incomplete
information gracefully, since they operate under the open
world assumption, i.e. missing is neither regarded true or false.
In contrast to this, in database systems missing information is
regarded to be false.

We follow a common approach to ontology-based situation
recognition: we use an ontology describing the managed
system and servers and employ DL reasoning to identify
situations of interest. This approach has been employed in
several domains for context-aware applications, for instance,
in the intelligent home domain [27], [22] and air surveillance
[3]. In [19], [3] it was demonstrated that the expressivity and
reasoning capabilities of DL systems suffice to model the
domain at hand faithfully.

B. OWL 2 for Situation Recognition

DLs are the logical formalism underlying the W3C standard
OWL. In OWL categories from the application domain can
be described by class expressions and binary relations by so-
called (object) properties. For example, the class Server, which
is hardware that has a CPU as a part and has memory as a
part can be characterized by the expression:1

Server ≡ Hardware u (∃hasPart.CPU) u (∃hasPart.Memory).
The definition assigns to the named class Server the complex
class expression on the right-hand side and uses the property
hasPart and the other named classes Hardware, CPU and
Memory. Now, based on Server we can define an IdleServer
as a server that has the power state ‘idle’ by writing:
IdleServer ≡ Server u ∃hasPowerState.Idle
Such definitions of classes are stored in the TBox. In addition,
characteristics of properties can be stated in the TBox, e.g.,
that the property hasPart is transitive or that the property
isPartOf is its inverse.2

The ABox stores concrete facts from the application, ex-
pressed by class assertions, which state that an individual
belongs to a (possibly complex) class or property assertions
that relate two individuals via a property.

Example 1: We can state in our ABox A1 that the individ-
ual named Server1 belongs to the class Server and that its
related power state is individual State2 , which belongs to the
class IdleState by writing the statements:

A1 = { Server(Server1 ), hasPowerState(Server1 ,State2 ),

IdleState(State2 ) }.

The TBox and the ABox together constitute the ontology.
For DL systems there are several reasoning services that can
infer from the explicitly given information in the ontology the

1We give the class expressions in DL syntax for better readability.
2For the exact syntax and semantics of DLs we refer the reader to [5].

implicitly captured facts. Subsumption can compute super- and
sub-class relationships for the classes defined in the TBox. For
example, it can be derived that the class IdleServer is a sub-
class of the class ∃hasPart.CPU. Class queries compute for a
given (complex) class Cq and an ontology all the individuals
in the ABox that belong to the given class Cq. For the query
class IdleServer and A1 we can derive the individual Server1 .
A more powerful way to query the ABox are conjunctive
queries. A conjunctive query is a conjunction of assertions that
may also contain variables, of which some can be existentially
quantified. For example, the conjunctive query
qex =
∃x, y.Server(x) ∧ hasPart(x, z) ∧ uses(y, z) ∧ Process(y)

asks for all pairs of servers and processes, where the process
uses some part of the server. In contrast to class queries,
conjunctive queries can return a tuple of individuals from the
ABox.

We model the basic categories and relations of the SMS
domain in a TBox, such as the hardware or the managed
services. The current state of the system managed by the
SMS is then captured at runtime in an ABox, similarly to
[27], [22], [3]. To recognize the relevant situations for the
SMS we employ answering of class queries or conjunctive
queries w.r.t. the ABox. Once such a situation is detected
for a (tuple of) ABox individual(s), the SMS invokes the
appropriate adaptations on the returned individuals to ensure
energy efficiency for the overall system.

The OWL 2 standard for ontology languages comprises
so-called OWL profiles which differ w.r.t. expressivity [28].
Depending on the profile, more class constructors and property
statements are allowed for the TBox.
• OWL 2 is the most expressive ontology language in

the W3C standard. Reasoning in the corresponding DL
SROIQ is 2NExpTime-complete [13], [14], i.e. class
queries can take more than double exponential time.

• OWL 2 EL corresponds to the DL EL++, where class
query answering is in P [4], i.e. can always be done in
polynomial time. However, conjunctive query answering
in the sublogic EL is already P -complete w.r.t. the size
of the ABox alone.

• OWL 2 QL allows only for very limited class descrip-
tions. For its corresponding DL DL-LiteR query answer-
ing is in AC0 (which is a proper subclass of the class of
P ), if measured w.r.t. the size of the ABox alone [8].

The motivation for the different profiles are the good computa-
tional properties of the lightweight DLs EL++ and DL-LiteR
for answering class queries or conjunctive queries respectively.
There are non-commercial, optimized reasoners for answering
class queries or conjunctive queries. Although the computa-
tional complexity of the implemented algorithms is promis-
ingly low, it is not clear whether these implementations are
yet fast enough to realize situation recognition for applications
that deal with complex situations and require fast response
times—such as SMSs. While [19], [3] argued that the reason-
ing capabilities of DL systems suffice to recognize complex



situations, little is known about whether the performance of
the implementation of DL reasoners’ performance is yet good
enough for this kind of task. This question was addressed in
the study in [27] back in 2006 for class queries, where it
turned out that for fairly small ontologies and only applications
that require moderate response times (of about 20 seconds),
the performance of the DL reasoners was barely adequate.
Since then DL reasoners have evolved in terms of reasoning
services offered and in terms of performance. This motivates
our empiric study that measures the performance of today’s
reasoning systems for class queries and conjunctive queries
for the different OWL profiles. The application is to recognize
situations for an SMS that manages a video platform such that
it runs in an energy efficient way.

The paper is structured as follows: Section II describes the
ontology for the video platform use case and the modeling
of the relevant situations. Section III presents the empirical
evaluation how current DL reasoners perform on class and
conjunctive queries w.r.t. the different OWL profiles. As it is
custom our paper ends with some conclusions.

II. USE CASE: MANAGING A VIDEO PLATFORM SERVER

For a proof of concept for our DL-based approach for SMS,
we consider a video platform as application scenario, i.e.,
a distributed application over several servers, which allows
users to search for, upload, and download videos. Internally,
services for ranking and transcoding of videos (i.e., conversion
of video encodings) are executed. The up- and downloading
of videos are complex and resource-intensive processes. For
that reason, we apply an elaborate service management to
effectively exploit the available resources.

The two techniques considered to reduce the energy con-
sumption of the video server platform are service migration
and service rebinding. Service rebinding is performed in case
one server is not optimally utilized, while another server
still has available resources. Consider a server providing a
downloading service. If several users request this service at
the same time, the server becomes overloaded. To balance the
load, this downloading service can be rebound – by starting
an instance of this service on another server that has available
resources and by ‘redirecting’ future requests to the new
instance.

To recognize situations where the application of such
adaptation techniques can be beneficial, we create ontologies
capturing information about the system and then apply DL rea-
soners to detect situations apt for optimization. More precisely,
at design time the general domain knowledge about video
platforms (e.g., the kinds of services provided) and notions of
SMS (e.g., when a server has available resources) are described
in the TBox. The relevant situations to be recognized are
modeled as query classes or conjunctive queries–depending on
the reasoning task to be employed. The TBox and the queries
are assumed to be fixed over the runtime of the SMS.

The ABox describes the architecture of the specific ap-
plication managed by the SMS (e.g., available servers) and

its current state (e.g., load of the servers, executed imple-
mentations, etc.). Most of the data in the ABox has to be
collected at runtime. Due to the highly dynamic nature of the
system, the ABox is refreshed several times a minute. Each
ABox can be generated from many sources as, for instance,
sensor data delivered by the OS or a database describing
all implementations available to the SMS. For the task of
converting numerical data, such as sensor data, preprocessors
are applied, to convert the numeric data into named classes
(following the approach used in [3], [24]). For example, if the
load measured for a server Server1 has been constantly very
low, the assertions

hasLoadAverage(Server1 ,Load2 ), UnderUtilized(Load2 )

are added to the ABox created for the past interval. Once the
ABox is refreshed, the DL reasoner performs answering of the
class or conjunctive queries provided at design time.

A. Modeling the OWL 2 Video Platform Ontology

Our TBox contains basic notions of the video platform
domain such as characteristics of a DownloadingService and
notions specific for SMS as AvailableResourceServer written
in the DL ALCIQ, which is a proper sub-logic of OWL 2.
For this DL, testing class queries is PSpace-complete [25],
while answering of conjunctive queries is even 2ExpTime-
complete [16]. Our ABox contains assertions describing the
architecture of the video platform and its current state based
on the available sensor data.

Example 2: Let’s assume that State1 from ABox A1 has
changed to ‘operating’ in the last interval. Now, the charac-
terization of Server1 , its resources, and states at runtime can
be captured by:
Server(Server1 ),
CPU(CPU1 ), hasPart(Server1 ,CPU1 ),
Memory(Memory1 ), hasPart(Server1 ,Memory1 ),
Operating(State1 ), hasPowerState(Server1 ,State1 ),
UnderUtilized(Load1 ), hasLoadAverage(Server1 ,Load1 )

It turned out that even the expressivity of the lightweight
profiles allows to describe at least the main characteristics of
the domain knowledge of our application scenario. This is
because the TBox primarily captures the conceptual model
of the application, which is exactly the use-case DL-Lite
has been developed for. If needed, complex class definitions,
which cannot be represented in the lightweight profiles, can be
captured alternatively using fine-granular conjunctive queries
when modeling the rebinding situations.

Example 3: Consider the class definition for underutilized
servers, which have an average load that is underutilized or
that have a part that is an underutilized CPU or NIC:

UnderUtilizedServer ≡ ∃hasLoadAverage.UnderUtilized t
∃hasPart.(UnderUtilizedCPU t UnderUtilizedNIC)

It cannot be expressed in an OWL 2 EL/QL ontology, due
to disjunction (t). Thus, such a query concept would have to
consist of the right-hand side of the definition.



RebindingDownloadingServiceSituation =
∃hasServer.(AvailableResourceServer u ∃runs.∃hosts.DownloadingImplementation) u
∃hasServer.(¬OptimallyUtilizedServer u ∃runs.∃hosts.∃bindsTo.DownloadingService)

RebindingServiceSituation =
∃hasServer.(AvailableResourceServer u ∃runs.∃hosts.Implementation) u
∃hasServer.(¬OptimallyUtilizedServer u ∃runs.∃hosts.∃bindsTo.Service)

qRebindingDownloadingServiceSituation =
∃x, y. AvailableResourceServer(x) ∧ runs(x, z1) ∧ hosts(z1, z2) ∧ DownloadingImplementation(z2) ∧

bindsTo(z2, z3) ∧ DownloadingService(z3) ∧
¬OptimallyUtilizedServer(y) ∧ runs(y, z4) ∧ hosts(z4, z5) ∧ DownloadingImplementation(z5) ∧
bindsTo(z5, z6) ∧ isBoundTo(z6, z5) ∧ DownloadingService(z6)

qRebindingServiceSituation =
∃x, y. AvailableResourceServer(x) ∧ runs(x, z1) ∧ hosts(z1, z2) ∧ Implementation(z2) ∧

bindsTo(z2, z3) ∧ Service(z3) ∧
¬OptimallyUtilizedServer(y) ∧ runs(y, z4) ∧ hosts(z4, z5) ∧ Implementation(z5) ∧ bindsTo(z5, z6) ∧
isBoundTo(z6, z5) ∧ Service(z6)

Fig. 1. The situation when to rebind a (downloading) service captured as query classes and conjunctive queries.

B. Modeling the Rebinding Situations

To recognize critical situations, we apply either answering
of class queries or of conjunctive queries. For the former, the
situations need to be specified as classes, while for the latter,
the situations need to be described by conjunctive queries.

Example 4: A situation apt for rebinding a download-
ing service considers two servers, one with available
resources and one that is not optimally utilized. The
first one hosts the corresponding implementation and
the second one hosts the same implementation currently
bound by the service. The resulting query class is dis-
played in Figure 1 in the upper half as the class
RebindingDownloadingServiceSituation and the correspond-
ing conjunctive query qRebindingDownloadingServiceSituation in
the lower half of the figure. Note, that the fact that the same
implementation is used by the servers cannot be expressed
by a class description, since they only allow to describe tree-
like structures. Furthermore, conjunctive queries retrieve tuples
from the ABox, while a query concept can only retrieve a
single individual.

In Figure 1 a situation that generalizes the above one is char-
acterized in the query class RebindingServiceSituation and in
the query qRebindingDownloadingServiceSituation, respectively. In
this situation the service and the implementation are not further
specified, otherwise these situations are the same. Clearly, this
situation is refined by the first one.

It is fruitful to model such refinement of situations in
order to allow for graceful handling of incomplete in-
formation. Assume, that it is stated in the TBox that
every DownloadingServer is a Server and that every
DownloadingImplementation is an Implementation. Further-
more, assume that for a particular downloading implemen-
tation it cannot be retrieved that it is an implementation
of that kind, but only that it is an implementation (of
some kind). Thus the next ABox is incomplete. In such
a case a situation that might necessitate the rebinding of

a downloading service cannot be recognized. More pre-
cisely, the class RebindingDownloadingServiceSituation does
not have an instance in the current ABox and the query
qRebindingDownloadingServiceSituation yields no tuples. However,
the more general class RebindingServiceSituation would have
an instance and the query qRebindingServiceSituation would yield
a result tuple. Thus a counter measure could be invoked at least
for this kind of situation.

Class and conjunctive queries differ in the expressive power
for specifying the situations. While the former are limited
by the expressivity of the ontology language, the latter can
in addition make use of the variables to describe arbitrary
structures to describe the details of the situations. This addition
comes at the cost of higher computational complexity.

III. EVALUATION FOR THE OWL 2 PROFILES

The goal of our evaluation is to see whether current OWL
2 reasoners are appropriate for situation recognition in SMSs.
However, to adopt DL reasoning for this kind of scenario, the
reasoners have to be able to detect situations by processing
realistic amounts of data within short time. We consider
OWL 2 and the two profiles OWL 2 EL and OWL 2 QL
in our evaluation. However, the syntactic restrictions of the
lightweight profiles allow only for coarser modeling than full
OWL 2—some information simply cannot be modeled. An
interesting question is whether this leads to missing inferences
in our scenario.

A. Test Data and Reasoning Systems

a) Test ontologies: Our base TBox from Section II-A
contains 113 class and 66 property definitions and uses
ALCIQ a sub-logic of OWL 2. For both lightweight profiles,
we built variations of the base TBox manually—keeping as
much information as possible. Since the OWL 2 QL profile
does not support truly complex class descriptions, the situa-
tions in the OWL 2 QL TBox cannot be modeled as classes.



However, the necessary information can be captured in the
conjunctive queries. Thus we only test answering conjunctive
queries for the QL profile.

The ABoxes model a video platform running on four servers
and providing the services described in Section II. Since
the class assertions use only named classes, the ABoxes do
not vary for the profiles. We consider two different ABoxes
modeling two different states of the system. In order to
reflect realistic scenarios, the test ABoxes do not only contain
information about the situation to be detected, but model
the overall system state. We added data about other users
requesting video services, which are carried out on other
servers. This roughly doubles the sizes of both ABoxes. Each
of the test ABoxes contains about 380 individuals, more than
770 class, and more than 545 property assertions.

b) Test Queries: We modeled 13 situations as OWL 2
classes. Since OWL 2 EL does not offer universal quantifica-
tion, only 11 of them are modeled as OWL 2 EL classes.
For these 11 situations we formulated the corresponding
conjunctive queries included in our test suite. The class queries
have a size of about 10 counting the class and property names.
The conjunctive queries are formulated in the query languages
SPARQL and nrql. They contain on average 15 disjuncts of
conjunctions with 8 conjuncts each.

c) Reasoner Systems: The tests were run for seven DL
reasoners, which differ w.r.t. the DL they support and the rea-
soning services provided. Table I depicts the tested reasoners,
the used version and the closest DL of the respective profile
they implement (‘x’ stands for full coverage). Besides the
tableaux-based reasoners for expressive DLs in the first group
of Table I, we tested reasoners specialized on lightweight
profiles, which are listed in the second and third group of the
table. QUEST can be used for ontology based data access (i.e.,
a data base functions as ABox and can be queried directly).
We used QUEST with classical ABoxes here.

B. Evaluation

The tests were carried out on an Intel Core 2 Duo work-
station with 2 GB RAM using Java 1.6.0. on Ubuntu. Besides
recording the mere runtimes, we checked whether the reason-
ers delivered the same results for a query. For our class and
conjunctive queries, all reasoners agree on the result tuples.
However, when comparing the results for conjunctive queries
w.r.t. differing expressiveness of the profiles, it shows that

Query type Profile
Reasoner Version Class Conj. OWL EL QL
FACT++ [26] v1.6.1 x x x x
HERMIT [18] v1.3.6 x SHOIQ x x
PELLET [21] v2.3.0 x x SHOIN (D) x x
RACERPRO [12] v2.0 x x SHIQ(D) x x
ELK [15] v0.3.1 x EL+
JCEL [17] v0.18.0 x EL+
QUEST [20] v1.7-alpha x x

TABLE I
REASONERS AND THEIR SUPPORTED QUERIES AND PROFILES.

Load. Reason. Avg/Query Total

OWL HERMIT 0.180 1.832 0.148 2.012
PELLET 0.203 0.434 0.033 0.637
FACT++ 0.208 0.225 0.017 0.433
RACERPRO 0.199 24.163 1.985 24.362

EL ELK 0.228 0.078 0.004 0.306
FACT++ 0.245 0.063 0.002 0.308
HERMIT 0.212 0.120 0.004 0.332
JCEL 0.230 0.199 0.012 0.429
PELLET 0.197 0.576 0.045 0.773
RACERPRO 0.342 1.675 0.112 2.018

TABLE II
RUNTIMES FOR CLASS QUERIES IN SECONDS.

Load. Reason. Avg/Query Total
OWL RACERPRO 1.302 40.035 3.336 41.336

EL PELLET 0.522 2.344 0.195 2.866
RACERPRO 0.503 6.773 0.564 7.277

QL PELLET 0.541 1.918 0.160 2.460
QUEST 0.453 93.208 7.767 93.661
RACERPRO 0.349 6.604 0.550 6.953

TABLE III
RUNTIMES FOR CONJUNCTIVE QUERIES IN SECONDS.

RACERPRO detects all of the (expected) tuples for OWL 2,
while less tuples are returned for the lightweight profiles. As
to be expected, this is due to the loss in expressivity when
using a lightweight profile. We observed the same effect for
the lightweight profiles in the results of PELLET and QUEST.

1) Performance for Class Queries: For class queries we
ran tests for the OWL 2 and the OWL 2 EL profile. We used
the OWL API (version 3.4.1) to access the reasoners. The
results are displayed in Table II, sorted by profiles. The first
column depicts the time spent on loading the ontology. The
next one displays the time for answering all the queries. The
average runtime per query is displayed next. The last column
contains the runtime for the overall process and is thus the
most interesting for our application of situation recognition.
As expected, it shows that the overall runtime is 6-10 times
higher for OWL 2 than for the OWL 2 EL profile with the
exception of PELLET, which performs slight better for OWL.
OWL 2: Apart from RACERPRO, which took about 25 seconds,
all reasoners delivered a full situation recognition within 2
seconds.
OWL 2 EL: With an overall runtime of about 0.3 seconds,
ELK, FACT++, and HERMIT outperform the other systems.
All systems can perform situation recognition within 0.8
seconds besides RACERPRO, which, again, takes considerably
more time.

2) Performance for Conjunctive Queries: For the con-
junctive queries, the results for all of the three profiles are
displayed in Table III. As for class querying, reasoning in the
lightweight profiles is much faster.
OWL 2: Here RACERPRO needs about 41 seconds overall
runtime. Interestingly, compared to the corresponding class
query, it takes nearly twice as long, due to one outlier query.
OWL 2 EL: PELLET answers all queries in less than 3 seconds,
but takes about four times as long for class queries. With



7.2 seconds RACERPRO takes more than twice as long than
PELLET.
OWL 2 QL: The times of PELLET and RACERPRO are
similar to the OWL 2 EL case. QUEST, in contrast, shows
a significantly worse performance by taking more than 1.5
minutes. We conjecture that this is attributed to running a first
alpha version of it and with a traditional ABox (i.e., instead
of using a database).

All in all, the experiments show that most state of the art
reasoners can be applied for situation recognition in our SMS
application, since response times of half a minute would be
acceptable. Especially by the use of the lightweight profiles,
we achieve very good runtimes for reasoning. Surprisingly, the
loss of information, when using a light weight profile, turned
out to be only marginal for our video platform use case.

IV. CONCLUSIONS AND FUTURE WORK

We have supplied a study on employing state of the art
DL reasoners to perform situation recognition for service
management applied to a video platform. The task was to
recognize complex situations that might invoke rebinding of
services in order to achieve energy efficiency. To solve this
task the domain was modeled in an OWL 2 ontology, where
the ABox reflected realistic situations in the application. The
actual recognition of critical situations, was realized by class
or conjunctive query answering. Our experiments w.r.t. the
different OWL 2 profiles gave evidence that the performance
of today’s DL systems is sufficient to detect complex situations
fast enough. In particular, for the OWL 2 EL and the OWL 2
QL profile it can be done within 2 seconds.

Future work on the practical side includes to run QUEST in
the ODBA mode and to realize the whole situation recognition
more tightly coupled to a DB, such that the data collected
there can be queried directly, instead of generating and loading
an ABox. On the theoretical side, we would like to lift the
limitation of OWL regarding the modeling of fuzzy or even
temporal information by investigating query answering for
sequences of ABoxes, which contain this kind of information.

REFERENCES

[1] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy
proportional datacenter networks. SIGARCH Comput. Archit. News,
38(3):338–347, 2010.

[2] F. Ahmad and T. N. Vijaykumar. Joint optimization of idle and cooling
power in data centers while maintaining response time. In Proc. of the
fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems, ASPLOS ’10, p. 243–256, USA, 2010.
ACM.

[3] F. Baader, A. Bauer, P. Baumgartner, A. Cregan, A. Gabaldon, K. Ji,
K. Lee, D. Rajaratnam, and R. Schwitter. A novel architecture for
situation awareness systems. In Proc. of the 18th Int. Conf. on Automated
Reasoning with Analytic Tableaux and Related Methods (Tableaux’09),
vol. 5607 of LNCS, p. 77–92. Springer, 2009.

[4] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further.
In K. Clark and P. F. Patel-Schneider, eds. In Proc. of the OWLED
Workshop, 2008.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, eds.˙The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[6] L. Barroso and U. Hölzle. The Case for Energy-Proportional Computing.
Computer, 40(12):33–37, Dec. 2007.

[7] A. Borgida, M. Lenzerini, and R. Rosati. Description logics for
databases. In [5], p. 462–484. Cambridge University Press, 2003.

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics:
The DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.
Knowledge representation approach to information integration. In Proc.
of AAAI Workshop on AI and Information Integration, p. 58–65. AAAI
Press/The MIT Press, 1998.

[10] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proc. of
the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Vol. 2, p. 273–286. USENIX Association, 2005.

[11] W. Dargie, A. Strunk, and A. Schill. Energy-aware service execution. In
Proc. of the 36th Annual IEEE Conference on Local Computer Networks,
2011.

[12] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The RacerPro
knowledge representation and reasoning system. Semantic Web Journal,
3(3):267–277, 2012.

[13] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible
SROIQ. In P. Doherty, J. Mylopoulos, and C. Welty, eds. Proc. of
the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-06), p. 57–67. AAAI Press, 2006.

[14] Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In
G. Brewka and J. Lang, eds. Proc. of the 11th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-08), p.
274–284. AAAI Press, 2008.

[15] Y. Kazakov, M. Krötzsch, and F. Simančı́k. ELK reasoner: Architecture
and evaluation. In I. Horrocks, M. Yatskevich, E. Jimenez-Ruiz, editor,
Proc. of the OWL Reasoner Evaluation Workshop (ORE’12), vol. 858
of CEUR, 2012.

[16] C. Lutz. The complexity of conjunctive query answering in expressive
description logics. In A. Armando, P. Baumgartner, and G. Dowek, eds.
Proc. of the 4th International Joint Conference on Automated Reasoning
(IJCAR’08), nr. 5195 in LNAI, p. 179–193. Springer, 2008.

[17] J. Mendez. jCel: A modular rule-based reasoner. In In Proc. of the
1st Int. Workshop on OWL Reasoner Evaluation (ORE’12), vol. 858 of
CEUR, 2012.

[18] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in
Description Logics using Hypertableaux. In F. Pfennig, editor, Proc.
of the 23th Conf. on Automated Deduction (CADE-23), LNAI, p. 67–
83, Germany, 2007. Springer.

[19] B. Neumann and R. Möller. On scene interpretation with description
logics. In H. Christensen and H.-H. Nagel, eds. Cognitive Vision
Systems: Samping the Spectrum of Approaches, nr. 3948 in LNCS, p.
247–278. Springer, 2006.

[20] M. Rodriguez-Muro and D. Calvanese. Quest, an OWL 2 QL reasoner
for ontology-based data access. In Proc. of the 9th Int. WS on OWL:
Experiences and Directions (OWLED’12), vol. 849 of CEUR, 2012.

[21] E. Sirin and B. Parsia. Pellet system description. In B. Parsia, U. Sattler,
and D. Toman, eds. Description Logics, vol. 189 of CEUR, 2006.

[22] T. Springer and A.-Y. Turhan. Employing description logics in ambient
intelligence for modeling and reasoning about complex situations. J. of
Ambient Intelligence and Smart Environments, 1(3):235–259, 2009.

[23] A. Strunk and W. Dargie. Does live migration of virtual machines cost
energy? In Proc. of the 27th IEEE International Conference on Advanced
Information Networking and Applications (AINA-2013), 2013.

[24] K. Taylor and L. Leidinger. Ontology-driven complex event processing
in heterogeneous sensor networks. In Proc. of 8th Extended Semantic
Web Conference (ESWC’11), vol. 6644 of LNCS, p. 285–299. Springer,
2011.

[25] S. Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, 2001.

[26] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimising termi-
nological reasoning for expressive description logics. J. of Automated
Reasoning, 2007.

[27] A.-Y. Turhan, T. Springer, and M. Berger. Pushing doors for modeling
contexts with OWL DL – a case study. In J. Indulska and D. Nicklas,
eds. Proc. of the Workshop on Context Modeling and Reasoning
(CoMoRea’06). IEEE Computer Society, 2006.

[28] W3C OWL Working Group. OWL 2 web ontology language document
overview. W3C Recommendation, 27th October 2009. http://www.
w3.org/TR/2009/REC-owl2-overview-20091027/.


