
OWL 2 Reasoning To Detect Energy-Efficient
Software Variants From Context ?

Sebastian Götz1, Julian Mendez2, Veronika Thost2, and Anni-Yasmin Turhan2

1Software Technology Group 2Chair for Automata Theory
Inst. f. Software and Multimedia Technology Inst. f. Theoretical Computer Science

Technische Universität Dresden Technische Universität Dresden

Abstract. Runtime variability management of component-based soft-
ware systems allows to consider the current context of a system for sys-
tem configuration to achieve energy-efficiency. For optimizing the system
configuration at runtime, the early recognition of situations apt to recon-
figuration is an important task. To describe these situations on differing
levels of detail and to allow their recognition even if only incomplete
information is available, we employ the ontology language OWL 2 and
the reasoning services defined for it. In this paper, we show that the rel-
evant situations for optimizing the current system configuration can be
modeled in the different OWL 2 profiles. We further provide a case study
on the performance of state of the art OWL 2 reasoning systems for an-
swering concept queries and conjunctive queries modeling the situations
to be detected.

1 Introduction

A typical approach to introduce variability into complex software systems is
the application of component-based software engineering, where variability is
achieved by multiple implementations for components [21]. A software compo-
nent is an abstract element of reuse, which declares what it requires and pro-
vides. Each component comprises several implementations providing the same
functionality, but differing in the realization.

A feasible approach to component-based self-adaptive systems are contract-
based negotiations, which reflect the non-functional behavior of component im-
plementations [17,6,7]. A contract comprises several so-called clauses, which
can be assumptions about the system, its context, or guarantees of the non-
functional behavior provided by the respective implementation. For example, a
contract for a video streaming component can specify that in case a high band-
width is given (assumption), a high frame-rate (guarantee) is provided. Self-
adaptive software [5] exploits this variability to determine an optimal variant for
non-functional properties—as in our case energy consumption. As a prerequisite
to adaptation, the system and its context have to be monitored and analyzed.
That is, self-adaptive software needs to be context-aware [18].

? This work is supported in a part by the German Research Foundation (DFG) in the
Collaborative Research Center 912 ‘Highly Adaptive Energy-Efficient Computing’.

2 S. Götz, J. Mendez, V. Thost, A.-Y. Turhan

1.1 Ontology-based Situation Recognition for Runtime Variability
Management

Variability management for energy saving is carried out at runtime of the soft-
ware system, to ensure that the current configuration of system components
employed uses energy optimally. A key aspect is the ability to adjust the system
configuration to the current system load and, more importantly, to the hard-
ware resources available. In the end it is the hardware that consumes the energy
directly when being utilized by the software. Depending on the current context
(e.g., the available resources, the system load, the software variants available,
etc.) a component-based software system can be adapted in different ways to
save power at runtime.

Clearly, system adaptation needs to be carried out, if there are ’violations’ of
contract clauses of a component, which reflect the assumptions that led to the
selection of this component. Contract violations occur if the requirements of the
selected software variants cannot be provided anymore (e.g., if utilization thresh-
olds are exceeded). In order to save energy, adaptations should be performed in
situations where energy is (about to be) wasted. This kind of situations does
not necessarily involve a violation, but is a type of situations where clauses that
were not valid at the time of the last decision have now become valid.

Ideally, a software management system is notified in advance about situations
where a reconfiguration might be beneficial to carry out appropriate adjustments
in time. To this end, context information characterizing the execution environ-
ment has to be collected, and situations apt to optimization have to be recognized
in this (abstract) representation of the actual system. In case a critical situa-
tion is recognized, the adjustments to be carried out have to be determined in a
second step by the software management system. In this paper, we concentrate
only on the task of situation recognition.

Typically, the information sources for the overall software system’s status
providing information relevant to situation recognition are very heterogeneous.
For instance, the properties of different implementations of a particular function-
ality may be given by the software providers and could be stored in a database,
while other information, such as the setup of the hardware and the current sys-
tem parameters, could be retrieved from the operating system directly. These
sources yield information of different levels of detail, which can be integrated in a
Description Logic (DL) ontology. Moreover, logical reasoning as provided by DL
systems, can handle incomplete information on the current situation gracefully,
since these systems operate under the open world assumption.

For these reasons, we follow a common approach to situation recognition
and use an ontology describing the managed software system and its hardware.
We employ DL reasoning services to recognize situations of interest. This ap-
proach has been employed in several domains for context-aware applications,
for instance, scene interpretation [15], the intelligent home domain [20] and air
surveillance [1]. In [15,1,20] it was demonstrated that the expressivity and rea-
soning capabilities of DL systems suffice to model the domain at hand faithfully
and to detect critical situations.

OWL 2 Reasoning To Detect Energy-Efficient Software Variants 3

1.2 OWL 2 Reasoning for Situation Recognition

DLs are the logical under-pinning of the ontology language OWL 2 [26]. In or-
der to apply DL reasoning for situation recognition, we model a modular video
platform and the software variants for video-related services (e.g., up- or down-
loading services) in an OWL 2 ontology. In this paper we introduce the necessary
notions only in an intuitive sense. For details on DLs we refer the reader to [3].

In OWL 2, categories from the application domain are described by concept
expressions and binary relations by so-called roles. For example, the concept
VideoServer, which is a server that hosts components to provide transcoding
(i.e., the conversion of video encodings), up- and downloading services can be
characterized by the expression:

VideoServer ≡ Server u (∃hosts.TranscoderComponent) u
(∃hosts.UploaderComponent) u (∃hosts.DownloaderComponent)

Such definitions of concepts are stored in the TBox. In addition, the TBox can
contain characteristics of roles (e.g., transitivity). Our TBox contains informa-
tion on concepts common in the domain of modular video platforms (e.g., server
or transcoder component) and on relations.

The ABox stores concrete facts about a particular application—in our case
the servers available together with their utilization. These facts are expressed by
concept assertions, which state that an individual belongs to a (possibly complex)
concept or role assertions that relate two individuals via a role. For example,
we can state in our ABox A1 that the individual Server1 belongs to the class
VideoServer and that its related transcoder component is individual Variant1 ,
which belongs to the concept FastTranscoderImplementation, by writing:

A1 = { VideoServer(Server1), hosts(Server1 ,Variant1),

FastTranscoderImplementation(Variant1) }.

A TBox and an ABox together constitute an ontology.
Now, such an ontology can be used to detect complex situations by apply-

ing the DL reasoning services: concept query answering and conjunctive query
answering. Both are applied to retrieve (tuples of) specific individuals from an
ontology. Given a concept and an ontology, concept query answering returns all
individuals of the ABox that belong to that concept regarding the information
captured in the ontology. Conjunctive query answering allows to retrieve tuples
of ABox individuals that fulfill the conditions specified in the query. Concept
and conjunctive queries also differ in the expressive power for specifying the
situations. While the former are limited by the expressivity of the ontology lan-
guage, the latter can make use of variables to describe arbitrary structures as
aspects of situations. This addition in expressivity comes at the cost of higher
computational complexity of reasoning.

The OWL 2 standard for ontology languages comprises so-called OWL 2 pro-
files which differ w.r.t. their expressivity [26]. Depending on the profile, different
concept constructors and kinds of relations are allowed in the TBox:

4 S. Götz, J. Mendez, V. Thost, A.-Y. Turhan

– OWL 2 is the most expressive ontology language in the W3C standard.
Concept query answering in the corresponding DL SROIQ is 2NExpTime-
complete [9,10].

– OWL 2 EL corresponds to the DL EL++, where concept query answering is
in P [2]. However, conjunctive query answering in the sublogic EL is already
P -complete w.r.t. the size of the ABox alone.

– OWL 2 QL provides only very limited concept descriptions. For its cor-
responding DL DL-LiteR query answering is in AC0, (which is a proper
subclass of the class of P), if measured w.r.t. the size of the ABox alone [4].

Over the past years, highly optimized reasoners for answering concept or con-
junctive queries have been developed. Although the computational complexity
of the implemented algorithms for OWL 2 EL and QL is promisingly low, it is
not clear whether these implementations are yet fast enough to realize situation
recognition for applications that deal with complex situations and require fast
response times—such as component-based systems reconfiguring.

While [15,1] argued that the reasoning capabilities of DL systems can suffice
to recognize complex situations, little is known about whether the performance
of the implementation of DL reasoners is yet good enough for this kind of task.
This question was addressed in the study [25] back in 2006 for concept queries,
where it turned out that for rather small ontologies and applications that require
moderate response times (of about 20 seconds), the performance of the DL rea-
soners was barely adequate. Since then, DL reasoners have evolved in terms of
reasoning services offered and in terms of performance. This motivates our em-
piric study to measure the performance of today’s reasoning systems for concept
queries and conjunctive queries for the different OWL profiles. The application
is to recognize complex situations relevant for energy efficiency in a component
system that realizes a video platform such that it can be reconfigured at runtime.

In this paper, we demonstrate that the different OWL profiles can be ap-
plied for modeling a modular video platform and critical situations for system
reconfiguration (in Section 2). Second, we present an empirical evaluation w.r.t.
the different OWL profiles on how current DL reasoners perform on concept and
conjunctive queries in our scenario (in Section 3).

2 Use Case: Managing a Modular Video Platform

To show the benefits of the ontology-based approach to variability management,
we consider a modular video platform as application scenario. Among others, the
platform provides software components for transcoding, up- and downloading of
videos. These functionalities are complex and resource-intensive, which have to
be provided in a required quality. In order to effectively exploit the available
resources, we optimize the configuration of the system at runtime. We choose
software variants that allow for optimal configuration of the hardware resources,
to reduce the overall energy consumption of the video platform. Consider a server
providing a transcoding service. If the server’s load is currently decreasing, the
CPU frequency can be reduced to save energy. To ensure, however, that the

OWL 2 Reasoning To Detect Energy-Efficient Software Variants 5

system still provides the required quality, such a change might necessitate a
reconfiguration (i.e., a switch to implementations that simply allow for a lower
CPU frequency).

To recognize situations where reconfigurations can be beneficial, we create
ontologies modeling information about the system, capture situations apt for
reconfiguration as query concepts or as conjunctive queries and then apply DL
reasoners to detect situations by invoking concept query answering or conjunc-
tive query answering, respectively. More precisely, at design time, the general
domain knowledge about video platforms (e.g., the kinds of services provided)
and notions of components of the systems (e.g., dependencies on hardware re-
sources or specific software variants) are modeled in the TBox. The situations to
be recognized are modeled as concept or conjunctive queries—depending on the
reasoning task to be employed. We assume the TBox and the set of queries to
be fixed over the runtime of the system. The ABox describes the actual architec-
ture of the specific application (i.e., the currently available hard- and software
resources) and their current state (e.g., the load of the system, and the imple-
mentations executed). Most of this data is collected at runtime of the software
system. Due to the highly dynamic nature of the system, the ABox is refreshed
several times a minute storing information from several information sources. So-
called preprocessors are applied for the task of converting numerical sensor data
into primitive named concepts (following the approach in [1,22]). For example,
if the load measured for a server Server1 has been very high, the assertions

OverUtilized(Load1), hasLoadAverage(Server1 ,Load1)

are added to the ABox created for the past interval. Once the ABox is refreshed,
we apply the DL reasoner to answer the concept or conjunctive queries.

2.1 Modeling the Component System

Now we describe how the overall video platform system is modeled in the on-
tology that is the base ontology for our tests and how the queries are captured
in the different OWL 2 variants. Our TBox contains concepts describing the
video platform domain (e.g., characteristics of a TranscodingService) and notions
for component systems (e.g., FastTranscoderImplementation), written in the DL
ALCI, a proper sub-logic of OWL 2. For this DL, testing concept queries is
PSpace-complete [23], while conjunctive query answering is even 2ExpTime-
complete [12]. Our ABox contains assertions describing the architecture of the
video platform and its current state.

Example 1. Assume the load of our Server1 has changed to ‘underutilized’ in
the past intervals. Now, the characterization of Server1 , its resources, and states
at runtime can be captured by:

VideoServer(Server1),
FastTranscoderImplementation(Variant1), hosts(Server1 ,Variant1),
LowCPUFrequency(CPU1), hasCPUFrequency(Server1 ,CPU1),
UnderUtilized(Load2), hasLoadAverage(Server1 ,Load2).

6 S. Götz, J. Mendez, V. Thost, A.-Y. Turhan

It turned out that even the expressivity of the lightweight profiles OWL 2 EL
and QL allow to describe the main characteristics of the domain knowledge
of our application scenario. This is because the TBox primarily captures the
hard- and software architecture of the system, which is exactly the conceptual
modeling use case DL-Lite has been developed for. Further, complex concept
definitions that cannot be represented in the lightweight profiles can be captured,
alternatively, using fine-granular conjunctive queries for modeling the situations
to be recognized. Consider the following concept definition for underutilized
servers, which have a load average that is underutilized or almost underutilized:

UnderUtilizedServer ≡ ∃hasLoadAverage.(AlmostUnderUtilized t UnderUtilized)

It cannot be expressed in an OWL 2 EL/QL ontology, due to the disjunction.
However, it can be expressed with unions of conjunctive queries and thus be
used in these situation descriptions.

2.2 Modeling the Situations Apt for Reconfiguration

To recognize critical situations, we apply either answering of concept or of
(unions of) conjunctive queries. For the former, the situations need to be speci-
fied as concepts, while for the latter, as (unions of) conjunctive queries.

Example 2. Consider a situation apt for switching between transcoder imple-
mentations with two different specifications: one needs a medium CPU fre-
quency and the other requires a high CPU frequency. Both implementations
must be hosted on the same machine. The server has to have a high CPU
frequency while its load average is low and anticipated to stay so. The re-
sulting query concept is displayed in Figure 1 in the upper half as the con-
cept SwitchTranscoderSituationAnticipatory and the corresponding conjunctive
query qSwitchTranscoderSituationAnticipatory in the lower half of the figure. In Fig-
ure 1, a situation that generalizes the above one is characterized in the query
qSwitchTranscoderSituation. In this situation the average load trend cannot be fore-
casted; apart from that, the situations are the same. Clearly, this situation
is refined by the first one. It is fruitful to model such refinements of situa-
tions in order to allow for graceful handling of incomplete information. As-
sume that, for a particular moment in time, it cannot be determined that
the load average will show some constant development in the next intervals.
Then, a corresponding assertion is not generated, and the next ABox is in-
complete. In such a case, a situation indicating that a change of a transcoder
implementation is beneficial cannot be recognized. More precisely, the concept
SwitchTranscoderSituationAnticipatory does not have an instance in the current
ABox and the query qSwitchTranscoderSituationAnticipatory yields no tuples. How-
ever, a more general concept SwitchTranscoderSituation would have an instance
and the query qSwitchTranscoderSituation would yield a result tuple. Thus, this kind
of situation could be recognized, and it could be decided (e.g., by using other
context information) whether a reconfiguration should take place.

OWL 2 Reasoning To Detect Energy-Efficient Software Variants 7

SwitchTranscoderAnticipatorySituation =
TranscoderComponent u ∃requires.MedCPUFreq u
∃isHostedBy.(UnderUtilizedServer u

∃hosts.(TranscoderComponent u ∃requires.HighCPUFreq) u
∃hasLoadAvgTrend.DecreasingLATu∃hasCPUFrequency.HighCPUFreq)

qSwitchTranscoderAnticipatorySituation =
∃x, y.TranscoderComponent(x) ∧ requires(x, z1) ∧ MedCPUFreq(z1) ∧

isHostedBy(x, z2) ∧ UnderUtilizedServer(z2) ∧ hosts(z2, y) ∧
TranscoderComponent(y) ∧ requires(y, z3) ∧ HighCPUFreq(z3) ∧
hasCPUFrequency(z2, z4) ∧ HighCPUFreq(z4) ∧
hasLoadAvgTrend(z2, z5) ∧ DecreasingLAT(z5)

qSwitchTranscoderSituation =
∃x, y.TranscoderComponent(x) ∧ requires(x, z1) ∧ MedCPUFreq(z1) ∧

isHostedBy(x, z2) ∧ UnderUtilizedServer(z2) ∧ hosts(z2, y) ∧
TranscoderComponent(y) ∧ requires(y, z3) ∧ HighCPUFreq(z3) ∧
hasCPUFrequency(z2, z4) ∧ HighCPUFreq(z4)

Fig. 1. Situations when to switch a transcoder implementation captured as query con-
cept and conjunctive queries.

Although our modeling is in large parts rather abstract, it captures the nature
of component systems. We conjecture that the ontology grows primarily in size
rather than in complexity, in case real applications are considered. Also, the
modeling should be similar for component systems in other domains, since the
focus is generally on modeling the components with their contracts and the
topological structure of the system’s hardware environment.

3 Evaluation of Reasoner Performance w.r.t. the OWL 2
Variants

The goal of our evaluation is to see whether current OWL 2 reasoners are yet
appropriate for situation recognition to initiate system reconfiguration for self-
adaptive software. However, to adopt DL reasoning for this kind of scenario, the
reasoners have to be able to detect situations by processing realistic amounts of
data within short time. We consider OWL 2 and the two profiles OWL 2 EL and
OWL 2 QL in our evaluation. Since the syntactic restrictions of the lightweight
profiles allow only for coarser modeling than full OWL 2, some information
cannot be modeled. An interesting question is whether this leads to missing
inferences in our scenario.

3.1 Test Data and Reasoning Systems

Test TBoxes. Our base TBox from Section 2.1 contains about 200 concepts and
40 roles and uses ALCI, a sub-logic of OWL 2. For both lightweight profiles,
we built variations of the base TBox manually—keeping as much information as
possible.

8 S. Götz, J. Mendez, V. Thost, A.-Y. Turhan

Query type Profile
Reasoner Version Concept Conjunctive OWL EL QL

FaCT++ [24] v1.6.1 x x x x
HermiT [14] v1.3.6 x SHOIQ x x
Pellet [19] v2.3.0 x x SHOIN (D) x x
RacerPro [8] v2.0 x x SHIQ(D) x x

ELK [11] v0.3.1 x EL+

jCel [13] v0.18.0 x EL+

Quest [16] v1.7-alpha x x
Table 1. Reasoners and their supported queries and profiles.

Test ABoxes. The ABoxes model a modular video platform running on four
servers and providing the services described in Section 2. Since the concept
assertions use only named concepts, the ABoxes do not vary for the profiles.

We consider two different ABoxes modeling two different states of the system.
In order to reflect realistic scenarios, the test ABoxes do not only contain infor-
mation about the situations to be detected, but model the overall system state.
For example, we modeled other users requesting video services. This roughly
doubles the sizes of both ABoxes. Each of the test ABoxes contains about 450
individuals, 485 concept, and 350 role assertions.

Test Queries. We modeled 9 critical situations to be recognized as OWL 2 con-
cepts. For OWL 2 EL, these concept definitions had to be only slightly adapted.
In particular, we removed the disjunction by replacing it with adequate new
concepts and corresponding inheritance relations.

Since the OWL 2 QL profile does not support truly complex concept descrip-
tions, the situations cannot be modeled as concepts; but they can be captured
with conjunctive queries. Therefore, we only evaluate conjunctive query answer-
ing for the QL profile.

Note that for modeling the modular video platform and situations for re-
configuration, we do not need universal quantification. For the 9 situations, we
formulated corresponding conjunctive queries for our test suite. The concept
queries have a size of about 10–counting the concept and role names. The con-
junctive queries are formulated in the query languages SPARQL and nrql. They
contain 15 conjuncts on average.1

Reasoning Systems. The tests were run for seven DL reasoners, which differ w.r.t.
the DL they support and the reasoning services they provide. Table 1 depicts the
tested reasoners, the used version, and the closest DL of the respective profile
they implement (‘x’ stands for full coverage).

Next to the tableaux-based reasoners for expressive DLs in the first group of
Table 1, we tested reasoners specialized on lightweight profiles, which are listed
in the second and third group of the table. Quest can be used for ontology-based

1 Our complete test data is available from
http://lat.inf.tu-dresden.de/~thost/download/exp_data_owled13.zip

http://lat.inf.tu-dresden.de/~thost/download/exp_data_owled13.zip

OWL 2 Reasoning To Detect Energy-Efficient Software Variants 9

Concept queries Conjunctive queries

Load. Reason. Avg/Q. Total Load. Reason. Avg/Q. Total

OWL FaCT++ 0.164 0.223 0.019 0.387
HermiT 0.200 0.156 0.008 0.356
Pellet 0.162 0.897 0.086 1.059
RacerPro 0.198 1.798 0.145 1.996 0.539 1.441 0.144 1.980

EL ELK 0.173 0.078 0.004 0.251
FaCT++ 0.175 0.060 0.003 0.235
HermiT 0.222 0.115 0.005 0.338
jCel 0.177 0.271 0.021 0.448
Pellet 0.204 0.585 0.054 0.789 0.207 0.776 0.078 0.983
RacerPro 0.163 1.999 0.165 2.162 0.536 0.971 0.097 1.507

QL Pellet 0.199 1.355 0.136 1.554
Quest 0.723 5.401 0.540 6.124
RacerPro 0.429 0.748 0.075 1.177

Table 2. Runtimes for answering concept queries and conjunctive queries in seconds.

data access (i.e., a data base functions as ABox and can be queried directly).
However, we used Quest with classical ABoxes, here.

3.2 Evaluation

The tests were carried out on an Intel Core 2 Duo workstation with 2 GB
RAM using Java 1.6.0. on Ubuntu. Besides recording the mere runtimes, we
checked whether the reasoners delivered the same results for a query. For our
concept queries, all reasoners agreed on the result individuals. For the conjunc-
tive queries, we noticed that Pellet did not compute the expected answer sets.
On the one hand, it did not deliver all answer tuples for 8 queries while reasoning
in OWL 2 QL. On the other, it returned too many result tuples for one query
in OWL 2 EL. The other reasoners delivered the expected answers. This nicely
demonstrates that the lightweight profiles suffice for modeling and reasoning
about our modular video platform—and thus about the hard- and software of
complex systems, in general.

Performance for Concept Queries. For concept queries, we ran tests for full
OWL 2 and the OWL 2 EL profile. We used the OWL API (version 3.4.1) to
access the reasoners. The results are displayed in the left half of Table 2 sorted
by profiles. The first column depicts the time spent on loading the ontology. The
next one displays the time for answering all the concept queries. The average
runtime per query is displayed next. The last column contains the runtime for the
overall process and thus is the most interesting for our application of situation
recognition. As expected, it shows that the overall runtime is higher for OWL
2 than for the OWL 2 EL profile, especially for FaCT++ and Pellet. Nev-
ertheless, the gain when using OWL 2 EL is not big. Interestingly, RacerPro
performs slightly better for OWL.

10 S. Götz, J. Mendez, V. Thost, A.-Y. Turhan

OWL 2: Apart from RacerPro, which took about 2 seconds, all reasoners
delivered a full situation recognition within roughly 1 second.

OWL 2 EL: With an overall runtime of about 0.25 seconds, ELK and FaCT++
outperform the other systems. For these systems the overall runtime is domi-
nated by the time for loading the ontology. HermiT and jCel can still test for
occurrence of a critical situation within half a second. All systems can perform
situation recognition within about 2 seconds.

Performance for Conjunctive Queries. For the conjunctive queries, the
results for all of the three profiles are displayed in right half of Table 2. As for
answering concept queries, reasoning in the lightweight profiles is a little faster.

OWL 2: Here, RacerPro needs about 2 seconds overall runtime. It thus takes
about the same time as for the concept queries. Note that its reasoning time
for the conjunctive queries is lower than for concept queries, but the loading of
the same ontology takes more than twice using the RacerPro’s interface for
conjunctive querying.

OWL 2 EL: Pellet and RacerPro answer all queries in less than 2 seconds.
However, Pellet didn’t deliver the correct result, whereas RacerPro did.

OWL 2 QL: RacerPro performs even slightly better for this profile. While
Pellet performs worse than in the OWL 2 EL case giving an incomplete an-
swer. By taking 6 seconds, Quest shows a significantly worse performance. We
conjecture that this is attributed to running a first alpha version of Quest and
using a traditional ABox instead of a database, for which it has been designed
for.

All in all, the experiments show that most state of the art reasoners can be
applied for situation recognition in our component-based video platform, since
response times of 1 to 2 seconds are acceptable if one considers the long time
video services such as transcoding usually run. Especially by the use of the
lightweight profiles, we achieve very good runtimes for reasoning. Our study
revealed two surprising effects. First, comparing the runtimes for concept query
answering and conjunctive query answering, it showed that the run times do not
differ largely, which wasn’t to be expected. Second, the loss of information when
using a lightweight profile turned out to be only marginal for our video platform
use case, and, more importantly, it did not influence the completeness of the
results—apart those of Pellet.

4 Conclusions and Future work

We have supplied a study on employing OWL 2 and DL reasoners to perform
situation recognition for runtime variability management applied to a video plat-
form. To the end of automatically recognizing complex situations that might

OWL 2 Reasoning To Detect Energy-Efficient Software Variants 11

invoke the switching of software variants in order to achieve energy efficiency,
the domain was modeled in an OWL 2 ontology. In this ontology the ABox re-
flected realistic situations in the application. The actual recognition of critical
situations, was realized by concept query answering or conjunctive query an-
swering. Our experiments w.r.t. the different OWL 2 profiles gave evidence that
the performance of today’s DL systems is sufficient to detect complex situations
fast enough. In particular, for the OWL 2 EL and the OWL 2 QL profile it can
be done within 2 seconds for each of the inferences employed. Thus, there still
seems to be room for growth—considering larger ontologies in practice.

Future work on the practical side should evaluate whether the gain of rea-
soning time given by the lightweight profiles grows, too, with larger ontologies.
Clearly, it would be interesting to run Quest in the ODBA mode and to real-
ize the whole situation recognition more tightly coupled to a DB, such that the
data collected there can be queried directly, instead of generating and loading an
ABox. Further, the actual energy gain should be considered. On the theoretical
side, we would like to lift the limitation of OWL regarding the modeling of fuzzy
or even temporal information by investigating query answering for sequences of
ABoxes, which contain this kind of information.

References

1. F. Baader, A. Bauer, P. Baumgartner, A. Cregan, A. Gabaldon, K. Ji, K. Lee,
D. Rajaratnam, and R. Schwitter. A novel architecture for situation awareness
systems. In M. Giese and A. Waaler, editors, Proc. of the Int. Conf. on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2009), vol.
5607 of LNCS, p. 77–92. Springer, 2009.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark
and P. F. Patel-Schneider, editors, In Proc. of the OWLED Workshop, 2008.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39(3):385–429, 2007.

5. B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein,
C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Möller, S. Park, M. Shaw, M. Tichy, M. Tivoli,
D. Weyns, and J. Whittle. Software engineering for self-adaptive systems: A re-
search roadmap. In Software Engineering for Self-Adaptive Systems, vol. 5525 of
LNCS, p. 1–26. Springer, 2009.

6. P. Collet. Taming complexity of large software systems: Contracting, self-
adaptation and feature modeling. Habilitation, December 2011.

7. S. Götz, C. Wilke, S. Cech, and U. Aßmann. Sustainable ICTs and Management
Systems for Green Computing, chapter Architecture and Mechanisms for Energy
Auto Tuning, p. 45–73. IGI Global, 2012.

8. V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The racerpro knowledge repre-
sentation and reasoning system. Semantic Web Journal, 3(3):267–277, 2012.

12 S. Götz, J. Mendez, V. Thost, A.-Y. Turhan

9. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In
Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-06), p. 57–67. AAAI Press, 2006.

10. Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In G. Brewka and
J. Lang, editors, Proc. of the 11th Int. Conf. on the Principles of Knowledge Rep-
resentation and Reasoning (KR-08), p. 274–284. AAAI Press, 2008.

11. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. ELK reasoner: Architecture and eval-
uation. In Proc. of the OWL Reasoner Evaluation Workshop (ORE’12), vol. 858
of CEUR Workshop, 2012.

12. C. Lutz. The complexity of conjunctive query answering in expressive description
logics. In A. Armando, P. Baumgartner, and G. Dowek, editors, Proc. of the 4th
International Joint Conference on Automated Reasoning (IJCAR2008), number
5195 in LNAI, p. 179–193. Springer, 2008.

13. J. Mendez. jCel: A modular rule-based reasoner. In In Proc. of the 1st Int.
Workshop on OWL Reasoner Evaluation (ORE’12), vol. 858 of CEUR Workshop,
2012.

14. B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in Description Logics
using Hypertableaux. In F. Pfennig, editor, Proc. of the 23th Conf. on Automated
Deduction (CADE-23), LNAI, p. 67–83, 2007. Springer.

15. B. Neumann and R. Möller. On scene interpretation with description logics. In
H. Christensen and H.-H. Nagel, editors, Cognitive Vision Systems: Samping the
Spectrum of Approaches, number 3948 in LNCS, p. 247–278. Springer, 2006.

16. M. Rodriguez-Muro and D. Calvanese. Quest, an OWL 2 QL reasoner for ontology-
based data access. In Proc. of the 9th Int. Workshop on OWL: Experiences and
Directions (OWLED 2012), vol. 849 of CEUR Workshop, 2012.

17. S. Röttger and S. Zschaler. CQML+: Enhancements to CQML. In In Proc. of the
1st International Workshop on Quality of Service in Component-Based Software
Engineering, p. 43–56. Cépadués-Éditions, 2003.

18. M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–14:42, 2009.

19. E. Sirin and B. Parsia. Pellet system description. In B. Parsia, U. Sattler, and
D. Toman, editors, Description Logics, vol. 189 of CEUR Workshop, 2006.

20. T. Springer and A.-Y. Turhan. Employing description logics in ambient intelli-
gence for modeling and reasoning about complex situations. Journal of Ambient
Intelligence and Smart Environments, 1(3):235–259, 2009.

21. C. Szyperski. Component Software: Beyond Object-Oriented Programming (ACM
Press). Addison-Wesley Professional, 1997.

22. K. Taylor and L. Leidinger. Ontology-driven complex event processing in het-
erogeneous sensor networks. In Proc. of 8th Extended Semantic Web Conference
(ESWC 2011), vol. 6644 of LNCS, p. 285–299. Springer, 2011.

23. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001.

24. D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimising terminological
reasoning for expressive description logics. Journal of Automated Reasoning, 2007.

25. A.-Y. Turhan, T. Springer, and M. Berger. Pushing doors for modeling contexts
with OWL DL – a case study. In J. Indulska and D. Nicklas, editors, Proc. of the
Workshop on Context Modeling and Reasoning (CoMoRea’06). IEEE Computer
Society, March 2006.

26. W3C OWL Working Group. OWL 2 web ontology language document overview.
W3C Recommendation, 27th October 2009. http://www.w3.org/TR/2009/

REC-owl2-overview-20091027/.

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

	OWL 2 Reasoning To Detect Energy-Efficient Software Variants From Context

