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ABSTRACT
There exist a handful of natural language processing and machine
learning approaches for extracting Description Logic concept def-
initions from natural language texts. Typically, for a single target
concept several textual sentences are used, from which candidate
concept descriptions are obtained. These candidate descriptions may
have confidence values associated with them. In a final step, the
candidates need to be combined into a single concept, in the easiest
case by selecting a relevant subset and taking its conjunction. How-
ever, concept descriptions generated in this manner can contain false
information, which is harmful when added to a formal knowledge
base. In this paper, we claim that this can be improved by consider-
ing formal constraints that the target concept needs to satisfy. We
first formalize a reasoning problem for the selection of relevant can-
didates and examine its computational complexity. Then, we show
how it can be reduced to SAT, yielding a practical algorithm for its
solution. Furthermore, we describe two ways to construct formal
constraints, one is automatic and the other interactive. Applying
this approach to the SNOMED CT ontology construction scenario,
we show that the proposed framework brings a visible benefit for
SNOMED CT development.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]: Rep-
resentation languages; I.2.6 [Learning]: Concept Learning; F.4.3
[Formal Languages]: Decision problems

General Terms
Concept Adjustment
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1. INTRODUCTION
A formal representation of domain information is often the pre-

ferred way to express knowledge because formal knowledge allows
for automatic manipulation by machines. This is of particular im-
portance when the amount of knowledge is large, such as in the
medical domain. Among many promising knowledge representation
formalisms are Description Logics, upon which the Ontology Web
Languages (OWL21) is based. Besides, Description Logics have
been applied to the widely used medical ontology SNOMED CT that
contains more than 311,000 formally defined concepts.

Adding new concepts with their formal definitions to an ontol-
ogy is a tedious, costly and error-prone process, which needs to
be performed manually by specially trained knowledge engineers.
Different approaches have been proposed for assisting ontology
generation. Among them are machine learning and natural language
processing based approaches such as [4, 18, 8]. In most settings,
several natural language sentences are available for a single tar-
get concept, and one concept description is obtained from each of
these sentences. Sometimes, a weight representing a confidence
degree is returned together with a description. In this work, these
automatically generated concept descriptions are called description
candidates. Typically, a description candidate obtained from a sen-
tence only captures one aspect of the target concept. The relevant
candidates must be selected and combined into a single description.

A drawback of formal knowledge representation formalisms is
that they are not very error tolerant. Even small errors can lead to
unpredictable consequences. Therefore maintaining correctness of
the definitions is crucial [15]. We propose to use formal constraints
to ensure the quality of the definitions. Formal constraints include
positive and negated logical formulae that a good combination of
definition candidates should satisfy. Potential sources for these con-
straints are design manuals, existing knowledge about the concept
from within the ontology, or manually added constraints.

Only those description candidates satisfying the formal con-
straints should be selected as definitions of concepts. This ensures
the quality of the final concept description. In this paper, we for-
malize the task of automatic selection of good candidates for a
given set of candidates and constraints as concept adjustment for
formal definitions in Description Logics. For illustration, consider
the following scenario where an ontology is generated from text.

Definition candidates
In [19] an approach for extracting superclass relationships for a
given target concept is presented. This is complemented by our
proposed formalism in [8] for extracting other named relationships
(so-called DL roles) between concepts. For example, if Baritosis
is the target concept, then from the sentences given in Table 1 the
1http://www.w3.org/TR/owl2-profiles



Table 1: Sentence Examples
“Baritosis is a benign type of pneumoconiosis, which is caused by
long-term exposure to barium dust.”
“Baritosis are nonfibrotic forms of pneumoconiosis that result from
inhalation of iron oxide.”
“Baritosis is one of the benign pneumoconiosis in which inhaled
particulate matter lies in the lungs for years.”
“Baritosis is due to inorganic dust lies in the lungs.”

following relationships are desired results of the text mining.

Baritosis | ISA | Pneumoconiosis, w1

Baritosis | Finding_site | Lung, w2

Baritosis | Causative_agent | Barium_dust, w3

Baritosis | Associated_morphology | Deposition, w4

Here, A|R|B means concept A has R relationship with concept B
and wi denotes the confidence degree returned for A|R|B.

Each discovered superclass (here denoted by ISA) is a descrip-
tion candidate, i.e. in this example Pneumoconiosis. The other
relationships give rise to concept descriptions that are in DL ter-
minology called existential restrictions. For the above example,
one would obtain the following candidates {∃Finding_site.Lung,
Pneumoconiosis, ∃Causative_agent.Barium_dust, ∃Associated_
morphology.Deposition}. Once the superclasses and existential re-
strictions of a new concept are known, the concept can be defined
as the conjunction of its superclasses and the existential restrictions.

Formal constraints2

Definition candidates with their weights returned by natural lan-
guage processing approaches are usually obtained through analysis
of lexical or linguistic features of some given sentences. There is
typically no mechanism to guarantee that candidates are logically
sound. Logical soundness, is instead characterized by formal con-
straints. Ideally, formal constraints come from knowledge engineers.
For example, the knowledge engineer might state that Baritosis
should be a kind of Disease. In particular, manually added con-
straints can be either too costly or too few to filter out problematic
definition candidates. We therefore consider other promising ways
to obtain formal constraints.

First, in some fortunate cases partial knowledge about a concept
is already available in the ontology. For example, in SNOMED
CT there might be a partial definition present in the ontology, that
one wants to extend to a full definition. Then the existing partial
definition can be used as a constraint within our approach.

Second, large ontologies usually provide a design manual, that
codifies design choices that have been made early in the ontology
engineering process. Take SNOMED CT as example, its User Guide3

defines permissible values for each role (range restrictions). For
instance, Body_structure is the range for Finding_site. So any
candidate that uses the Finding_site role in an existential restriction
∃Finding_site.C, where C is not subsumed by Body_structure
would violate the User Guide. Such restrictions can be encoded as
logical constraints.

Finally, we also consider an interactive way to obtain constraints.
It is based on the intuition that new definitions bring new logical con-
sequences. A first combination of candidates is generated (e.g. using
2Formal constraints are described informally here and will be for-
malized in Section 3 after the introduction of Description Logics.
3http://www.nlm.nih.gov/research/umls/
Snomed/snomed_main.html

Table 2: Syntax and Semantics of EL
Name Syntax Semantics

concept name A AI ⊆ ∆I
role name r rI ⊆ ∆I ×∆I

top concept > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI
existential ∃r.C (∃r.C)I =
restriction

{
x | ∃y : (x, y) ∈ rI and y ∈ CI

}
primitive definition A v C AI ⊆ CI
full definition A ≡ C AI = CI

only the constraints from the design manual) and the logical conse-
quences for this definition are computed. These are then presented
to a knowledge engineer, who can mark some of them as intended or
unintended. This process is similar to formative ontology evaluation
described in [11]. The unintended logical consequences will become
new negative constraints and the intended ones become new positive
constraints for the next round of candidate selection.

Our approach is a hybrid of both information extraction from
unstructured resources (such as text) and candidate selection via
formal reasoning. Unlike most declarative Information Extraction
approaches, that encode the information extraction process in logics
[12, 14, 13, 17], we treat them independently, as complements of
each other. This allows us to benefit from cutting-edge techniques
from both fields.

We formalize our approach in Description Logics terminology
in Section 3 after introducing some preliminaries in Section 2. We
then analyze the computational complexities of different related
problems in Section 4. In Section 5, an encoding from the concept
adjustment problem to SAT is given to serve as the basis of an algo-
rithm to compute the desired candidates by benefiting from highly
optimized SAT solvers. In Section 6, we apply our approach to the
concept definition generation problem for SNOMED CT, showing
that the proposed concept adjustment framework can have a sig-
nificant contribution for generating high quality definitions for a
formal ontology. Section 7 discusses the related work and Section 8
concludes the paper with a perspective on the future work.

2. PRELIMINARIES

2.1 The Description Logic EL
Concept descriptions in the Description Logic EL are built from

a set of concept names NC and a set of role names NR using the
constructors top concept >, conjunction u, and existential restric-
tions ∃. This is shown in the syntax column of Table 2. A concept
description C is called an atom if it is either a concept name or
of the form C = ∃r.D for some concept description D and some
role name r ∈ NR. Every concept description can be written as a
conjunction of atoms.

The semantics of EL is defined using interpretations I = (∆I , ·I)
consisting of a non-empty domain ∆I and an interpretation func-
tion ·I mapping role names to binary relations on ∆I and concept
descriptions to subsets of ∆I according to Table 2.

Among the axioms in EL are full definitions, primitive definitions
and general concept inclusions (GCIs). Full definitions are state-
ments of the form A ≡ C, primitive definitions are statements of
the form A v C and GCIs are of the form C v D where A is a
concept name and C and D are concept descriptions. A TBox T is
a set of axioms of these three types. We say that the interpretation



I is a model of T if AI = CI (or AI ⊆ CI , CI ⊆ DI) holds
for every full definition A ≡ C (primitive definition A v C, GCI
C v D, respectively) from T . A concept description C is said to
be subsumed by the concept D with respect to the TBox T (denoted
by T |= C v D) if CI ⊆ DI holds for all models I of T . It is
well-known that subsumption reasoning in EL is tractable, i.e. given
concept descriptions C and D, and a TBox T it can be decided in
polynomial time if T |= C v D [2].

2.2 Satisfiability Problem
For complexity arguments we use the standard boolean satisfia-

bility problem for a propositional language LA with a finite set of
propositional variables A = {p1, . . . , pn}. A literal is a variable p
or its negation ¬p. A clauseK = l1∨ l2∨ . . .∨ lk is a disjunction of
literals. A CNF formula is a conjunction of clauses, which is usually
represented as a set of clauses F = {K1,K2, . . . ,Km}. Deciding
if a formula in CNF is satisfiable is called the satisfiability (SAT)
problem which is NP -complete. Even though the SAT problem is
intractable, state of the art SAT solvers are highly optimized and can
deal with large size inputs [1].

3. PROBLEM
In this section we formalize the concept adjustment problem

described in the introduction as a DL reasoning problem. In our
setting constraints are simply GCIs or negated GCIs where either
the left hand side or the right hand side is a concept variableX , i.e. a
concept name not occurring in T or on the other side of a constraint.
We distinguish constraints of the following four types:

D v X (1)
X v D (2)

D 6v X (3)
X 6v D (4)

In these constraints D can be a complex concept description.
For a complex concept description C that does not use concept
variables, we say C satisfies the positive constraint D v X or
X v D if T |= D v C or T |= C v D, respectively. C satisfies
the negative constraint D 6v X or X 6v D if T 6|= D v C or
T 6|= C v D, respectively.

The task is now straightforward: for a given set of description
candidates and a given set of constraints, find a subset of the can-
didates whose conjunction satisfies the constraints. For complexity
considerations we restate this as a decision problem.

Problem 1. (Concept Adjustment (CA)) Input: A set of atomic
candidate concept descriptions S, a (possibly empty) ontology T
and a set of constraints C of the forms (1)–(4).

Question: Is there a subset S ′ of S such that
d
S ′ satisfies all the

constraints in C?

We also consider a setting where a weight is associated with each
candidate. This is formalized in the following decision problem
where the idea is to maximize the least confidence value among the
selected candidates.

Problem 2. (Maximal Confidence Concept Adjustment (MCA))
Input: A set of atomic candidate concept descriptions S, a real
number k ∈ [0, 1], a (possibly empty) ontology T and a set of con-
straints C of the forms (1)–(4), together with a confidence function
wt: C → [0, 1].

Question: Is there a subset S ′ of S such that
d
S ′ satisfies all the

constraints in C and min{wt(S) | S ∈ S ′} ≥ k?

4. COMPLEXITY
Both problems CA and MCA are contained in NP, but not all

variants are also NP-hard. Containment in NP is clear, since one can
simply guess a subset of S and verify in polynomial time if it is a
solution (remember that subsumption reasoning in EL is tractable).
We shall see that the restricted variants of CA and MCA which allow
only constraints of types (1)–(3) are tractable (and thus not NP-hard
unless P=NP). The variants that allow for the full set of constraints
are NP-hard. NP-hardness is thus caused by constraints of type (4).

4.1 Tractable Variants
We show that restricted versions of CA and MCA are tractable.

Let an instance (T ,S, C) of CA be given. We first consider the
variant that restricts to constraint types (2) and (3). Notice that if
a concept C satisfies a constraint X v D or D 6v X and E is
a concept description satisfying E v C then E also satisfies the
constraint. In particular, if

d
S ′ satisfies all constraints for some

S ′ ⊆ S then
d
S also satisfies them. Hence, if only constraint types

(2) and (3) occur, then there is a solution to the CA problem iff S
itself is a solution. The latter can be verified in polynomial time
since subsumption reasoning in EL is tractable. The same argument
shows that there is a solution to the MCA problem (T ,S, k, C,wt)
iff {S ∈ S | wt(S) ≥ k} is a solution. Again, this can be verified
in polynomial time. Hence, CA and MCA are tractable if we restrict
to types (2) and (3).

We now consider the variant that restricts to constraint types (1)
to (3). Let D v X ∈ C be a constraint of type (1). A concept

d
S ′

for S ′ ⊆ S satisfies this constraint if and only if T |= D v S for
all S ∈ S ′. This shows that there is a solution S ′ of (T ,S, C) iff
there is a solution S ′0 of (T ,S0, C0) where

S0 = {S ∈ S | ∀(D v X) ∈ C : T |= D v S}
C0 = {c ∈ C | c of type (2) or (3)}.

(5)

Notice that C0 can be obtained in linear time and S0 can be com-
puted in polynomial time since subsumption reasoning in EL is
tractable. This shows that restrictions of type (1) can be dealt with
in a polynomial time preprocessing step. Tractability of CA and
MCA for constraints of types (1)–(3) then follows immediately from
tractability of CA and MCA when restricted to (2) and (3).

4.2 NP-hard Variants
Using a reduction from the satisfiability problem for propositional

formulae in conjunctive normal form we show that CA is NP-hard,
even when restricted to constraints of types (2) and (4).

Let f be a propositional formula in conjunctive normal form over
variables x1, . . . , xn. Let k be the number of clauses in f . We
denote by Kj , j ∈ {1, . . . k}, the set of literals occurring in the j-th
clause of f .

We construct an instance of CA as follows. For each literal
l we introduce a concept name Tl and for each clause Kj , j ∈
{1, . . . , k}, we introduce a concept name Uj . We use only one role
denoted by r. The ontology T is considered to be empty. The set
Sf consists of the concept descriptions

Sl = ∃r.
(
Tl u

l

l∈Kj

Uj

)
(6)

for all literals l. A constraint

X v ∃r.Uj (7)

is added to the set Cf for each j ∈ {1, . . . , k} and a constraint

X 6v ∃r.Txi u ∃r.T¬xi (8)



is added to Cf for every variable xi, i ∈ {1, . . . , n}. Intuitively, (7)
ensures that a solution must contain Sl for at least one literal l from
each clause in f . The constraint (8) ensures that a solution cannot
contain both Sxi and S¬xi for some i ∈ {1, . . . , n}.

PROPOSITION 1. The formula f is satisfiable iff (T ,Sf , Cf )
has a solution.

PROOF. Assume first that f is satisfiable. Let V be an assignment
of truth values that makes f true. Define SV = {Sx | V(x) =
1} ∪ {S¬x | V(x) = 0}. Let Kk be a clause of f . Since V makes
f true there is one literal l ∈ Kk such that V(l) = 1. But then

T |=
l
SV v Sl = ∃r.

(
Tl u

l

l∈Kj

Uj

)
v ∃r.Uk.

Hence,
d
SV satisfies all constraints of type (7). To see that SV

also satisfies the constraints of type (8) notice that for every literal
l the concept Sl is the only candidate that is subsumed by ∃r.Tl.
Then either Sxi /∈ SV and therefore T 6|=

d
SV v ∃r.Txi , or

S¬xi /∈ SV and therefore T 6|=
d
SV v ∃r.T¬xi . Thus Sf is a

solution.
Next, let S ′ be a solution to (T ,Sf , Cf ). Since

d
S ′ satisfies

the constraint of type (8) for all variables xi, either T 6|=
d
S ′ v

∃r.Txi and thus Sxi /∈ S ′, or T 6|=
d
S ′ v ∃r.T¬xi and therefore

S¬xi /∈ SV . Hence one can define a valuation V ′ that maps each
variable xi to 1 if Sxi ∈ S ′, and xi to 0 if S¬xi ∈ S ′, and is
constantly 1 if neither holds.

Let Kj be a clause from f . Since S ′ is a solution to the CA
problem it satisfies

d
S ′ v ∃r.Uj , and therefore there must be

some atom Sl ∈ S ′ such that Sl v ∃r.Uj . By (6 this implies that
l occurs in Kj , and the definition of V ′ implies that V ′(l) = 1.
Therefore, for each clause Kj there is a literal l in Kj that V ′
evaluates to 1, i.e. the full formula f evaluates to 1. In particular f
is satisfiable.

Hardness of MCA follows immediately from hardness of CA,
since CA can be viewed as a special case of MCA when all confi-
dence values are 1. NP-completeness follows from this proposition
and containment of CA and MCA in NP.

THEOREM 1. CA and MCA are NP-complete.

5. SAT ENCODING
We have argued in Section 4 that CA and MCA can be solved in

non-deterministic polynomial time. However, our argument does not
yield a practical algorithm for computing a solution. In this section,
we propose an encoding of CA in SAT, with the aim of using SAT
solvers to come up with a solution, at least when SNOMED CT is
used as the underlying ontology.

SNOMED CT is special, since it only contains full definitions and
primitive definitions [16]. SNOMED CT further has the property
that it is acyclic, i.e. the concept name on the left hand side of
a definition cannot occur on its right hand side neither explicitly
nor implicitly. This means that SNOMED CT can be unfolded
by recursively replacing each fully defined concept name (i.e. a
concept name occurring on the left hand side of a full definition)
by its definition. Unfolding results in a logically equivalent TBox
where only the primitive definitions remain.

The encoding itself is relatively straightforward, but it makes use
of the following characterization of subsumption in EL.

LEMMA 1. Let T be a TBox containing only primitive defini-
tions. Let C andD be concept descriptions that can be written as as
C = C1u· · ·uCn andD = D1u· · ·uDm whereCj , 1 ≤ j ≤ n,

and Di, 1 ≤ i ≤ m, are atoms. Then T |= C v D iff for every
atom Di, 1 ≤ i ≤ m, there is an atom Cj , 1 ≤ j ≤ n, such that
T |= Cj v Di.

PROOF. The “if”-direction is trivial, which is why we only prove
the “only if”-direction. Assume that there is an atom Di for some
1 ≤ i ≤ m such that T 6|= Cj v Di for all 1 ≤ j ≤ n. This means
there are models Ij , 1 ≤ j ≤ n, of T with elements xj ∈ ∆Ij

such that xj ∈ C
Ij
j but xj /∈ D

Ij
i . Since EL is known to have

the tree-model property, we can assume that all these models are
tree-shaped with xj as the root. We now create a new interpretation
I by fusing the nodes xj into one new node x and show that I is
still a model of T and x is a counterexample to T |= C v D.

More formally, we can assume wlog that the domains of the tree
shaped models ∆Ij are mutually disjoint. We define the new model
I = (∆I , ·I) as follows

∆I = {x} ∪
⋃

1≤j≤n

(
∆Ij \ {xj}

)
.

For all y 6= x the interpretations of concept names and role names
are defined as in the model Ij that y stems from, i.e. y ∈ AI iff
y ∈ AIj where y ∈ ∆Ij and similarly for roles. This property
carries over to complex concepts, because the models are tree shaped
and EL can only talk about role successors, not predecessors.

For x we define the interpretations as follows. For every concept
name A ∈ NC we define AI such that x ∈ AI iff xj ∈ AIj holds
for some model Ij , 1 ≤ j ≤ n. Likewise we define for every role
name r ∈ NR the relation rI to contain the pair (x, y), y 6= x iff
(xj , y) is contained in rIj for some 1 ≤ j ≤ n.

We first show that I is a model of T . Let A v E be a primitive
definition. Consider y ∈ AI . If y 6= x, y ∈ ∆Ij for some j, then
we obtain y ∈ EI from the above-mentioned fact that I and Ij
coincide on ∆Ij except for xj . If y = x then by definition there
must be a model Ij such that xj ∈ AIj . Since Ij is a model of
T this implies that xj ∈ EIj . If E is a concept name, then we
get x ∈ EI immediately from the definition of I. If E = ∃r.F
is an existential then there must be some z ∈ F Ij , z 6= xj , such
that (xj , z) ∈ rIj . But then also z ∈ F I and (x, z) ∈ rI by
the definition of I. This yields y = x ∈ EI . Finally, if E is a
conjunction of atoms, one can first argue for each of its atoms as
above, which yields that y ∈ EI also holds for the conjunction. We
have thus proven AI ⊆ EI for all primitive definitions in T . T
contains only primitive definitions, therefore I is a model of T .

It remains to show that x is a counterexample toC v D. Consider
an atom Cj , 1 ≤ j ≤ n. We know that xj ∈ C

Ij
j . We can use

similar arguments as above for the concept E to show that x ∈ CIj .
Since this holds for all atoms Cj it follows that x ∈ CI . Now,
assume that x ∈ DIi . In the case where Di is a concept name,
we obtain that xj ∈ D

Ij
i for some 1 ≤ j ≤ n, a contradiction

to the assumption xj /∈ D
Ij
i . If Di = ∃r.F is an existential then

there must be some y 6= x satisfying y ∈ F I , (x, y) ∈ rI . The
element y must stem from a model Ij for some 1 ≤ j ≤ n. Via the
construction of I one can argue that y ∈ F Ij and (xj , y) ∈ rIj ,
yielding xj ∈ D

Ij
i , again a contradiction. This proves x /∈ DIi

and thus in particular x /∈ DI . Thus I is a model of T in which
CI ⊆ DI does not hold. In particular T 6|= C v D.

In the following we assume that T has been completely unfolded
with respect to the full definitions such that Lemma 1 is applicable.

We are now ready to describe the actual encoding. We start with
an instance (T ,S, C) of CA. In a first step we do a preprocessing
according to (5), i.e. every candidate violating a type (1) constraint



is removed. This leaves us with only constraints of type (2) to (4).
For every remaining candidate Si ∈ S we introduce a propositional
variable si. Furthermore, a clause is introduced for each constraint
from C of types (2) to (4). The final formula f is then the conjunction
of these clauses. We construct f in such a way that a solution S ′
contains the candidate Si iff the satisfying assignment to f sets
si to true. For a type (2) constraint X v D we can assume that
D is atomic, otherwise we can equivalently replace it by a set of
constraints, one for each atom in D. We define

fXvD =
∨

T |=SivD

si.

For a type (3) constraint D 6v X we define

fD 6vX =
∨

T 6|=DvSi

si,

and for a type (4) constraint X 6v D we define

fX 6vD =
∨

D′ atom
of D

∧
T |=SivD′

¬si.

To generate these formulae, we have to perform one subsumption
check for each pair of a candidate and an atom from a constraint,
totaling to at most |C| · |S| subsumption checks. Since subsumption
checking in EL is tractable this can be done in polynomial time.
Each subset S ′ ⊆ S gives rise to a truth assignment φS′ where
φS′(si) = 1 if Si ∈ S ′ and φS′(si) = 0 otherwise.

LEMMA 2. For any constraint of type (2) to (4) and a set S ′ ⊆ S
the concept

d
S ′ satisfies c iff φS makes fc true.

PROOF. We prove the for each of the three types of constraints
separately. For a constraint X v D where D is atomic it follows
from Lemma 1 that T |=

d
S ′ v D iff there is some Si ∈ S ′ satis-

fying T |= Si v D. By definition of φS′ this holds iff φS′(si) = 1
for some Si ∈ S with T |= Si v D, i.e. iff φS′ makes fXvD true.

Consider now a constraint D 6v X . In this case, we do not need
Lemma 1. It follows directly from the definition of conjunction that
T |= D v

d
S ′ iff T |= D v Si for all Si ∈ S ′. Conversely,

T 6|= D v
d
S ′ iff T 6|= D v Si for some Si ∈ S ′. By definition

of φS′ this holds iff φS′ = 1 for some Si ∈ S satisfying T 6|= D v
Si, i.e. iff φS′ satisfies fD 6vX .

For a constraint X 6v D the claim is a direct translation of
Lemma 1, which states that T |=

d
S ′ v D iff for all atoms D′

of D there is some Si ∈ S ′ such that T |= Si v D′, i.e. iff φS′

makes ∧
D′ atom

of D

∨
T |=SivD′

si

true. The claim is simply the negation of the above statement.

The following theorem is a simple consequence of Lemma 2.

THEOREM 2. S ′ is a solution to the CA problem (T ,S, C) iff
φS′ makes the following formula true:

f =
∧
c∈C

fc.

This provides us with a practical algorithm for solving CA prob-
lems. To solve MCA problems, we can use an iterative approach:
First solve the CA problem obtained by ignoring the confidence
values. In a next step set all variables corresponding to a candidate
with confidence lower or equal to the minimal confidence in the first
solution to false. This process is repeated until the resulting CA
problem can no longer be solved. The last solution must be optimal.
At the latest, this process terminates after |S| iterations.

6. EVALUATION
In this section, we apply the above theory to the setting of learning

logical definitions from texts. For this, we need two steps: one
to learn definition candidates from texts, and the other to refine
concepts by formal constraints, as detailed in the following.

6.1 Experiment Set Up
We carry out a one-concept-leave-out evaluation. That is, in each

round of experiments one concept is removed from the complete
SNOMED CT ontology. This concept is then used as the target
concept in the learning process, during which a new description is
learned from text. The learned concept description is compared to
the original concept description which has been removed, essentially
using the original description as the gold standard. The text corpus
and the ontology examined in the experiment are given below.

6.1.1 Ontology and Text Corpus
We take SNOMED CT as the ontology for our experiments be-

cause it is widely used and written in EL (if role hierarchies are
neglected). In our experiments we restrict to the concepts that are
descendants of Disease(disorder)4. Among the 65,073 descendants
of Disease, 853 concepts are mentioned in our available text corpus.
In the experiment, only these 853 concepts are considered.

For the experiment we chose a combination of two text corpora:
WIKI and D4D. WIKI is obtained by querying Wikipedia with
one-word SNOMED CT concept names, resulting in a document
consisting of around 53,943 distinct sentences with 972,038 words.
D4D contains textual definitions extracted by querying DOG4DAG5

[19] over concepts that have relationships via the most frequent
attributes6 used for Disease, obtaining 7,092 distinct sentences with
112,886 words. So in all, our textual data contains 61,035 sentences
with 1,084,924 words.

6.1.2 Learning Definition Candidates from Texts
Following [8], we use the distance supervision [10] approach for

the definition candidate extraction. This approach is independent
of manual annotation of textual data, which would be costly. The
process is sketched below. For more details, refer to [8].

The text corpus is first annotated by Metamap7, a tool developed
to identify SNOMED CT concepts occurring in texts. This is illus-
trated in the 1st row of Table 3, where “Baritosis” and “barium
dust” in the sentence are annotated with concepts Baritosis and
Barium_Dust, respectively, by Metamap.

Then the annotated sentences are aligned with the SNOMED CT
relationship base. That is, if a sentence contains two concepts that
are in a relationship in SNOMED CT, this sentence is aligned with
the corresponding role. Using DL reasoning we first generate the
set of all triples A|R|B that are entailed by SNOMED CT in the
following sense: RB = {A|R|B : SNOMED CT |= A v ∃R.B}.
Reasoning provides a way to use implicit information encoded in
SNOMED CT8. Because the inferred role base RB contains the
relationship Baritosis | Causative_agent | Barium_dust, the sen-
tence is aligned to Causative_agent. Once the sentence is aligned,

4The type information attached to each concept (i.e. disorder) is the
same for all. For simplicity, we ignore it below if not necessary.
5DOG4DAG is a system capable of retrieving and ranking textual
definitions from the web. However, it has query number restrictions
so that we cannot query as many as SNOMED CT concepts.
6Three are used: Associated_morphology, Causative_agent, and
Finding_site
7http://metamap.nlm.nih.gov/
8For example, for Finding_site 630,547 relation pairs are obtained
through reasoning compared to only 43,079 explicitly given [8].



Table 3: Text Alignment and Features
Annotated Sentence “Baritosis/Baritosis is pneumoconiosis caused by barium dust/Barium_Dust.”

SNOMED CT relationship Baritosis | Causative_agent | Barium_Dust

features are extracted from it. As a typical feature for relation
extraction, the between-words of annotated phrases are used.

During the candidate extraction for a target concept, all the
aligned sentences are divided into training and test sets as follows:
If an annotated sentence does not contain mentions of the target
concept, then it goes into the training set; otherwise, it becomes a
test sentence. This way, no information about the target concept
will be allowed in the training data. Since several sentences can be
aligned with the same role, weights for different features extracted
from different sentences are learned by the Stanford multi-class
classifier [9] based on the training set.

Description candidates for the target concept are obtained by
running the classifier on the test data. For each test sentence, it
predicts a relationship between the annotated concepts, one of which
is the target concept. This yields a tripleA|R|B which is interpreted
as a description candidate ∃R.B for the target concept A.

6.1.3 Construction of Formal Constraints
For evaluation, we construct formal constraints based on the

following observations: (1) The existing SNOMED CT concept
hierarchy is assumed to be correct and we introduce constraints that
ensure that the hierarchy is preserved. (2) Explicitly defined domain
and range information is available for the limited number of roles
used in SNOMED CT.

For the sake of the experiment, we use the original SNOMED
CT, i.e. without the target concept removed, to simulate an expert.
Assuming that in a real world scenario they could be provided
by a human expert we take into account the direct superclasses
and subclasses of the target concept. This is shown in Lines 4–11
of Algorithm 1, the resulting constraints are of types (1) and (2).
The role domain and range restrictions can be gathered from the
SNOMED CT User Guide, as shown in Lines 13–15 and Lines 16–18
of Algorithm 1, respectively, resulting in constraints of type (4).

Once the constraints are ready, we can use the concept adjustment
approach proposed in the previous sections to select good candidates
for the definition of the target concept. Note that the concept adjust-
ment should only use those parts of SNOMED CT that do not contain
information about the target concept. For this, we use a module
extraction approach [6, 5] to extract a module about the target con-
cept (Line 20). Then we delete the obtained module from SNOMED
CT ensuring that the rest is of no relevance to the target concept
(Line 21). Note that one cannot simply extract a module about all
the concept names of SNOMED CT except for the target concept
because the resulting module would include some information about
the target concept via links between the target concept and other
concepts. Finally, the optimized group of candidates is generated by
solving the concept adjustment task (Line 22 in Algorithm 1), taking
the given candidates, the generated constraints, and the background
knowledge from SNOMED CT without information about the target
concept.

EXAMPLE 1. Take Baritosis as the target concept. From the
textual data, we get 10 sentences that have annotation Baritosis by
Metamap, from which the following relationships were extracted

Algorithm 1 Definition Selection (with automatic constraints)
1: procedure DEFSELEAUTOCONS(TargetCon)
2: Candidates← candidateExtract(TextualData)
3: AutoConstraints← ∅
4: for all C ∈ SNOMED do
5: if SNOMED |= TargetCon v C then
6: AutoConstraints.add(TargetCon v C)
7: end if
8: if SNOMED |= C v TargetCon then
9: AutoConstraints.add(C v TargetCon)

10: end if
11: end for
12: for all R ∈SNOMED do
13: for all B 6∈ Range(R) do
14: AutoConstraints.add(TargetCon 6v ∃R.B)
15: end for
16: if TargetCon 6∈ Domain(R) then
17: AutoConstraints.add(TargetCon 6v ∃R.>)
18: end if
19: end for
20: Module←ModuleExtract(TargetCon, SNOMED)
21: PartSnd← SNOMED \Module
22: return CandidateSelection(PartSnd, AutoConstraints, Can-

didates)
23: end procedure

SNOMED CT Concept

Dust Barium_AND/OR_barium_compound

Barium_compoundBarium

ChemicalSubstance

Barium_dust

direct hierarchy
indirect hierarchy

Figure 1: Example on Concept Adjustment

with high weights by the learning approach given in Section 6.1.2:

Baritosis | Causative_agent | Barium_compound, 0.92140

Baritosis | Causative_agent | Dust, 0.97038

Baritosis | Finding_site | Lung_structure, 0.99999

Baritosis | Causative_agent | Barium_dust, 0.99997

Therefore, we have the following definition candidates:
{∃Causative_agent.Barium_compound, ∃Causative_agent.Dust,
∃Finding_site.Lung_structure, ∃Causative_agent.Barium_dust}.
However, by SNOMED CT, ∃Causative_agent.Barium_compound
is an undesired candidate. Due to the high weights returned by
the learning approach, it is hardly possible to exclude the unde-
sired candidate by looking at the weights alone.9 Indeed, it can be

9Note that even the concept type information is used as



Algorithm 2 Definition Selection (with interactive constraints)
1: procedure DEFSELE(TargetCon,AutoConstraints)
2: Candidates← DefSeleAutoCons(TargetCon)
3: Module←ModuleExtract(TargetCon, SNOMED)
4: PartSnd← SNOMED \Module
5: InteractiveConstraints← ∅
6: MoreConstraints← true
7: Definition← TargetCon = u

C∈CandidatesC
8: while MoreConstraints do
9: NewImplication←Classification(PartSnd∪Definition)\

Classification(PartSnd)
10: for all p in NewImplication do
11: question← Is p is desired?
12: if yes then . a new positive (Type 1, 2) constraint
13: InteConstraints.add(p)
14: else . a new negated (Type 3, 4) constraint
15: InteConstraints.add(¬ p)
16: end if
17: end for
18: Constraints← AutoConstraints ∪ InteConstraints
19: Candidates ← CandidateSelection(Candidates, Con-

straints, PartSnd)
20: MoreConstraints← Stop interaction?
21: end while
22: end procedure

discarded by the concept adjustment framework. This is because,
Algorithm 1 yields a constraint on Causative_agent, which ensures
that the value cannot be a sort of Chemical. But as shown in Fig-
ure 1, Barium_compound is indeed a descendant of Chemical in
the background knowledge base, thus being discarded.

Obviously, in real life applications it is not possible to query
an existing ontology for constraints as in Algorithm 1. In this
case, we propose to use interactive communication with knowledge
engineers, as detailed in Algorithm 2. Line 1 in Algorithm 2 simply
runs Algorithm 1 to obtain a first set of definition candidates. The
conjunction over the selected candidates yields a definition for the
target concept (Line 7). If the knowledge engineer wants to continue
to find more constraints, new implications are computed (Line 9).
These are obtained by comparing the classifications of PartSnd, the
module with no information about the target concept, and PartSnd
plus the newly computed definition of the target concept. Then for
each new implication, the expert decides if it is desired (Line 11). If
yes, it will be added as a positive constraint (Line 12–13); otherwise,
it will be a new negated constraint (Line 14–15). Once the constraint
set is updated using interactive constraints (Line 18), new candidates
will be computed again by Algorithm 1 (Line 19). This interactive
process proceeds until the expert does not want more constraints.

In our preliminary evaluation, we only consider the scenario that
constraints are built automatically as described in Algorithm 1. The
evaluation is done automatically by comparing the learned and the
adjusted candidates to those originally given in SNOMED CT.

6.2 Evaluation and Discussion
In this section we discuss the evaluation metric and results. As

the evaluation metric, we consider an extended precision to mea-

a feature during the description learning, the candidate
∃Causative_agent.Barium_compound still cannot be excluded
because its type is the same as that of the correct candidate
Barium_dust by SNOMED CT. And note that the type information
is different from the concept hierarchy in SNOMED CT.
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Figure 2: Precision with/without Concept Adjustment

sure what percentage of a set of candidates is correct with respect
to SNOMED CT semantics. It must take implicit knowledge from
SNOMED CT into account, since there is no unique way to de-
fine concepts. Different definitions may lead to the same meaning
under Description Logics semantics. For example, our learning
approach might return a candidate ∃Causative_agent.Dust for the
target concept Baritosis. When looking up the definition given in
SNOMED CT, this candidate is not explicitly mentioned. However,
it is a no harm candidate because in the definition of Baritosis as
given in SNOMED CT we have ∃Causative_agent.Barium_dust
and SNOMED CT |= Barium_dust v Dust holds (Figure 1). From
this Baritosis v ∃Causative_agent.Dust follows.

Formally, given a set of candidates Cands = {A|R|B : A,B are
concept names andR is a role name}, the reasoning based precision
can be defined as follows:

Precision =
|{A | R | B ∈ Cands: SNOMED |= A v ∃R.B}|

|Cands| .

Among the 853 examined concepts are 276 concepts whose candi-
dates generated in the first phase come with Precision < 1. Figure 2
compares the precision values of the sets of description candidates
for these 276 target concepts, before and after concept adjustment.
Interestingly, we can see that the candidates for all the concepts
become 100% correct after the adjustment under the constraints
obtained by Algorithm 1, but none of them is so beforehand (most
of them have a precision value less than 0.8 without adjustment).

The great increase in precision is partly due to the set of relatively
strong constraints that Algorithm 1 constructed. In applications
where the design manual of an ontology is not as exhaustive as
SNOMED CT’s, we believe that an interactive approach as given in
Algorithm 2 should be used to generate a rich set of constraints.

In this preliminary evaluation, we do not consider a recall metric
because it is unclear how the semantic closure of definitions should
be defined. By contrast, we have designed the candidate extraction
step (Line 2 in Algorithm 1) to keep as many candidates as possible,
such that the information given in the available textual data about
the target concept can be exploited to a large extent. The candidates
are then verified by the proposed concept adjustment approach to
discard potentially erroneous ones.

7. RELATED WORK
Formal ontology generation is an important but non-trivial task

[4]. Often ontology languages allow to express knowledge both at
the instance and the terminology levels, and existing automatic sys-
tems for ontology construction may differ in the type of knowledge
that is learned. Like [18, 8], our work is at the terminological level.
Völker [18] describes some first approaches for generating OWL



DL concept definitions for generic domains by applying syntactic
transformation rules. For a fixed set of relations, [8] presents a
method to learn concept definitions via a relation extraction based
approach. By contrast, [7, 3] are at the instance level, that is, they
find logical descriptions for given instances.

General approaches are often difficult to apply to specific do-
mains, such as SNOMED CT. For example, the approach in [18]
is inappropriate for our system because it encounters unresolved
reference roles such as ∃Of, which does not have a representa-
tion in SNOMED CT. Moreover, different formal expressions (e.g.
∃Caused_by, ∃Due_to, ∃Result_from) will be generated from vari-
ant expressions (e.g. “caused by”, “due to”, “result from”), even
if they all express the same relation ∃Causative_agent according
to SNOMED CT. Following [8], the candidate extraction procedure
used in this paper is based on relation extraction techniques [10].
This can be done for our specific scenario because SNOMED CT
has a relatively stable and limited set of roles compared to its large
increasing number of concept names. Compared to [8], we assigned
less strict algorithm parameters in the experiments for the aim that
more potential candidates can be extracted. And then an extra con-
cept adjustment layer, as proposed in this paper, is used to increase
the precision of the definition candidates.

In addition, ontology construction systems can differ in the DL
languages they consider. For instance, [18] does not specifically
consider EL++ constructors, Similar to [3, 8], we take EL as the
target language in this paper with the aim to construct a system for
assisting SNOMED CT development. Normally, more expressive
languages are more difficult to deal with. But specific techniques for
restricted languages can be of particular benefits [8]. In particular,
we show that the proposed concept adjustment problems can be
tractable with respect to EL if the constraint types are restricted, and
it is NP-Complete when all types are allowed, which is still below
the complexity of many other DL reasoning problems.

8. CONCLUSION AND FUTURE WORK
In this paper, the problem of automatic generation of formal def-

initions of an ontology is considered. We have proposed a novel
framework to get formal definition candidates of a good precision.
The approach combines both techniques from natural language
processing and ontology reasoning. First, based on the distance su-
pervision approach, definition candidates are extracted from textual
data about the target concept. Then the concept adjustment approach
is proposed to remove those which violate some formal constraints.

Precisely formalized in Description Logic terminology, the pro-
posed concept adjustment problems (CA and MCA) are analyzed
theoretically. We have showed that different constraint types may
lead to problems of different complexities: it remains tractable if
the constraints are restricted to the first three types, but becomes
NP-complete once constraints of the fourth type appear. For imple-
mentation, we have studied an encoding based approach which can
reduce the concept adjustment problems to a SAT instance. This
way, we can benefit from the highly optimized modern SAT solvers
for our problem. As evaluation, we have set up experiments where
different concepts from the SNOMED CT ontology are considered
as the target concept with the formal constraints constructed auto-
matically. Under the defined extended precision, we can see that the
definition candidates after the concept adjustment have significantly
improved the precision. Thus, the output of the whole framework
can provide more reliable formal definitions.

In the future, we will study a proper definition of recall which
can take into account the reasoning over background knowledge.
Based on this, we will improve our approach to achieve both better
precision and recall. Meanwhile, we are interested in evaluations

about the interactive way for formal constraint construction by ex-
amining other ontologies. The extension of the current system to
more expressive Description Logics is also under consideration.
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