
Roughening the EL Envelope

Rafael Peñaloza1? and Tingting Zou2

1 Theoretical Computer Science, TU Dresden
Center for Advancing Electronics Dresden, Germany

penaloza@tcs.inf.tu-dresden.de
2 College of Computer Science and Technology, Jilin University, China

zoutingt@163.com

Abstract. The EL family of description logics (DLs) has been success-
fully applied for representing the knowledge of several domains, specially
from the bio-medical fields. One of its principal characteristics is that its
reasoning tasks have polynomial complexity, which makes them suitable
for large-scale knowledge bases. In their classical form, description logics
cannot handle imprecise concepts in a satisfactory manner. Rough sets
have been studied as a method for describing imprecise notions, by pro-
viding a lower and an upper approximation, which are defined through
classes of indiscernible elements.
In this paper we study the combination of the EL family of DLs with the
notion of rough sets, thus obtaining a family of rough DLs. We show that
the rough extension of these DLs maintains the polynomial-time com-
plexity enjoyed by its classical counterpart. We also present a completion-
based algorithm that is a strict generalization of the known method for
the DL EL++.

1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
designed for expressing terminological knowledge in an unambiguous and well-
understood manner. They have been successfully applied to modelling and rea-
soning with real-world knowledge domains, but arguably its largest success so
far is the designation of the DL-based language OWL as the standard ontology
language for the semantic web, by the W3C.3

The DL EL is a lightweight logic that allows only for conjunction and ex-
istential restrictions as constructors. As it cannot express negations, EL is not
propositionally closed. Despite its low expressivity, this logic and small exten-
sions of it have been successfully used for representing knowledge from several
domains, most prominently from the medical and biological fields. In fact, mi-
nor extensions of EL are the basic logics underlying large-scale ontologies like
Snomed CT4 or the Gene Ontology.5 A prominent feature of these logics is
? Partly supported by DFG within the Cluster of Excellence ‘cfAED’.
3 http://www.w3.org/TR/owl2-overview/
4 http://www.ihtsdo.org/snomed-ct/
5 http://www.geneontology.org



their polynomial-time complexity of reasoning, which enables effective reasoning
procedures. In fact, modern reasoners are capable of classifying Snomed CT,
which has approximately 300,000 axioms, in less than seven seconds [16].

In their classical form the members of the EL family, as all other classical DLs,
lack the capacity of modelling and reasoning with imprecise knowledge. This
is in no way a small drawback, as imprecision is almost unavoidable in several
knowledge domains, like those from the bio-medical fields. For example, even the
notion of species, one of the mayor taxonomic ranks from biological classification
is far from precise, or even being well-understood. Consider for instance the case
of the Ensatina salamanders from North America. When seen independently, the
Monterey Ensatina and the Large Blotched Ensatina form two different species,
with their own characteristic traits; they can be easily distinguished as the former
is completely brown in color, while the latter is black with large yellow blotches.
Moreover, these two groups of individuals are uncapable to interbreed, which
is the minimal requirement for distinguishing elements of a species. However,
there also exists a group of intermediate individuals, that mix the traits of both
species, forming a gradual bridge between them; e.g., dark brown with lighter-
brown blotches. These intermediate individuals form also a chain of interbreeding
relations that goes from the Monterey to the Large Blotched Ensatinas. It is thus
unclear at which point these intermediate individuals stop being members of one
species and start belonging to the other. Indeed, providing a satisfactory notion
of when two individuals belong to the same species is a prominent problem in
biology [11].

The best-known approach for handling imprecision formally is through fuzzy
logic [13]. Fuzzy extensions of DLs have been thoroughly studied during the last
decade as a formalism for representing vague terminological knowledge [19,23].
However, it was recently shown that reasoning in expressive fuzzy DLs is either
undecidable [6,9], or must ignore the truth degrees [5]. Even for the inexpres-
sive DL EL, the extension to general fuzzy-set based semantics usually yields
intractable reasoning problems [8]. It can be argued that these negative com-
plexity results arise from the high level of granularity provided by fuzzy seman-
tics, where every number from the interval [0, 1] can be used as a truth degree.
In other words, it is possible to make arbitrarily small distinctions between ele-
ments of the domain. One can partially alleviate this problem by restricting to
finitely many truth degrees [4,7]. In this case, the resources needed for reasoning
are directly correlated with the size of the truth value space. This idea, however,
adds the burden of deciding a priori the amount of degrees that will be needed
and their relevant operations. It is thus desirable to obtain an intermediate for-
malism that allows for imprecise limitations of concepts, while avoiding the level
of detail of fuzzy logics.

Rough sets were introduced in [20] as an alternative to fuzzy set theory [26]
for dealing with imprecise notions. The main idea behind this formalism is to
describe imprecise sets by allowing a class of boundary elements that can neither
be stated to belong, nor to be outside, the set. More precisely, a set X without
a clear distinction on its limits, is approximated using a set X of elements that



are guaranteed to belong to X, and a set X of elements that might be members
of X; this latter set is called the upper approximation of X. These sets are for-
mally defined with the help of an indiscernibility relation that clusters together
individuals sharing the same properties. The difference X \X are the boundary
elements, which cannot be ensured to belong to X, nor to its complement.

For example, the problem with the different species of Ensatina salamanders
can be solved by stating that the intermediate individuals belong to the upper
bounds of the sets of both species. This representation allows us to state prop-
erties of the intermediate individuals (e.g. that they have mixed traits from the
border species) without providing a clear-cut division of these individuals into
the two species.

In this paper we study rough EL++, a logic that combines the DL EL++

(without concrete domains) and rough set semantics. Although the combination
of rough set theory with DLs is far from new (see e.g. [18] for some early work),
interest in it has grown in the last few years [10,14,17,22]. Most of the work in this
direction so far focuses on rough extensions of expressive DLs. The approach is to
extend a description logic with two new constructors that describe the upper and
lower approximations of concepts. The semantics of these constructors are based
on equivalence relations that provide the indiscernibility relation from rough set
theory. In [22] it was shown that these constructors can be modelled in classical
DLs with the help of existential and value restrictions over a new transitive,
symmetric and reflexive role ρ. Briefly, the role ρ describes the indiscernibility
relation, and the value and existential restrictions can be used to describe the
lower and upper approximations, respectively. This construction is useful for
showing that the rough constructors do not increase the complexity of standard
reasoning for expressive DLs.

The reduction from [22], when applied to rough EL++, requires to extend
the set of constructors to include value restrictions and inverse roles, among
others. The extensions of EL++ with any of these constructors are known to be
ExpTime-complete [1,2]. Thus, this approach yields an exponential-time upper
bound for reasoning in rough EL++, in contrast to the polynomial-time complex-
ity for classical EL++. In this paper we show that subsumption in rough EL++ is
in fact PTime-complete, matching the known complexity for its classical logic.

The paper is divided as follows. We first provide a very brief introduction
to the theory of rough sets, which will be useful for defining the syntax and
semantics of rough EL++ in Section 3, where we also prove some basic properties
of this logic. In Section 4, we describe a completion-based algorithm for deciding
subsumption of rough EL++ concepts. As an added benefit, we obtain that
classifying the full ontology needs only polynomial time. This paper extends the
results from [21].

2 Rough Sets

Rough sets were introduced in [20] as an alternative to fuzzy set theory [26] for
dealing with imprecise notions. The main motivation in this formalism is to be



able to approximate terms that defy a precise characterisation, with the help
of an equivalence relation ∼, called the indiscernibility relation. Formally, the
equivalence relation ∼ divides the universe into its equivalence classes, which
form clusters, or granules of indiscernible elements. Intuitively, elements belong-
ing to the same equivalence class cannot be distinguished through their perceiv-
able characteristics, and hence cannot be divided by a given set. Rough sets are
also sometimes called granular sets in the literature and are one of the basis for
granular computing [25].

Given a set X, and an equivalence relation ∼, we can define its best lower
approximation, denoted by X, as the greatest union of equivalence classes con-
tained in X; i.e., X :=

⋃
[x]∼⊆X [x]∼. Likewise, its best upper approximation

is the union of the equivalence classes of all elements of X; X :=
⋃

x∈X [x]∼.
Equivalently, we have

X = {x | [x]∼ ⊆ X}, X = {x | [x]∼ ∩X 6= ∅}.

The elements in X are those that can be clearly distinguished from any
element not belonging to X, and hence are said to surely belong to X. The
members of X, on the other hand, are those indistinguishable from some element
of X, and said to possibly belong to X. The elements in the boundary X \X of X
are those for which the notion of belonging to X cannot be made precise, as they
are indistinguishable from both, members X and members of the complement
of X.

From an informal point of view, it is possible to see rough sets as a three-
valued membership function, where members of X strongly belong to X, the
boundary elements weakly belong to X, and those in the complement of X do
not belong to X. However, this description is overly simplistic, as the three-
valued semantics are incapable of fully characterising the properties of the indis-
cernibility relation. In particular, the desired properties relating a three-valued
conjunction with its three-valued implication cannot be enforced through the
conjunction and implication of rough sets.

In the next section, we describe the combination of the description logic
EL with the lower and upper-approximation constructors, whose semantics is
based on rough sets. Afterwards, we describe a completion algorithm for deciding
(classical) subsumption between rough EL concepts.

3 Rough EL++

The logic rough EL++ extends classical EL++ by allowing the lower approxima-
tion and upper approximation constructors · and · for expressing rough concepts.
Formally, from three mutually disjoint sets NC, NR, and NI of concept, role, and
individual names, rough EL++ concepts are constructed using the following syn-
tactic rule:

C ::= A | C1 u C2 | ∃r.C | C | C | {a} | > | ⊥,



where A ∈ NC, r ∈ NR, and a ∈ NI.6
The semantics of this logic is based on interpretations that map concept

names to subsets of a non-empty domain ∆, and role names to binary rela-
tions over ∆. To handle the rough concept constructors, these interpretations
additionally require an indiscernibility relation.

Definition 1. A rough interpretation is a tuple I = (∆I , ·I ,∼I), where ∆I is
a non-empty set called the domain, ∼I is an equivalence relation on ∆I , called
the indiscernibility relation, and ·I is the interpretation function mapping every
concept name A to a subset AI ⊆ ∆I , every role name r to a binary relation
rI ⊆ ∆I ×∆I , and every individual name a to an element aI ∈ ∆I .

As usual, we denote the equivalence class of an element x ∈ ∆I w.r.t. the
relation ∼I by [x]∼I . The interpretation function is extended to general rough
EL++ concepts by setting:

– (C1 u C2)
I = CI1 ∩ CI2 ,

– (∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆I . (x, y) ∈ rI ∧ y ∈ CI},
– C

I
= {x ∈ ∆I | [x]∼I ∩ CI 6= ∅},

– CI = {x ∈ ∆I | [x]∼I ⊆ CI},
– {a}I = {aI},
– >I = ∆I , and ⊥I = ∅.

Intuitively, the indiscernibility relation groups the elements of the domain
that cannot be distinguished from each other, at the considered level of detail.
The upper approximation C of a given concept C describes those individuals
that cannot be excluded from belonging to C, as they are indistinguishable from
some element belonging to this concept. Dually, the individuals C are those that
are discernible (i.e., can be detached) from every element not belonging to C.
Clearly, for every interpretation I and concept C it holds that CI ⊆ CI ⊆ C

I
.

The borderline cases, those elements belonging to C
I \ CI , cannot be ensured

to be, nor excluded from being instances of C through the equivalence relation.
The domain knowledge is described using a TBox : a finite set of GCIs of the

form C v D, where C,D are rough EL++ concepts, and role inclusion axioms
(RIs) of the form r ◦ s v t or r v t, where r, s, t ∈ NR. Their semantics is defined
as follows. The interpretation I satisfies the GCI C v D if and only if CI ⊆ DI
holds. It satisfies the RI r ◦ s v t (resp., r v t) if rI ◦ sI ⊆ tI (resp., rI ⊆ tI).
I is a model of the TBox T if it satisfies all the GCIs and RIs in T .

Contrary to less expressive DLs such as EL, it is possible to build incon-
sistent rough EL++ TBoxes, due to the presence of the bottom concept ⊥. As
a simple example, consider the GCI {a} v ⊥ that cannot be satisfied by any
interpretation I. Despite this situation, we still focus our attention to the prob-
lem of deciding subsumption between concepts, which can be used to solve all
6 The logic EL++ allows also for concrete domains. In this paper we decided to exclude
concrete domains to reduce the number of completion rules, and simplify the proofs.
Including this constructor in the logic should not affect our complexity results.



other standard reasoning problems like concept satisfiability, or the instance
problem [1].

Definition 2. Let T be a TBox and C,D two rough EL++ concepts. We say
that C is subsumed by D w.r.t. T , denoted by C vT D, if for every model I
of T it holds that CI ⊆ DI . Classification is the problem of deciding, for every
pair of concept names A,B, whether A vT B holds or not.

Example 3. Consider once again the Ensatina salamanders and the TBox

MontereyE u LargeBlotchedE v ⊥
∃interbreed.MontereyE v MontereyE

∃interbreed.LargeBlotchedE v LargeBlotchedE

that describes usual desired properties of the notion of species; namely, that no
individual may belong to two different species (first axiom), and that belonging
to a species is characterized by the capacity of interbreeding with elements of
that species (last two axioms). Consider now three salamanders a, b, c such that
a and c belong to each of the limit species, and b can interbreed with both; i.e.,

{a} v MontereyE

{c} v LargeBlotchedE

{b} v ∃interbreed.{a} u ∃interbreed.{c}.

From all these axioms, we can deduce that the salamander b belongs to the upper
approximation of both limit species, and hence is an intermediate salamander.
We could then deduce some further properties of {b} in the presence of other
axioms in the TBox.

If we had restricted the description to the classical definition of species
through interbreeding, i.e., used the axioms ∃interbreed.MontereyE v MontereyE
and ∃interbreed.LargeBlotchedE v LargeBlotchedE in place of the upper approx-
imations as above, the TBox would be inconsistent as b would be a member
of both species, which are specified to be disjoint. In this case, rough concepts
provide a (partial) solution to the species problem.

As shown in [22], reasoning in rough DLs can be reduced to reasoning in a
classical DL that allows value restrictions, inverse, and reflexive roles, and role
inclusion axioms. Let ρ be a new role that does not appear in T . If we restrict
ρ to be reflexive, and include the role inclusion axioms ρ ◦ ρ v ρ (transitivity),
and ρ−1 v ρ (symmetry), then the concepts C and C are equivalent to the con-
cepts ∃ρ.C and ∀ρ.C, respectively (see [22] for full details). However, although
transitive roles are a feature of EL++, it is well known that extensions of classi-
cal EL++ with either value restrictions or inverse roles are already intractable;
in fact reasoning in these extensions is ExpTime-complete [1,2,24]. Applying
this reduction directly, yields an ExpTime upper bound for the complexity of
deciding subsumption of rough EL++ concepts. On the other hand, only one



role name, namely ρ, is used in any of the possibly expensive constructors intro-
duced by this reduction. As we will see in the following section, this limited use
does help in improving the complexity, as the problem of deciding subsumption
between concepts is decidable in polynomial time.

Clearly, the subsumption relation vT is transitive; that is, if C vT D and
D vT E, then also C vT E holds. Due to the properties of lower and upper ap-
proximations, some additional subsumption relations can sometimes be deduced,
as shown next.

Theorem 4. For all rough EL++ concepts C,D,E,D1, D2, the following prop-
erties hold:

1. C vT D iff C vT D
2. if C vT D and D vT E, then C vT E
3. if C vT D and D vT E, then C vT E
4. if C vT D1 and C vT D2 (respectively, C vT D2, or C vT D2), then

C vT D1 uD2 (resp., C vT D1 uD2, or C vT D1 uD2).

Proof. Let I = (∆I , ·I ,∼I) be a model of T , and x ∈ ∆I .

1. (⇐) If x ∈ CI , then there exists a y ∈ [x]∼I ∩ CI . By assumption, y ∈ DI .
Thus, x ∈ [y]∼I ⊆ DI .
(⇒) Let x ∈ CI . We must prove that [x]∼I ⊆ DI . Let y ∼I x. Then, y ∈ C

I
,

and thus, by assumption, y ∈ DI .
2. Let x ∈ CI . By assumption, we know that there exists z ∈ [x]∼I ∩DI , and

thus z ∈ EI ; i.e., [x]∼I = [z]∼I ⊆ EI . Hence x ∈ E
I .

3. If x ∈ CI , then by assumption it holds that [x]∼I ⊆ DI . Let y ∼I x. Then
[y]∼I = [x]∼I ⊆ DI , and hence y ∈ DI , and by assumption y ∈ EI .

4. If x ∈ CI , then [x]∼I ⊆ DI1 . For the case where C vT D2, it then follows
that [x]∼I ⊆ DI1 ∩DI2 = (D1uD2)

I , and hence x ∈ (D1 uD2)
I . If C vT D2,

then x ∈ DI2 , and since x ∈ [x]∼I , it follows that x ∈ (D1 uD2)
I . Finally,

if C vT D2, then [x]∼I ∩ DI2 6= ∅ and since [x]∼I ⊆ DI1 , it holds that
[x]∼I ∩DI1 = [x]∼I . Thus, [x]∼I ∩ (D1 uD2)

I 6= ∅. �

In the following section we will exploit these properties to build a completion-
based algorithm that classifies a TBox and can be used to decide which subsump-
tion relations hold.

4 A Completion Algorithm

In this section, we describe an algorithm for deciding subsumption relations
between concepts. To simplify the description, we will focus exclusively on sub-
sumption between concept names. Notice that subsumption between complex
rough EL++ concepts C,D can be reduced to this problem by adding the two
axioms A v C and D v B, where A,B are two new concept names, to T
and then deciding whether A vT B holds. Thus, restricting to concept name
subsumption results in no loss of generality.



NF1 A u C v E −→ {C v X,A uX v E}
NF2 ∃r.C v E −→ {C v X, ∃r.X v E}
NF3 C v E −→ {C v X,X v E}
NF4 C v E −→ {C v E}
NF5 C v D −→ {C v X,X v D}
NF6 A v E u F −→ {A v E,A v F}
NF7 A v ∃r.C −→ {A v ∃r.X,X v C}
NF8 A v C −→ {A v X,X v C}
NF9 A v C −→ {A v X,X v C}
NF10 ⊥ v E −→ ∅

Table 1. Normalisation rules, where A ∈ BC, C,D /∈ BC and X is a new concept name

As a preprocessing step for the algorithm, we transform the TBox into an
adequate normal form. We define the set BC of basic concepts as the smallest
set containing all concept names, all nominal concepts, and the top concept; i.e.,
BC := NC ∪ {>} ∪ {{a} | a ∈ NI}. The TBox T is in normal form, if all its GCIs
are of one of the following forms:

A v ∃r.B, ∃r.A v C, A uA′ v C, A v C, A v B, or A v B, 7

where A,A′, B ∈ BC, C ∈ BC∪{⊥}, and r ∈ NR. The normalisation rules shown
in Table 1 can be used to transform any TBox T into a TBox in normal form that
preserves all the subsumption relations from T . It is possible to show that these
normalisation rules yield a normalised TBox in linear time. Notice in particular
rule NF4, which takes advantage of the first property described in Theorem 4.

Our completion algorithm extends the methods described in [1], to appro-
priately handle the lower and upper approximations of concepts. The idea is to
store the information of the subsumption relations using a collection of com-
pletion sets. The main difference with the classical approach is that we need
to maintain special completion sets for the lower and upper approximations, in
order to handle the special properties of these constructors. Moreover, as shown
in [15], a correct handling of nominals requires to keep track of additional de-
pendencies between basic concepts. This is done through a reachability relation
 R, where A RB intuitively expresses that if A has a non-empty interpreta-
tion, then B must also be non-empty. This relation is built in parallel to the
completion sets during the execution of the algorithm.

The algorithm uses a family of completion sets as data structure. In the
following we will denote as BCT the set of all basic concepts that appear in
the TBox T , and analogously for NCT , NRT , and NIT . For every basic concept
A ∈ BCT and every concept name G ∈ NCT , we store three completion sets
SG(A), SG(A), and S

G
(A), and additionally a completion set SG(A, r) for every

7 To simplify the description, we use the expression >uA v B to represent axioms of
the form A v B.



role name r ∈ NRT . The members of the completion sets are all basic concepts or
⊥. These sets will maintain the following invariants during the whole execution
of the algorithm:

i1 if B ∈ SG(A), and G RA, then A vT B
i2 if B ∈ SG

(A), and G RA, then A vT B
i3 if B ∈ SG(A), and G RA, then A vT B
i4 if B ∈ SG(A, r), and G RA, then A vT ∃r.B
i5 if G RA, then for every model I of T , GI 6= ∅ implies AI 6= ∅.

The completion sets are initialised as

SG(A) = S
G
(A) := {A,>}, SG(A) := {>}, SG(A, r) := ∅

for basic concepts A ∈ BCT , concept names G ∈ NCT , and role names r ∈ NRT .
The reachability relation initially states only that G RG and G R{a} for every
G ∈ NCT and every a ∈ NIT . Obviously, this initialisation preserves all the
invariants described above.

The completion rules from Table 2 are then applied to extend these sets.
Before continuing to show correctness of this algorithm, we briefly explain these
rules. The rules up to cr7 correspond to the completion rules for classical EL++

from [1] with the correct treatment of nominals adapted from [15]. The following
rules up to cr15 consider the axioms containing rough concepts, as well as the
consequences of crisp axioms when applied to rough concepts. The first two of
those rules are a simple consequence of the properties of intersections of rough
sets. We discuss the rule cr12 in more detail. Under the assumption that G
is not empty, G RA2 states that A2 must also be non-empty. Additionally,
{a} ∈ SG(A2) in particular implies that every member of A2 must also belong
to {a}, and hence A2 must be equivalent to {a}. Consider now some element
of A1. {a} ∈ S

G
(A1) states that this element must be indiscernible from a and

hence is indiscernible from an element of A2. Thus, A2 must be added to SG(A1).
The rule cr11 follows from a similar but simpler argument.

The next six rules consider a cross-population of of the completion sets,
following the properties of rough sets described in the previous section. Finally,
the last two rules extend the reachability relation to keep information on which
concept names should be interpreted as non-empty under the assumption that
G is non-empty.

To ensure termination, a rule is only applied if it adds new information;
that is, if the basic concepts to be added to the completion sets by such rule
application are not already in them. These rules are applied until the completion
sets are saturated ; i.e., until no rule is applicable anymore. We first show that
this procedure terminates in polynomial time.

Lemma 5. The rules from Table 2 can only be applied a polynomial number of
times, and each rule application needs polynomial time.



cr1 if B1 ∈ SG(A), B2 ∈ SG(A), and B1 uB2 v C ∈ T , then add C to SG(A)

cr2 if B ∈ SG(A) and B v ∃r.C ∈ T , then add C to SG(A, r)

cr3 if B ∈ SG(A, r), C ∈ SG(B), and ∃r.C v D ∈ T , then add D to SG(A)

cr4 if B ∈ SG(A, r) and ⊥ ∈ SG(B), then add ⊥ to SG(A)

cr5 if B ∈ SG(A, r) and r v t ∈ T , then add B to SG(A, t)

cr6 if B ∈ SG(A, r), C ∈ SG(B, s), and r ◦ s v t ∈ T , then add C to SG(A, t)

cr7 if {a} ∈ SG(A1) ∩ SG(A2) and G RA2, then add A2 to SG(A1)

cr8 if B1 ∈ SG(A), B2 ∈ SG(A), and B1 uB2 v C ∈ T , then add C to SG(A)

cr9 if B1 ∈ SG(A), B2 ∈ S
G
(A), and B1 uB2 v C ∈ T , then add C to S

G
(A)

cr10 if B ∈ S
G
(A) and ⊥ ∈ S

G
(B), then add ⊥ to SG(A)

cr11 if {a} ∈ S
G
(A1) ∩ S

G
(A2) and G RA2, then add A2 to S

G
(A1)

cr12 if {a} ∈ S
G
(A1) ∩ SG(A2) and G RA2, then add A2 to SG(A1)

cr13 if B ∈ SG(A) and B v C ∈ T , then add C to SG(A)

cr14 if B ∈ S
G
(A), and B v C ∈ T , then add C to SG(A)

cr15 if B ∈ S
G
(A), and B v C ∈ T , then add C to S

G
(A)

cr16 if B ∈ SG(A) then add B to SG(A)

cr17 if B ∈ SG(A) then add B to S
G
(A)

cr18 if B ∈ SG(A) and C ∈ SG(B) then add C to SG(A)

cr19 if B ∈ S
G
(A) and C ∈ S

G
(B) then add C to S

G
(A)

cr20 if B ∈ S
G
(A) and C ∈ SG(B) then add C to SG(A)

cr21 if ⊥ ∈ S
G
(A) then add ⊥ to SG(A)

cr22 if G RA and B ∈ SG(A, r), then G RB

cr23 if G RA and B ∈ S
G
(A), then G RB

Table 2. Completion rules for rough EL++

Proof. Each of the completion sets contains only basic concepts that appear in
T . Thus, the size of each of these sets is linear on T . For each concept name
in T there are three such completion sets for every basic concept, plus one
additional completion set for each basic concept and role name. Thus, the number
of completion sets is quadratic on the size of T . Each application of a completion
rule cr1–cr21 adds one concept name to one completion set, and never removes
any. This means that there can be at most polynomially many rule applications,
before no new concept name can be added to any completion set. The reachability
relation  R maps basic concepts, so it can have at most quadratically many
elements. Each application of one of the last two rules adds a pair to this relation,
and hence only quadratically many rule applications are possible.



For testing the pre-condition of a rule application, we can simply explore all
the completion sets, at most twice, and the set of axioms T . This exploration
needs in total polynomial time. ut

When the algorithm terminates, we can read all the subsumption relations
between concept names appearing in the TBox T , by simply considering the
elements appearing in the subsumption sets. More precisely, the subsumption
relation A vT B holds iff (i) {B,⊥} ∩ SA(A) 6= ∅, or (ii) there exists a ∈ NIT
such that ⊥ ∈ SA({a}). We prove first that the method is sound, by showing
that rule applications preserve the invariants i1 to i5 described before.

Lemma 6. The invariants i1 to i5 are preserved through all rule applications.

Proof. As said before, the invariants are satisfied by the initialisation of the
completion sets. Soundness of the first seven rules has been shown in [1,15].
For the remaining rules, we take advantage of the properties of rough concepts.
Recall that for every concept name A, it holds that A vT A vT A. This shows
soundness of the rules cr16 and cr17.

For the rule cr8, let A vT B1 and A vT B2. Then for every interpretation
I and every x ∈ I if x ∈ AI , then [x]∼I ⊆ BI1 ∩ BI2 . Thus, [x]∼I ⊆ CI , which
implies that A v C. Rule cr9 can be treated analogously. Soundness of the rules
treating nominals has been argued before, and of the remaining concept rules is
a direct consequence of Theorem 4.

The last two rules simply transfer the assumption of non-emptiness to all
existential successors, in the first case, and to all weak subsumers in the second
case. This transfer preserves the invariant i5. ut

Since A RA, the first invariant entails that whenever B ∈ SA(A), the sub-
sumption relation A vT B holds. Likewise, if ⊥ ∈ SA(A) ∪ SA({a}), the same
invariant together with i5 yield that A must be interpreted as empty by every
model of T . If this is the case, then A is trivially subsumed by B.

It remains only to show completeness; i.e., that once the algorithm has termi-
nated, all the subsumption relations are explicitly stated in the completion sets,
as described before. As usual, we show this by building, given concept names
A,B ∈ NCT not satisfying the conditions (i) nor (ii) above, a countermodel for
the subsumption relation between A and B. The main idea is to have one domain
element for each basic concept C appearing in T , which can be reached from A
through the relation R (and thus, must have a non-empty interpretation in the
countermodel). The interpretation function will include this element in every ba-
sic concept D that subsumes C w.r.t. T . However, we need to create additional
auxiliary individuals to correctly deal with the upper and lower approximations
of each of these concept names. We thus add an element Cu that will be inter-
preted to belong to all concept names D such that D subsumes C. For dealing
with the upper approximations, the construction is slightly more complex, as
different elements might be needed to witness the existence of an indiscernible
element belonging to different concept names: from C vT D1 and C vT D2,
and x ∈ CI , we can only deduce that there exist y1 and y2 such that x∼Iyi and



yi ∈ DIi holds for i ∈ {1, 2}. If we enforce y1 = y2, then it would follow that
x ∈ (D1 uD2)

I , but this is not a consequence of the two subsumptions. Thus,
we need to treat the witnesses for C being subsumed by D1 and by D2 indepen-
dently. Moreover, since nominals must be interpreted as singleton sets, we also
need to identify all basic concepts that are subsumed by the same nominal. We
also need to identify the auxiliary domain elements introduced for dealing with
rough constructors, if they refer to the same nominal, or if they were generated
by a conjunction of lower and upper approximations. We formalize these ideas
next.

Lemma 7. Let A,B be two concept names appearing in T , and SA the class
completion sets for A obtained after the application of the completion rules has
terminated. If {B,⊥} ∩ SA(A) = ∅ and ⊥ /∈ SA({a}), for all a ∈ NIT , then
A 6vT B.

Proof. We need to build a model I of T such that AI 6⊆ BI . We start by defining
the set of relevant concepts

C := {C,Cu, CD | C,D ∈ BCT , A RC,D ∈ S
A
(C)}.

Let ./ be the relation on C where x ./ y iff any of the following conditions hold:

1. exist a ∈ NIT , C,D ∈ BCT with x = C, y = D, and {a} ∈ SA(C) ∩ SA(D),
2. exist a ∈ NIT and C ∈ BCT with x = {a} and y = C{a},

3. exists C ∈ BCT with x = C, y = Cu and C ∈ SA(C), or

4. exist C,D1, D2, E ∈ BCT with x = CD1
y = CE , D2 ∈ SA(C), D1 ∈ S

A
(C),

and D1 uD2 v E ∈ T .

Let pCq denote the equivalence class of C on the transitive, reflexive and sym-
metric closure of ./. These equivalence classes form the interpretation domain;
that is, ∆I := {pCq | C ∈ C}.

The idea is to use the class pCq as a prototype individual belonging to the
concept C. Recall that we have assumed that ⊥ /∈ SA(A) ∪

⋃
a∈NIT

SA({a}).
From this assumption it follows that ⊥ does not appear in any equivalence class.

The indiscernibility relation ∼I is the transitive, reflexive and symmetric
closure of {(pCq, pCuq), (pCq, pCDq) | C,D ∈ BCT , A RC}; thus, the indis-
cernibility class defined by a basic concept C is

[C]∼I := {pCq, pCuq} ∪ {pCDq | D ∈ S
A
(C)}.



It remains only to define the interpretation function ·I . For a concept name
C ∈ NCT , role name r ∈ NRT and individual name a ∈ NIT , we set

CI := {pDq | C ∈ SA(D)} ∪ {pDuq | C ∈ SA(D)} ∪

{pDXq | C ∈ SA(X), X ∈ SA
(D)} ∪ {pDXq | C ∈ SA(D), DX ∈ C},

rI := {(pCq, pDq) | D ∈ S(C, r)} ∪ {(pCuq, pDq) | D ∈ S(X, r), X ∈ S(C)} ∪
{(pCXq, pDq) | D ∈ S(X, r), X ∈ S(C)} ∪
{(pCXq, pDq) | D ∈ S(Y, r), Y ∈ S(C), CX ∈ C}, and

aI := p{a}q.

It can be seen that this interpretation function is well defined. It is a simple case
analysis to show that, for every C ∈ BCT , and every D ∈ BCT ∪ {⊥} it holds
that pCq ∈ DI iff D ∈ SA(C). Hence, we have that pAq ∈ AI but pAq /∈ BI . It
only remains to be shown that I is indeed a model of T . The proof is by case
analysis, on the shape of the axiom, and the domain element.
[C v D] Let x ∈ CI ; i.e., [x]∼I ⊆ CI and let E ∈ BCT such that [E]∼I = [x]∼I .
Then pEuq ∈ CI . By definition, this means that C ∈ S(E). Since the rule cr13 is
not applicable, D ∈ S(E), and by rule cr16, D ∈ S(E). Let now pEF q ∈ [E]∼I .
Since D ∈ S(E), by definition pEF q ∈ DI . It thus follows that [E]∼I ⊆ DI and
since x ∈ [E]∼I , x ∈ DI .
[C v D] Let x ∈ CI and E ∈ BCT with [x]∼I = [E]∼I . Then, x is one of
pEuq, pEq, or pEF q for some F ∈ BCT . Since x ∈ CI , by definition we know
that either C ∈ SA(E), C ∈ SA(E), or C ∈ SA(F ) and F ∈ SA

(E), depending
on the shape of x. In any of the three cases, saturation of the rules cr16, cr17,
and cr19, implies that C ∈ S(E). By rule cr14, it the follows that D ∈ S(E)
and hence also D ∈ S(E) ∩ S(E). This implies that [x]∼I = [E]∼I ⊆ DI , and
thus x ∈ DI .
[C v D] Let x ∈ CI and [x]∼I = [E]∼I . As in the previous case, we know that
C ∈ S(E), and from rule cr15 it follows that D ∈ S(E). Thus, pEDq ∈ DI .
Since pEDq ∈ [x]∼I , this implies that [x]∼I ∩DI 6= ∅, and hence x ∈ DI .
[C1 u C2 v D] Let x ∈ CI1 ∩ CI2 and E ∈ BCT such that [x]∼I = [E]∼I . If
x = pEq, then by definition {C1, C2} ⊆ SA(E), and from rule cr1 it follows
that D ∈ SA(E) and hence x = pEq ∈ DI . The case for x = pEuq can be shown
analogously using rule cr8. If x = pEF q for some F ∈ S

A
(E), then for each

i ∈ {1, 2} it holds that Ci ∈ SA(F )∪SA(E). The cases where both Cis belong to
the same set are analogous to the cases for pEq and pEuq shown before. For the
remaining two cases assume w.l.o.g. that C1 ∈ SA(F ) and C2 ∈ SA(E). Then,
by rule cr17 C1 ∈ S

A
(F ). The definition of the relation ./ then implies that

pEF q = pEDq. From rules cr19 and cr9 it also follows that D ∈ SA
(E). These

two facts together imply that x = pEDq ∈ DI .
The remaining cases can be treated in a similar way, following the arguments

for the classical setting from [1,15]. The only additional difficulty arises in a



case analysis for the shape of the domain elements, as the classes for Cu and CD

depend on the completion sets S and S, which have a slightly different behaviour
than S. ut

This lemma shows that the algorithm is complete. In order to decide whether
a concept name A is subsumed by B ∈ NCT , one needs only analyse the sets
SA(A) and SA({a}) for all a ∈ NIT . If the goal is to classify the TBox T , then
this analysis has to be repeated for all concept names A, however, there is no
need to recompute the completion sets; one run of the completion algorithm
provides information on all the subsumption relations between concept names.
We thus obtain the following result.

Theorem 8. Subsumption of rough EL++ concept names w.r.t. TBoxes can be
decided in polynomial time. Moreover, the TBox T can be classified in polynomial
time.

Since subsumption is already PTime-hard for classical EL [12], this theorem
proves that the problem is PTime-complete.

5 Conclusions

We have studied rough EL++, a description logic that extends the lightweight DL
EL++ to allow for lower and upper approximations from rough set theory. Rough
DLs are presented as an alternative to fuzzy DLs for dealing with imprecise
knowledge, in face to the recent negative complexity results for fuzzy description
logics. Rough DLs allow for a less fine-grained treatment of vagueness, which
reflects in a lower complexity of reasoning.

The logic we studied covers the logical basis for the OWL 2 EL profile of
the standard ontology language for the semantic web OWL 2, except for the
expression of concrete domains. We have shown that subsumption of concept
names w.r.t. rough EL++ TBoxes can be decided in polynomial time. This result
was obtained by providing a completion-based algorithm capable of classifying
the TBox in polynomial time. As an added benefit, our approach does not require
including expensive constructors that damage the efficiency of EL++ reasoners.
We do not expect that adding p-admissible concrete domains to this formalism
would negatively affect these complexity results.

Our algorithm is a direct extension from the one presented in [1] in that,
when no rough constructors appear in the TBox, the algorithm behaves simi-
larly. The only difference is in the handling of nominals, where we adapt the
method from [15] to obtain completeness. Unfortunately, the cost of handling
potential rough concepts is to double the space needed.8 This unnecessary cost
can be easily avoided by disallowing applications of rules cr8 to cr21 and rule
cr23 whenever the TBox uses only classical EL++ constructors. Our algorithm
requires maintaining a higher number of completion sets and dealing with a
8 Without the lower approximation constructor, the sets S are never populated.



larger variety of rules. Despite this, the structure of these completion sets and
rules is very similar to the ones used in current implementations of EL++ reason-
ers. Thus, we do not expect that implementing them into a rough EL++ system
would cause much trouble.

These polynomial-time complexity results give strength to the observation
from [22] that rough constructors can be added to classical DLs with no addi-
tional cost in terms of complexity.

We should emphasize that in this paper we have considered only classical sub-
sumption in a rough description logic. There exist other non-standard reasoning
services that consider rough concepts in higher detail, as described in [17]. As
presented in this paper, our completion algorithm is incapable of solving those
reasoning tasks.

As part of our future work, we intend to study the complexity of rough-set-
specific reasoning problems for rough EL++ and, if possible, extend our com-
pletion algorithm to handle them adequately. We also intend to extend our al-
gorithm to deal with concrete domains, hence covering the whole OWL 2 EL
profile. Finally, we intend to implement the system and use it for applications
that require the representation of imprecise knowledge.
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