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Abstract. Ontologies such as the SNOMED Clinical Terms (SNOMED CT),
and the Medical Subject Headings (MeSH) play a major role in life sciences.
Modeling formally the concepts and the roles in this domain is a crucial pro-
cess to allow for the integration of biomedical knowledge across applications.
In this direction we propose a novel methodology to learn formal definitions for
biomedical concepts from unstructured text. We evaluate experimentally the sug-
gested methodology in learning formal definitions of SNOMED CT concepts,
using their text definitions from MeSH. The evaluation is focused on the learning
of three roles which are among the most populated roles in SNOMED CT: As-
sociated Morphology, Finding Site and Causative Agent. Results show that our
methodology may provide an Accuracy of up to 75%. For the representation of
the instances three main approaches are suggested, namely, Bag of Words, word
n-grams and character n-grams.

1 Introduction

The biomedical domain is characterized by an exponential growth in the produced data
volumes, primarily scientific published articles, knowledge and databases, nucleotide
sequences and protein structures. To handle such amounts of data and information, the
notion of organizing the biomedical knowledge using ontologies has been the focus
point of many initiatives and activities in the biomedical domain [6]. The basic motiva-
tion is that since ontologies represent a conceptualization of how things are organized
in reality in the underlying domain, this formal representation may provide an actual
language for the community, with which they can talk about entities and concepts, and
exchange data in the same representation. Moreover, sharing the same conceptualiza-
tion of entities in the biomedical domain allows researchers to communicate new facts
and knowledge referring to the same concepts that may be found with different labels
across several different data sources.

More formally, an ontology is a set of logical axioms which model the reality of
the domain. With the advent of description logics (DL) [2] and OWL’s description
logic flavor OWL DL [www.w3.org/TR/owl-guide/], the task of designing and imple-
menting formally ontologies has become easier, as the ontology engineers may express
the ontology concepts and their relations without losing computational completeness,
and in parallel retain decidability of reasoning systems. In practice DL has become the



leading formalism for representing ontologies, a trend which nowadays is also sup-
ported by many popular ontology editors such as Protégé [protege.stanford.edu/] and
OBO-Edit[oboedit.org/]. Notably, many large biomedical ontologies have adopted this
formalism, such as GALEN [17], which was also the first biomedical ontology to be
developed in DL and the NCI Thesaurus [ncit.nci.nih.gov/].

In particular, SNOMED CT [www.ihtsdo.org/snomed-ct/] has adopted the lightweight
description logic EL++, which allows for tractable reasoning. For several years now,
research on how other biomedical ontologies may be translated in DL has been con-
ducted [9, 21, 12]. Strickingly, the application of formal ontologies in the biomedical
domain has produced interesting results, e.g., the works of Rubin et al. [19] and King et
al. [13] to name a few. In the former work, the authors used the Foundational Model of
Anatomy (FMA) ontology to develop a methodology through which they can automate
reasoning about penetrating injuries. In the latter work the authors presented Adam, a
laboratory robot that can perform independent experiments to test hypotheses and in-
terpret findings without human guidance.

It is, thus, evident that coherent formalization of biomedical ontologies has valuable
applications in the biomedical domain. In this work we present a novel methodology to
learn formal definitions of biomedical concepts from their textual definitions, which can
be considered as a first step towards the automated process of creating formal biomedi-
cal ontologies. We approach the problem from three different perspectives: (i) learning
the Bag of Words (BOW) representation that participate in the expression of each role3

within the textual definitions of concepts, (ii) learning the word n-grams that participate
in the expression of each role, and, (iii) learning the character n-grams that participate
in the expression of each role. The first approach is a standard representation methodol-
ogy in text mining, while the main difference between the other two approaches is that
the former considers the order of words in the definitions and the fact that the words
may form composite terms, i.e., word n-grams, while the latter considers the order of
characters, i.e., character n-grams. Finally, we merge the three representations into one,
by combining their features, in an effort to get the best of all worlds.

The rest of the paper is organized as follows. Section 2 refers to related work pertain-
ing to the generation of formal definitions from unstructured text. Section 3 introduces
formally the problem that we are addressing. Section 4 introduces the methodologies
used, and describes how the textual definitions we are using for our analysis were ob-
tained and annotated. Section 5 presents the results of our experimental evaluation and
discusses the findings, and Section 6 concludes and provides pointers to possible exten-
sions, applications and future work.

2 Related Work

As argued above, formal ontologies are useful, but their creation is a labor intensive
task. Hence, it is desirable to automate aspects of it. Towards the direction of process-
ing automatically text descriptions from biomedical ontologies, there exists much re-
lated work (e.g., [3, 5]); however, most of these approaches assume the existence of an

3 For the remaining of the paper, the words property and role might be used interchangeably to refer to the properties of
the concepts.



ontology to be enriched, while our method is mostly related to approaches that can cre-
ate an ontology from scratch. Under this scope, in the following we refer to approaches
that aim to generate axioms from unstructured text.

2.1 Domain Agnostic

Several approaches use a deep syntactic analysis of natural language definitions [24],
and others apply lingustic patterns [20]. Fuzzy logic components have been also devel-
oped towards the automated generation of logical axioms [16], whilst semantic analysis
and word sense disambiguation have also contributed [1] towards the completion of the
task of generating formal descriptions of entities and relations. Finally, there exist also
running systems which are designed to generate ontologies from text, an example being
Text-To-Onto [15], which, however, in their majority do not take into account axioms
and instances.

2.2 Biomedical Domain

In the biomedical domain little work exists concerning the automated axiom genera-
tion and learning of formal representations [14]. More specifically, regarding MeSH,
to the best of our knowledge there is only one work that attempts its representation
in OWL, but in an indirect way that makes use of CISMeF (Catalogue and Index of
French-speaking Medical Sites) which encapsulates the French version of MeSH [21].
Other works that target the expansion of MeSH, attempt to automatically suggest its
expansion with synonyms and provide alternative definitions for the concepts, but not
in a formalized way [25].

A non-exclusive list of other recent examples of works that attempt to model for-
mally concepts in the biomedical domain are the works by: Boelling et al. [7], who
attempt to model biochemical processes; Chepelev and Dumontier [8], who define the
Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic
chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web
technologies; Stenzhorn et al. [23], who attempt to map clinical documentation to the
formal representation of SNOMED CT; Jupp et al. [11], who introduce Populous, a tool
that may populate ontologies from the analysis of spreadsheets; and, finally, the work
by Hastings et al. [10], who use OWL and description graphs to represent classes of
chemical entities, such as molecules, ions and groups.

Evidently, there is significant research work towards representing the biomedical
knowledge using a formal representation, yet there is a gap regarding the generation
of formal definitions from unstructured biomedical text. Our work addresses this open
challenge by presenting a novel methodology for extracting formal definitions from un-
structured text. We argue that the proposed methodology may aid the time-consuming
and demanding process of ontology generation, evolution and maintenance, by consti-
tuting the first step to transit successfully from unstructured text to the extraction of
formal biomedical concept definitions.



3 The Problem of Learning Formal Definitions

3.1 Formal Definitions in SNOMED CT

SNOMED CT ([22]) is a medical ontology describing concepts such as anatomical
structures, disorders, organisms, and it is becoming adopted by a growing number of
countries worldwide as a reference vocabulary in clinical research [18]. Its underlying
structure is based on formal logics, more specifically on the lightweight Description
Logic EL++. Description Logics (DLs) can express a rich network of different types
of relationships between concepts. For example, using the SNOMED CT vocabulary
one can express that the concept Baritosis is caused by Barium dust by writing:

Baritosis v ∃Causative agent.Barium dust (1)

linking the two concepts with the relationship Causative agent. Other well populated
roles include Finding site, and Associated morphology. Another example from SNOMED
CT is the formal definition of the Fox-Fordyce Disease, in which we can find that its
finding sites are Apocrine Glands and Intraepidermal Apocrine Ducts, its causative
agents are Obstruction and Rupture and its Associative Morphology is Papular Erup-
tions. The aforementioned example may be formally written as follows:

Fox− Fordyce Disease v ∃Finding site.Apocrine glands, (2)
∃Finding site.Intraepidermal apocrine ducts, (3)

∃Causative agent.Obstructure, (4)
∃Causative agent.Rupture, (5)

∃Associative morphology.Papular eruptions (6)

3.2 Problem Formulation

The formal semantics of SNOMED CT are a key advantage, however, they come at
a cost. Adding new concepts to a formal ontology is a tedious, costly and error-prone
process, that needs to be performed manually by specially trained knowledge engineers.
The suggested methodology can provide assistance in this process by automatically ex-
tracting the relations between concepts from text. The approach is based on the assump-
tion that the set of roles (relations) remains relatively stable while the set of concepts
constantly increases. To facilitate the addition of new concept description, we formulate
the following problem: for a given input sentence in natural language that is annotated
with two SNOMED CT concepts decide whether the sentence describes a role between
the two concepts and which role precisely.

More formally, we can express this problem as a classification problem. Let C be the
class label based on which the training of the classifiers takes place. C can be the label of
any role R contained in SNOMED CT. Each example (instance) is a sentence, denoted
with I , which is annotated with SNOMED CT concepts, and for which a set of features
X has been computed, which are explained in Section 4. Thus, I = [X1, ..., XN ].
If I is a sentence which describes a role Ri between two SNOMED CT concepts,



where Ri ∈ R, then I is a positive example for this role, and, hence C = Ri in this
case. Therefore, the problem of role extraction from unstructured text can be seen as
a multi-class classification problem, following the aforementioned representation. In
the following section we explain in detail the methodology of building a data set for
learning three SNOMED CT roles, which are among the most widely populated in
SNOMED CT.

4 Methodology

The methodology comprises three steps: (i) creating a data set with labelled instances
from which the roles can be learned based on a set of features, (ii) representing formally
the instances, for which we explore three different representations, and, (iii) using a
machine learning methodology to train a model in the produced data set following the
suggested instance representation that may recognize any of the labelled roles in an
unseen input sentence. For the purposes of our evaluation this latter step is conducted
on the created data set, using 10−fold cross validation to measure the performance of
the tested methods. Steps (i) and (ii) are explained respectively in Sections 4.1 and 4.2
that follow.

4.1 Generating a Data Set to Learn SNOMED CT Roles

In order to obtain high quality sentences that describe the role between two SNOMED
CT concepts we need to obtain sentences that primarily contain both concepts, and
in turn, describe a relation between the two. For that purpose, we chose to use MeSH
definitions that contain SNOMED CT concepts, since MeSH definitions are produced
manually by medical experts, and, thus, constitute precise, scientifically valid, and high
quality sentences.

The first step for the aforementioned transition is to obtain a mapping between
MeSH and SNOMED CT concepts. Such a mapping exists via the Unified Medical
Language System (UMLS). UMLS defines a Concept Unique Identifier (CUI) for each
of the UMLS concepts. Each CUI may be associated with one or more concepts from
external libraries or thesauri, such as MeSH and SNOMED CT. Analyzing this asso-
ciation, we extracted the CUIs that are associated with both a MeSH and a SNOMED
CT concept, which is interpreted as a mapping between the two concepts. Using the
latest UMLS version (2012AB), we obtained in this manner a total of 21, 461 mappings.

Next, we used the produced mappings to create a high quality data set for learning
roles between SNOMED CT concepts. For the purposes of our data set creation we
focused into three widely populated roles in SNOMED CT, namely Associated Mor-
phology (AM), Causative Agent (CA) and Finding Site (FS). To explain in detail the
process of the data set creation we define the following notation. Let Ri be a SNOMED
CT role, where Ri ∈ AM,CA,FS. Let A and B be two SNOMED CT concepts that
populate Ri such that: A v ∃Ri.B. From all of the MeSH definitions we retained only
those which define any A involved in Ri and we further filtered with the definitions
that contain B. After filtering there were 424 MeSH definitions remaining. For the
purposes of filtering we identified the definitions that contain B through annotating



Role Associated Morphology Causative Agent Finding Site
Number Of Instances 121 95 208

Word Occurrences 938 723 1, 550

Avg. # of Words 7.75 7.61 7.45

# of Distinct Words 433 218 547

Table 1. Description of the produced data set. The data set contains in total 424 instances from
three SNOMED CT roles: Associated Morphology, Causative Agent and Finding Site.

Annotated Sen-
tence

“Baritosis/Baritosis (disorder) is pneumoconiosis caused by barium
dust/Barium Dust (substance).”

SNOMED CT re-
lationship

Baritosis (disorder) — Causative agent — Barium Dust (substance)

Alignment left type between-words right type

disorder “is pneumoconiosis caused by” substance

BoW {is,pneumoconiosis,caused,by}

Word n-grams {is,pneumoconiosis,caused,by,is pneumoconiosis,pneumoconiosis caused,caused by}

Char. n-grams {i,s, ,p,n,e,u,m,o,c,a,d,b,y,is,s , p,pn,ne,eu,um,mo,oc,co,on,ni,io,os,si, c,ca,au,us,se,ed,d , b,by}

Table 2. Text alignment and example of an instance representation using boolean feature values.
For the n-gram representations a value of n = 2 is used.

the sentences with SNOMED CT concepts. For the annotation we used two different
tools: (a) Metamap [metamap.nlm.nih.gov/], which may annotate any text with UMLS
concepts, and, (b) SnomedAnnotator developed in house, which may annotate any text
with SNOMED CT concepts. The two annotators were used sequentially to provide a
broader coverage of annotations; hence, we considered the union of the provided an-
notations from the two tools. Following the aforedescribed steps, the produced dataset
contains 424 instances in total for the three roles (AM, CA and FS). Its details are sum-
marized in Table 1.

4.2 Instance Representation for Learning SNOMED CT Roles

Using the aforedescribed dataset, we can now proceed with providing a description of
how the features can be generated, with which the instances may be represented for
the learning process. For the feature engineering, we use three approaches: (i) Bag of
Words, (ii) Word n-grams, and, (iii) Character n-grams. The three approaches are de-
scribed next, and are summarized with an example in Table 2. The example is drawn
from the formal description presented in Equation 1. In all three approaches, the an-
notated sentences are split in a way such that the words that occur between A and B,
may be isolated and processed. The basic assumption behind this alignment lies in the
hypothesis that each role Ri has a characteristic way of being expressed in natural lan-
guage text, which may be captured by the analysis of the words that occur between
concepts A and B. All three representations have a default feature weight equal to the



value of 1 if they occur in this text, or 0 otherwise. We also expand these representations
to their weighted versions, i.e., instead of boolean representation of the features, a real
value is used.

Bag of Words (BOW) Representation: The representation of text following the Bag
of Words model has been used traditionally both in the fields of information retrieval
and text mining [4]. According to this representation, each distinct term constitutes a
dimension of the collection. More formally, in our case let T be the text between A and
B in an annotated sentence (instance). T is naturally a series of ordered words, e.g.,
T = [w1w2w3...wk]. The BoW representation of this instance will be the unordered set
of all unique words wi ∈ T . Thus, the feature space according to BoW comprises the
union of all unique terms appearing in all text definitions T . Each instance can then be
represented as a set of features Xi : wi. In its simple (unweighed) version, as a value
of each feature we use 0 or 1 (boolean representation), depending on whether Xi = wi

occurs in T (1) or not (0).

Word n-grams Representation: Given T and an assigned value to a parameter n, we
can expand the BoW representation in order to represent each instance with all the pos-
sible word n-grams occurring in T . For the extraction of the word n-grams we are using
a sliding window of search in the ordered words of T . Note also that this representa-
tion includes at least all features of the BoW representation; in fact, if n = 1, the word
1-gram representation is reduced to the BoW representation. Regarding the weight of
each feature, in the simple (unweighed) version, we use a boolean representation, as
previously.

Character n-grams Representation In an analogy to representing instances at a word
n-gram level, we can also represent instances at the character n-gram level. Given again
T and a value for the parameter n, we now examine T as an ordered series of characters,
instead of words. For the extraction of the character n-grams, as in the case of word n-
grams, we are using a sliding window of search in the ordered characters of T , and
we do not exclude space characters. Again the weight of each feature in the simple
(unweighed) version, follows a boolean representation, as previously.

Weighted Feature Representations: In all of the three aforedescribed feature rep-
resentations of instances, we have assumed a boolean representation for the feature
values. Ideally, we would like to have a real value vi for each feature Xi acting as a
weight that would discriminate their flat contribution of the boolean representation. For
this purpose, we utilize the dataset and define a global weight for each feature, which
can be computed always on the part of the dataset kept for training. A local weight
is not a realistic option, as the MeSH definition sentences are usually short, signifi-
cantly shorter than text passages or documents. Hence, for each feature Xi of any of
the aforedescribed representations, we define a weight: vi = P (Xi), where P (Xi) is
the probability of occurrence of feature Xi in the training corpus. However, since the
training corpus contains instances from several roles Ri (class labels), it is important



to discriminate the probabilities of the features’ occurrences per role (class). Hence, to
create the weighted representations of instances following any of the aforementioned
schemes, we create for each feature Xi, k features, where k is the number of all roles
(labels): Xi1...Xik, with the real value of each feature being: vim = PXi|Rm, and
m ∈ [1..k]. Thus, the weight of each feature is the probability of its occurrence in the
respective role, and each instance in the weighted version may be now represented with
k ∗X features.

Combined Feature Representations: A final consideration is the representation of
the instances using the union of all the features that were described in each case. This
potentiality can show whether the synergy of word n-grams and character n-grams
may provide better predicting power for the extraction of roles from unstructured text.
Naturally, this combined representation can be utilized both for the weighted and the
unweighed versions of the aforedescribed instance representations.

5 Experimental Evaluation

The experimental evaluation was conducted on the dataset that was created as explained
in Section 4.1 and summarized in Table 1. As machine learning methodologies we
compared four different state of the art supervised algorithms, namely: (1) Logistic Re-
gression, (2) Support Vector Machines, (3) Multinomial Naive Bayes, and, (4) Random
Forests4. For the evaluation we apply 10−fold cross validation and for performance
measuring we report on the overall accuracy, precision, recall and F-Measure per role
(AM, CA, and FS), and macro-averaged precision, recall and F-Measure over all roles.
The results are reported in Tables 3 and 4 for the unweighed and weighted versions of
the instance representations respectively.

Analyzing the results from the perspective of how difficult it is to learn a model than
can recognize each of the roles, the reported numbers examining both tables suggest that
the easiest role to identify is CA, with an F-Measure that can reach up to 82.9%, the
second easiest is FS, with an F-Measure that can reach up to 80.3%, and the hardest role
is AM, with an F-Measure that can reach up to 65.8%. A second finding when exam-
ining the results from the point of view of the underlying feature representation is that
the character n-grams tend to report better results than the rest representations. More
precisely, the character 3-grams report the top performance in terms of accuracy and
macro-averaged F-Measure (75.71% and 74.91% respectively). In addition, the com-
bined representation does not seem to boost the performance of the character n-grams,
which is probably due to the fact that the word n-grams cannot perform individually
equally well as the character n-grams. However, further ensemble or combination, or
feature selection methodologies will have to be explored in the future in order to as-
sess whether there are feature subsets that can boost the overall performance with the
concurrent reduction of the feature space complexity. Considering the tested classifiers,
though the performance differences in absolute numbers are subtle, SVM tends to pro-
duce the better accuracy and F-Measure in the majority of the cases. Furthermore, in

4 The standard Weka v3.6 platform implementations were used



Method ML Acc. AM CA FS All
P R F P R F P R F P R F

B
oW

LR 68.63 54 72.7 62 70.9 82.1 76.1 82.8 60.1 69.6 69.23 71.63 69.23
SVM 69.1 63.6 34.7 44.9 83.3 78.9 81.1 65.7 84.6 73.9 70.87 66.07 66.63
NB 66.27 57.5 38 45.8 64.8 85.3 73.6 70.3 74 72.1 64.2 65.77 63.83
RF 66.5 50.8 52.1 51.4 72.9 82.1 77.2 73.1 67.8 70.3 65.6 67.33 66.3

W
or

d

2-
gr

am
s LR 70.04 53.8 63.6 58.3 84.3 73.7 78.7 75.8 72.1 73.9 71.3 69.8 70.3

SVM 66.03 54.5 44.6 49.1 73.2 74.7 74 68 74.5 71.1 65.23 64.6 64.73
NB 63.91 52.7 40.5 45.8 59.3 90.5 71.7 73.1 65.4 69 61.7 65.46 62.16
RF 65.56 51.7 50.4 51 82.1 67.4 74 67.1 73.6 70.2 66.96 63.8 65.06

W
or

d

3-
gr

am
s LR 68.86 51.2 72.7 60.1 90.3 68.4 77.8 77.2 66.8 71.6 72.9 69.3 69.83

SVM 66.03 54.9 51.2 53 71.6 76.8 74.1 69.4 69.7 69.5 65.3 65.9 65.53
NB 63.44 53.6 43 47.7 56.4 92.6 70.1 75.4 62 68.1 61.8 65.86 61.96
RF 65.09 50.8 51.2 51 79 67.4 72.7 67.9 72.1 69.9 65.9 63.56 64.53

W
or

d

4-
gr

am
s LR 64.62 51.3 32.2 39.6 78.2 71.6 74.7 64 80.3 71.2 64.5 61.36 61.83

SVM 66.74 53.8 52.9 53.3 73.7 73.7 73.7 71 71.6 71.3 66.16 66.06 66.1
NB 62.5 54.2 43 47.9 54 91.6 68 75.4 60.6 67.2 61.2 65.06 61.03
RF 64.22 49.6 48.8 49.2 87.5 66.3 75.4 65.2 73.1 68.9 67.43 62.73 64.5

C
ha

ra
ct

er

2-
gr

am
s LR 67.68 52.6 57.9 55.1 77.5 65.3 70.9 73.5 74.5 80.3 67.86 65.9 68.76

SVM 74.29 61.3 60.3 60.8 87.2 78.9 82.9 76.3 80.3 78.2 74.93 73.16 73.96
NB 62.97 46.7 35.5 40.4 69.4 71.6 70.5 66.7 75 70.6 60.93 60.7 60.5
RF 67.68 59.6 48.8 53.6 84 66.3 74.1 66 79.3 72.1 69.86 64.8 66.6

C
ha

ra
ct

er

3-
gr

am
s LR 69.33 55 58.7 56.8 75.8 78.9 77.3 75.5 71.2 73.3 68.76 69.6 69.13

SVM 75.23 69.8 61.2 65.2 83.7 75.8 79.6 74.6 83.2 78.6 76.03 73.4 74.46
NB 67.92 58.9 46.3 51.9 68.5 80 73.8 71.6 75 73.2 66.33 67.1 66.3
RF 68.39 64.3 44.6 52.7 73.3 66.3 69.6 68.1 83.2 74.9 68.56 64.7 65.73

C
ha

ra
ct

er

4-
gr

am
s LR 68.39 58.9 52.1 55.3 75.5 74.7 75.1 70 75 72.4 68.13 67.26 67.6

SVM 75 69.1 62.8 65.8 78.4 80 79.2 76.5 79.8 78.1 74.66 74.2 74.36
NB 67.68 58.9 43.8 50.2 66.7 80 72.7 71.8 76 73.8 65.8 66.6 65.56
RF 63.91 58.5 45.5 51.2 69.5 60 64.4 64.1 76.4 69.7 64.03 60.63 61.76

C
om

bi
ne

d

2-
gr

am
s LR 67.45 52.5 43.8 47.7 80.7 74.7 77.6 68.9 77.9 73.1 67.36 65.46 66.13

SVM 75 66.3 57 61.3 84.3 78.9 81.5 75.3 83.7 79.3 75.3 73.2 74.03
NB 65.09 55 27.3 36.5 75.6 71.6 73.5 63.9 84.1 79.3 64.83 61 63.1
RF 66.27 55.6 45.5 50 82.6 60 69.5 66 81.3 72.8 68.06 62.26 64.1

C
om

bi
ne

d

3-
gr

am
s LR 71.46 62.7 52.9 57.4 79.3 76.8 78.1 72.2 79.8 75.8 71.4 69.83 70.43

SVM 74.52 65.3 63.6 64.4 83.9 76.8 80.2 75.8 79.8 77.8 75 73.4 74.13
NB 67.68 58.2 38 46 71.2 77.9 74.4 69.3 80.3 74.4 66.23 65.4 64.93
RF 69.1 58.8 47.1 52.3 82.1 67.4 74 69.1 82.7 75.3 70 65.73 67.2

C
om

bi
ne

d

4-
gr

am
s LR 66.98 57.1 49.6 53.1 74.4 70.5 72.4 68.6 75.5 71.9 66.7 65.2 65.8

SVM 72.87 64.7 62 63.3 76.3 77.9 77.1 75.8 76.9 76.4 72.26 72.26 72.26
NB 66.27 57.5 41.3 48.1 66.1 80 72.4 69.8 74.5 72.1 64.46 65.26 64.2
RF 67.68 57.7 52.9 55.2 82.9 66.3 73.7 67.5 76.9 71.9 69.36 65.36 66.93

Table 3. Overall Accuracy (Acc.), Precision (P), Recall (R) and F-Measure (F) per role and over
all roles for the unweighed representations. Logistic Regression (LR), Support Vector Machines
(SVM), Multinomial Naive Bayes (NB) and Random Forests (RF) are compared.



Method ML Acc. AM CA FS All
P R F P R F P R F P R F

B
oW

LR 66.74 52.5 34.71 41.79 84.33 73.68 78.65 65.51 82.21 72.92 67.45 63.53 64.45
SVM 69.1 59.22 50.41 54.46 70.47 77.89 74 73.14 75.96 74.52 67.61 68.09 67.66
NB 49.05 0 0 0 0 0 0 49.05 100 65.81 16.35 33.33 21.94
RF 63.67 47.41 45.45 46.41 74.19 72.63 73.4 67.97 70.19 69.03 63.19 62.75 62.94

W
or

d

2-
gr

am
s LR 68.16 60.49 40.49 48.51 77.41 75.78 76.59 67.2 80.76 73.36 68.36 65.67 66.15

SVM 70.99 64.44 47.93 54.97 73.58 82.1 77.61 72.36 79.32 75.68 70.12 69.78 69.42
NB 49.05 0 0 0 0 0 0 49.05 100 65.82 16.35 33.33 21.94
RF 66.5 53.26 40.49 46 75.25 76.84 76.04 68.08 76.92 72.23 65.53 64.75 64.75

W
or

d

3-
gr

am
s LR 69.81 64.7 45.45 53.39 77.89 77.89 77.89 68.44 80.28 73.89 70.34 67.87 68.39

SVM 70.28 59.22 50.41 54.46 75.72 82.1 78.78 72.93 76.44 74.64 69.29 69.65 69.29
NB 49.05 0 0 0 0 0 0 49.05 100 65.82 16.35 33.33 21.94
RF 66.98 52.94 44.62 48.43 84.52 74.73 79.32 66.8 76.44 71.3 68.08 65.26 66.35

W
or

d

4-
gr

am
s LR 67.21 59.3 42.14 49.27 76.92 73.68 75.26 66.39 78.84 72.08 67.53 64.88 65.53

SVM 69.1 59.22 50.41 54.46 72.64 81.05 76.61 72.09 74.51 73.28 67.98 68.65 68.11
NB 49.05 0 0 0 0 0 0 49.05 100 65.82 16.35 33.33 21.94
RF 69.1 59.59 48.76 53.63 77.52 72.36 75 69.91 79.32 74.32 69 66.81 67.65

C
ha

ra
ct

er

2-
gr

am
s LR 66.04 53.96 61.98 57.69 65.59 64.21 64.89 75 69.23 72 64.85 65.14 64.86

SVM 73.82 63.39 58.68 60.94 80.9 75.79 78.26 76.23 81.73 78.89 73.5 72.06 72.69
NB 58.25 42.22 47.11 44.53 67.05 62.11 64.48 65.17 62.98 64.06 58.14 57.4 57.69
RF 64.38 56.44 47.11 51.35 68.67 60 64.04 66.25 76.44 70.98 63.78 61.18 62.12

C
ha

ra
ct

er

3-
gr

am
s LR 72.16 60.74 53.71 57.01 80.43 77.89 79.14 74.22 80.28 77.13 71.79 70.62 71.09

SVM 75.71 68.47 62.81 65.52 82.95 76.84 79.78 76.44 82.69 79.45 75.95 74.11 74.91
NB 62.03 48.03 50.41 49.19 65.31 67.37 66.32 69.35 66.35 67.81 60.89 61.37 61.10
RF 68.87 58.49 51.24 54.63 85.71 63.16 72.73 68.55 81.73 74.56 70.91 65.37 67.3

C
ha

ra
ct

er

4-
gr

am
s LR 71.46 59.59 48.76 53.63 82.95 76.84 79.78 72.15 82.21 76.85 71.56 69.27 70.08

SVM 73.11 62.16 57.02 59.48 82.42 78.95 80.65 74.77 79.81 77.21 73.11 71.92 72.44
NB 61.08 47.15 47.93 47.54 64.65 67.37 65.98 67.82 65.87 66.83 59.87 60.39 60.11
RF 65.57 58.42 48.76 53.15 72.22 68.42 70.27 66.09 74.04 69.84 65.57 63.74 64.42

C
om

bi
ne

d

2-
gr

am
s LR 70.05 56.31 47.93 51.79 80.85 80 80.42 71.81 78.37 74.94 69.65 68.76 69.05

SVM 74.59 66.67 57.38 61.67 82.95 76.84 79.78 75 83.65 79.09 70.83 72.62 73.51
NB 58.71 44.62 47.93 46.22 62.37 64.44 63.39 66.33 62.5 64.36 57.77 58.29 57.99
RF 65.48 56.94 33.88 42.49 79.73 62.77 70.24 63.9 85.1 72.99 66.85 60.58 61.9

C
om

bi
ne

d

3-
gr

am
s LR 70.75 60.61 49.59 54.55 77.17 74.74 75.94 72.53 81.25 76.64 70.1 68.52 69.04

SVM 75.47 66.97 60.33 63.48 83.33 78.95 81.08 76.44 82.69 79.45 75.58 73.99 74.67
NB 63.21 49.59 50.41 50 67.37 67.37 67.37 69.42 68.75 69.08 62.12 62.17 62.15
RF 65.8 57.14 42.98 49.06 73.33 57.89 64.71 66.67 82.69 73.82 65.71 61.18 62.53

C
om

bi
ne

d

4-
gr

am
s LR 69.81 59.3 42.15 49.28 80.22 76.84 78.49 69.64 82.69 75.6 69.72 67.22 67.79

SVM 74.06 65.18 60.33 62.66 81.52 78.95 80.21 75.45 79.81 77.57 74.05 73.03 73.48
NB 61.08 47.11 47.11 47.11 64.65 67.37 65.98 67.65 66.35 66.99 59.8 60.27 60.02
RF 66.51 61.05 47.93 53.7 75.61 65.26 70.06 65.59 77.88 71.21 67.41 63.69 64.99

Table 4. Overall Accuracy (Acc.), Precision (P), Recall (R) and F-Measure (F) per role and over
all roles for the weighted representations. Logistic Regression (LR), Support Vector Machines
(SVM), Multinomial Naive Bayes (NB) and Random Forests (RF) are compared.



some cases Naive Bayes tends to select the majority class (cf., Table 4), which means
that further training examples would be needed in these representations for the specific
setup.

Finally, with regards to the contribution of the weighted representations the reported
numbers in Table 4 suggest that this is minor, and, in fact there are several cases where
the weighting of the features drops the performance, compared to the numbers shown
in Table 3. It seems that the selected global weighting is not enough to differentiate the
predictive power of the features. Perhaps, a local weighting of the features would be
able to make a fine-grained differentiation, taking into account the way TF-IDF works
for the term features in typical text mining tasks. However, such an application is not
feasible in our case since the instances are short and the representation is extremely
sparse.

6 Conclusions and Future Work

In this paper we introduced a methodology for learning formal definitions from un-
structured text, formulating the problem from the point of view of learning roles be-
tween concepts. From this perspective the results are encouraging and we showed
that for three widely populated SNOMED CT roles, namely Associated Morphology,
Causative Agent and Finding Site, the task can be achieved with accuracy reaching up
to 75%. On the other hand side, the suggested methodology has limitations and the ex-
perimental results showed that there is definitely room for improvement regarding the
underlying representations. In this direction, the next step is to analyze the cases that the
method fails, and bring into the surface the reasons, as well as the nature of additional
features that might be used to correct these cases. In the same direction, no syntactic
or semantic information was taken into account for the feature engineering, which we
plan to integrate in future work. In addition, the text pre-processing for the preparation
of the dataset can be enriched with more elaborate steps such as: better alignment of
sentences which contain roles inside concept names, or nested roles. Finally, another
direction that we will look into in our future work is the extraction of roles from MeSH
definitions in comparison to employing the existing SNOMED CT roles for learning
formal definitions, motivated by the different nature of MeSH and SNOMED CT.
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