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1 Introduction

Fuzzy Description Logics (FDLs) have been introduced to reason about vague or
imprecise knowledge in application domains. In recent years, reasoning in many
FDLs based on infinitely many values has been proved to be undecidable [3,15]
and systematic studies have been undertaken on this topic [8]. On the other
hand, every finite-valued FDL that has been studied in the recent literature has
not only been proved to be decidable, but even to belong to the same complexity
class as the corresponding crisp DL [6,7,11,12]. A question that naturally arises
is whether the finite-valued fuzzy framework is not more complex (w.r.t. com-
putational complexity) than the crisp-valued formalism in general. A common
opinion is that everything that can be expressed in finite-valued FDLs can be
reduced to the corresponding crisp DLs without any serious loss of efficiency.
Indeed, although some known translations of finite-valued FDLs into crisp DLs
are exponential [5], more efficient reasoning can be achieved through direct al-
gorithms.

The fact that a significant difference in computational complexity between
the crisp and the finite-valued case has not yet been found is mainly due to the
high expressivity of the languages studied so far. Indeed, these languages already
contain significant sources of nondeterminism in the crisp case. Our idea is that
the proof of a possible difference in the complexity between both formalisms has
to be searched in languages that allow for a lower expressivity. In such languages,
the sources of nondeterminism inherent in the classical framework have not yet
shown up, while the same languages may be already affected by the inherent
nondeterminism of the basic logical connectives in the finite-valued framework.
For this purpose, we want to take advantage of the “revival” that simple DL
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languages have experienced in recent times. Due to practical reasons, in the
last years there have been different works on the complexity behavior of simple
languages such as those of the EL and DL-Lite families [2,14]. In [13] it is proven
that the subsumption problem with respect to GCIs in the classical language
EL can be solved in polynomial time, and in [2] further extensions of EL are
investigated.

The question about the computational complexity of EL under a fuzzy seman-
tics has been already considered in [9,10,20]. In [9], the subsumption problem of
EL under infinite Łukasiewicz semantics has been proven coNP-hard. The proof
employs a reduction of the vertex cover problem to fuzzy EL subsumption. Un-
fortunately, this proof cannot be applied when the semantics is based on a finite
Łukasiewicz chain. The reason is that for every fixed finite Łukasiewicz chain,
only finitely many instances of the vertex cover problem can be encoded. On the
other hand, the polynomial algorithm used in [13] to solve the same problem
under crisp semantics cannot be straightforwardly applied to fuzzy EL under a
finite Łukasiewicz chain. This is due to the fact that under this semantics, an EL
TBox cannot always be transformed into an equivalent TBox in normal form.
All these facts make the subsumption problem of EL under finite Łukasiewicz
semantics a suitable candidate for finding a problem that is computationally
different in the crisp and in the finite-valued case.

In this work we are not facing the problem directly. Rather, we consider
propositional Horn clauses, which can be seen as a restricted form of EL⊥-
axioms. Reasoning in both formalisms is polynomial under classical two-valued
semantics [2,18]. We show that for these clauses a finite-valued conjunction op-
erator (in particular under finite Łukasiewicz semantics) can induce additional
nondeterminism. In order to prove this, we reduce the problem of deciding clas-
sical satisfiability of propositional formulas to the satisfiability problem for Horn
clauses with finite-valued constraints.

The consequences of our result are not restricted to the framework of Fuzzy
Description Logics, but they obviously go beyond that. Indeed, our result con-
tributes to achieving a deeper insight into the complexity of reasoning in frag-
ments of finite-valued propositional Łukasiewicz logic. To the best of our knowl-
edge, although there are numerous works on the computational complexity of
finite-valued propositional logics [16,19], this kind of problem has not yet been
dealt with in the literature. Perhaps the closest to our approach is the study of
fuzzy answer set programming. In this context, it has been shown that satisfi-
ability of a set of Horn clauses in restricted form can be decided in polynomial
time [1,4] for the infinite-valued Łukasiewicz t-norm. In a nutshell, the main dif-
ference between the Horn theories considered is that we allow also conjunctions
in the head of a clause while in [1,4] the head can only contain one atom; the
latter is a restriction when using fuzzy semantics.



2 Preliminaries

We now introduce the syntax and semantics of the logical formalism Łn-Horn.
The former is given in terms of implications between conjunctions of literals. In
contrast to classical propositional logic, we need to allow conjunctions also in
the head of an implication due to our many-valued semantics.

This semantics is defined using the operators of finite fuzzy Łukasiewicz
chains. For any natural number n ≥ 2, we consider the set of n truth values
Łn := {0, 1

n−1 , . . . ,
n−2
n−1 , 1} together with the following operators:

– The finite Łukasiewicz t-norm ∗ : Łn × Łn −→ Łn defined by

x ∗ y := max{0, x+ y − 1}.

– The residuum of the finite Łukasiewicz t-norm⇒ : Łn×Łn −→ Łn computed
as

x⇒ y := min{1, 1− x+ y}.

As usual in fuzzy logic, these two operators satisfy the property that x ∗ y ≤ z
iff y ≤ x ⇒ z for all x, y, z ∈ Łn. The algebra 〈Łn, ∗,⇒, 0, 1〉 is called the finite
Łukasiewicz chain of length n.

Definition 1 (syntax).We consider a set V of propositional variables. A fuzzy
Horn clause is of the form

〈x1 & . . . & xk → y1 & . . . & ym ≥ p〉 or (1)

〈x1 & . . . & xk → 0 ≥ p〉, (2)

where k ≥ 0, m ≥ 1, x1, . . . , xk, y1, . . . , ym ∈ V, and p ∈ Łn. A fuzzy Horn
theory is a finite set of fuzzy Horn clauses.

Notice that the conjunction on the left-hand side of a Horn clause might be
empty; that is, a Horn clause could have the form 〈 → y1 & . . . & ym ≥ p〉.

The semantics of this logic is given in terms of valuations mapping each
propositional variable to one of the possible truth degrees.

Definition 2 (semantics). A valuation of the propositional variables is a func-
tion v : V −→ Łn. A fuzzy Horn clause of the form (1) or (2) is satisfied by v
if (

v(x1) ∗ · · · ∗ v(xk)
)
⇒
(
v(y1) ∗ · · · ∗ v(ym)

)
≥ p or(

v(x1) ∗ · · · ∗ v(xk)
)
⇒ 0 ≥ p, respectively,

where the operation of the left-hand side of the implication is evaluated to 1
whenever k = 0. A fuzzy Horn theory H is satisfiable if there is a valuation that
satisfies all fuzzy Horn clauses in H.

We show that satisfiability of fuzzy Horn theories in Łn-Horn is NP-complete, in
contrast to the classical case, where it can be checked in linear time. The upper
bound follows from the fact that one can simply guess a valuation in polynomial
time (O(n · |V|)) and then check satisfaction of all clauses.



3 Hardness

In this section we reduce a variant of the satisfiability problem for (classical)
propositional formulae to satisfiability of Horn theories in Łn-Horn, for any
n ≥ 4. This shows that the problem is NP-hard already for Łukasiewicz chains
of length 4; i.e., for chains containing four membership degrees.

Given a set V of variables, the set of literals is V ∪ {¬x | x ∈ V}; that is,
a literal is either a variable or a negated variable. For a natural number m, an
m-clause is a disjuction of m literals

∨m
i=1 `i. A propositional formula φ is in

m-conjunctive normal form (m-CNF) if it is a conjunction of m-clauses; that
is, if φ is of the form

∧k
i=1 Ci for some k ≥ 0, where each Ci, 1 ≤ i ≤ k is an

m-clause. It is well-known that deciding the satisfiability of m-CNF formulae is
NP-hard, for any m ≥ 3 [17].

Let now n ≥ 4 and define m := n − 1. Given an m-CNF formula φ, we
construct a fuzzy Horn theoryHφ such that φ is satisfiable in Łn-Horn if and only
if Hφ is satisfiable. For the rest of this section, let φ =

∧k
i=1 Ci be an arbitrary

but fixed formula in m-CNF, and var(φ) ⊆ V be the set of all propositional
variables appearing in φ. For each x ∈ var(φ), we employ a fresh variable x′ ∈ V
to simulate the literal ¬x in the fuzzy Horn theory Hφ.

As a first step, we define the Horn theory

H` := {〈x & x′ → 0 ≥ 1
m 〉 | x ∈ var(φ)} ∪

{〈 → x & x′ ≥ m−1
m 〉 | x ∈ var(φ)}.

It is easy to see that any valuation v : V −→ Łn that satisfies the Horn clause
〈 → x & x′ ≥ m−1

m 〉 must be such that v(x) ≥ m−1
m and v(x′) ≥ m−1

m , but
max{v(x), v(x′)} = 1. Moreover, if v also satisfies 〈x & x′ → 0 ≥ 1

m 〉, then
it must be the case that min{v(x), v(x′)} = m−1

m . Overall, this means that for
every x ∈ var(φ) and for all valuations v satisfying H`, exactly one of x, x′ is
evaluated by v to 1, while the other is evaluated to m−1

m . The intuition of this
construction is that we will read v(x) = 1 as evaluating the variable x to true,
and v(x) 6= 1 (and hence v(x′) = 1) as evaluating x to false.

Consider now the translation ρ that maps literals to variables, defined by

ρ(`) :=

{
x if ` = x ∈ V
x′ if ` = ¬x, x ∈ V.

We extend this mapping to m-clauses by setting

ρ
( m∨
i=1

`i

)
:=

m

&
i=1

ρ(`i).

Observe that a valuation satisfies the Horn clause 〈 → &m
i=1 ρ(`i) ≥ 1

m 〉 if and
only if at least one of the conjuncts ρ(`i) is evaluated to 1; this will correspond
to the literal satisfying the clause

∨m
i=1 `i. We thus define the fuzzy Horn theory

Hφ := H` ∪ {〈 → ρ(Ci) ≥ 1
m 〉 | 1 ≤ i ≤ k}.



Theorem 3. The m-CNF formula φ is satisfiable iff the fuzzy Horn theory Hφ
is satisfiable in Łn-Horn.

Proof. If φ is satisfiable, then there is a propositional valuation V satisfying φ.
We use V to define a fuzzy valuation v : V −→ Łn by setting for every x ∈ var(φ)

v(x) :=

{
1 if V (x) = true
m−1
m otherwise,

v(x′) := 2m−1
m − v(x).

By construction, this valuation satisfies all the Horn clauses in H`. Consider now
the Horn clause 〈 → ρ(C) ≥ 1

m 〉 for some m-clause C =
∨m
i=1 `i of φ. Since V is

a model of φ, there exists an i, 1 ≤ i ≤ m such that `i is evaluated to true by V .
By construction, v(ρ(`i)) = 1, and hence v satisfies the Horn clause.

Conversely, let v be a model of Hφ, and consider the valuation V that maps
every variable x to true if v(x) = 1 and to false if v(x) = m−1

m . For any m-clause
in φ, we know that v(ρ(C)) ≥ 1

m . Thus, there is at least one literal ` appearing
in C such that v(ρ(`)) = 1. If ` is a propositional variable x, then v(x) = 1
and V evaluates x to true; hence V satisfies the clause C. Otherwise, we have
that ` = ¬x for some propositional variable x. In this case, v(x) = m−1

m and V
evaluates x to false; i.e., V evaluates ¬x to true, and hence satisfies C. ut

Recall that satisfiability of m-CNF formulae is NP-hard for any m ≥ 3. Using
our construction, since n = m + 1, we obtain that satisfiability of fuzzy Horn
theories in Łn-Horn is also NP-hard for any n ≥ 4, as desired.

Corollary 4. Satisfiability of fuzzy Horn theories in Łn-Horn is NP-complete
for any n ≥ 4.

For n = 4, we obtain the chain Ł4 = {0, 1/3, 2/3, 1} containing four membership
degrees; thus, our results prove hardness for four-or-more-valued Horn logics.
For two-valued Horn logics, which correspond to classical Horn logic, it is well-
known that satisfiability is decidable in linear time [18]. Unfortunately, the case
of three-valued semantics is not covered by our result.

4 Conclusions

In this paper we have shown that increasing the set of membership degrees
over which propositional variables are interpreted may have negative effects on
the complexity of reasoning. Specifically, for Horn theories under finite-valued
Łukasiewicz semantics, the complexity of deciding satisfiability increases from
linear time—for the classical two-valued case—to NP-complete for the four-
valued (or higher) case. To the best of our knowledge, the precise complexity of
satisfiability in three-valued Horn theories is still unknown, but we conjecture
that it is NP-complete in this case as well.



The main motivation for our work is to understand the complexity of reason-
ing in fuzzy extensions of tractable description logics, such as EL. Horn clauses
of the form (1) are expressible in (fuzzy) EL using fuzzy general concept inclu-
sions like 〈A1 u · · · uAk v B1 u · · · uBm ≥ p〉, where Ai, Bj are concept names.
Unfortunately, to express the constant 0 in clauses of the form (2), we need the
additional constructor ⊥. Thus, while our hardness results do not transfer di-
rectly to the case of Łn-EL, our result shows that reasoning in Łn-EL⊥, which
is also polynomial in the two-valued case [2], is NP-hard whenever n ≥ 4.

As future work we plan to continue our task to determine the complexity of
reasoning in fuzzy extensions of description logics. Our first goal is to find tight
complexity bounds for extensions of EL with different fuzzy semantics. We are
also interested in covering the missing case of Horn theories in Ł3-Horn.
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