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Abstract

In the last few years, there has been a large effort for ana-
lyzing the computational properties of reasoning in fuzzy de-
scription logics. This has led to a number of papers study-
ing the complexity of these logics, depending on the cho-
sen semantics. Surprisingly, despite being arguably the sim-
plest form of fuzzy semantics, not much is known about the
complexity of reasoning in fuzzy description logics w.r.t. wit-
nessed models over the Gödel t-norm. We show that in the
logic G-IALC, reasoning cannot be restricted to finitely-
valued models in general. Despite this negative result, we
also show that all the standard reasoning problems can be
solved in exponential time, matching the complexity of rea-
soning in classical ALC.

1 Introduction
Fuzzy Description Logics (DLs) have been studied as a
means of representing vague or imprecise knowledge in a
formal and well-understood manner. As for classical DLs
(Baader et al. 2007), knowledge is expressed with the help
of concepts and roles. What distinguishes fuzzy DLs from
classical DLs are their semantics, which are based on fuzzy
sets. Fuzzy sets associate every element of the domain of
interest with a number from the interval [0, 1], which intu-
itively represents the degree to which the element belongs to
the fuzzy set.

When defining a fuzzy DL, one must also decide how
to interpret the logical constructors, such as conjunction
and implication, to handle the truth degrees. The sim-
plest approach is to use the minimum operator to general-
ize intersection to fuzzy sets. Thus, the degree of mem-
bership of a conjunction is interpreted as the minimum
of the membership degrees of the conjuncts. This oper-
ation, also known as the Gödel t-norm, can be used as
a base to interpret all other logical constructors in a for-
mally justified manner (Klement, Mesiar, and Pap 2000;
Hájek 2001). The quantifiers ∀ and ∃ are interpreted as
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infima and suprema of truth values, respectively. To avoid
issues arising from having infinitely many truth values, rea-
soning in fuzzy DLs is usually restricted to so-called wit-
nessed models (Hájek 2007).

The study of fuzzy DLs underwent a large change in
recent years, after some relatively inexpressive fuzzy DLs
were shown to be undecidable when reasoning w.r.t. gen-
eral ontologies (Baader and Peñaloza 2011a; Baader and
Peñaloza 2011b; Cerami and Straccia 2013). Since then, the
limits of decidability have been explored, yielding very ex-
pressive decidable logics on the one hand (Borgwardt, Dis-
tel, and Peñaloza 2012), and inexpressive undecidable logics
on the other (Borgwardt and Peñaloza 2012). Despite being
widely regarded as the simplest t-norm, surprisingly little
is known about fuzzy DLs based on Gödel semantics. It is
generally believed that—at least w.r.t. witnessed models—
these logics are decidable, but no proof exists to support this
claim. The only results for similar logics restrict reasoning
a priori to a finite subset of [0, 1]; in this case, a reduction
to classical reasoning then yields decidability (Bobillo et al.
2009; Bobillo et al. 2012).

All existing approaches for reasoning in fuzzy DLs de-
pend on limiting models to use only finitely many differ-
ent truth degrees. Indeed, for these approaches to work,
one must either (i) restrict the semantics to a finite set
of truth degrees (Bobillo et al. 2009; Bobillo et al. 2012;
Bobillo and Straccia 2011; Bobillo and Straccia 2013; Borg-
wardt and Peñaloza 2013a; Borgwardt and Peñaloza 2013b;
Straccia 2006); (ii) prove that reasoning can be restricted
to a finite set of degrees (Bobillo, Delgado, and Gómez-
Romero 2008; Borgwardt, Distel, and Peñaloza 2012; Strac-
cia 2001); or (iii) prove that models can be built from a fi-
nite pattern (Stoilos et al. 2007; Straccia and Bobillo 2007).
In all three cases, the proofs of correctness of these al-
gorithms imply the finitely-valued model property: an on-
tology has a model iff it has a model using only finitely
many truth values. Conversely, the proofs of undecidability
(Baader and Peñaloza 2011a; Baader and Peñaloza 2011b;
Borgwardt and Peñaloza 2012; Cerami and Straccia 2013)
construct a model that uses infinitely many truth degrees.
Thus, this finitely-valued model property appears to be a
good indicator of the decidability of a fuzzy DL.

In this paper we study the standard reasoning problems
for the DL G-IALC, a fuzzy extension ofALC based on the
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Gödel semantics w.r.t. witnessed models. First, we show that
this logic does not have the finitely-valued model property.
In fact, we provide very simple consistent ontologies that
only have infinitely-valued models (see Section 3). The ab-
sence of the finitely-valued model property for these logics
is a surprising result in itself, contradicting the common lore
of the field. In contrast, we show in Sections 4 and 5 that
consistency is decidable in exponential time for this logic.
Our algorithm is based on the insight that under Gödel se-
mantics, it is only necessary to know an ordering between
the relevant truth degrees, rather the precise values they take.
This idea has already been used for deciding validity of for-
mulae in propositional Gödel logic (Guller 2012). We then
extend our algorithm to also compute best subsumption de-
grees and best satisfiability degrees w.r.t. an ontology. The
last section provides some pointers to future work.

2 Preliminaries
Before introducing fuzzy description logics, we briefly con-
sider the operators of Gödel fuzzy logic and introduce auxil-
iary notions that will be useful for the reasoning procedures
described in the following sections.

The two basic operators of Gödel fuzzy logic are con-
junction and implication, interpreted by the Gödel t-norm
and residuum, respectively. The Gödel t-norm of two
fuzzy degrees x, y ∈ [0, 1] is defined as minimum func-
tion min(x, y). The residuum ⇒ is uniquely defined by
the equivalence min(x, y) ≤ z iff y ≤ (x ⇒ z) for all
x, y, z ∈ [0, 1], and can be computed as

x⇒ y =

{
1 if x ≤ y,
y otherwise.

For a deeper introduction to t-norms and t-norm-based fuzzy
logics, see (Cintula, Hájek, and Noguera 2011; Hájek 2001;
Klement, Mesiar, and Pap 2000).

A total preorder over a set S is a transitive and total bi-
nary relation .∗ ⊆ S × S. For x, y ∈ S, we write x ≡∗ y
if x .∗ y and y .∗ x. Notice that ≡∗ is an equivalence
relation on S. Similarly, we write x <∗ y if x .∗ y, but not
y .∗ x. By the symbol ./ we denote an arbitrary element of
{=,≥, >,≤, <}, and by ./∗ the corresponding relation in-
duced by the total preorder .∗, i.e. ≡∗, &∗, >∗, .∗, or <∗.
Subscripts are used to distinguish these relations for differ-
ent total preorders over the same carrier set S.

An order structure S is a finite set containing at least the
numbers 0 and 1, together with an involutive unary operation
inv : S → S such that inv(x) = 1− x for all x ∈ S ∩ [0, 1].
For an order structure S, order(S) denotes the set of all total
preorders .∗ over S that
• have 0 and 1 as least and greatest element, respectively,
• preserve the order of real numbers on S ∩ [0, 1], and
• satisfy x .∗ y iff inv(y) .∗ inv(x) for all x, y ∈ S.
Given .∗ ∈ order(S), the following functions on S that
mimic the operators of Gödel fuzzy logic over [0, 1] are well-
defined since .∗ is total:

min∗(x, y) :=

{
x if x .∗ y
y otherwise,

Table 1: Semantics of G-IALC
Constructor Syntax Semantics

top concept > 1
involutive negation ¬C 1− CI(x)
conjunction C uD min(CI(x), DI(x))
implication C → D CI(x)⇒ DI(x)
existential restriction ∃r.C supy∈∆I min(rI(x, y), CI(y))
value restriction ∀r.C infy∈∆I rI(x, y)⇒ CI(y)

res∗(x, y) :=

{
1 if x .∗ y
y otherwise.

It is easy to see that these operators agree with min and⇒
on the set S ∩ [0, 1].

The fuzzy description logic G-IALC is based on concepts
and roles, which are interpreted as (fuzzy) unary and binary
relations, respectively. Given the mutually disjoint sets NI,
NR, and NC of individual, role, and concept names, respec-
tively, G-IALC concepts are built through the rule

C ::= A | > | ¬C | C u C | C → C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR. We call concepts of the form
∃r.C or ∀r.C quantified concepts. The semantics of this
logic is given by means of interpretations. An interpretation
is a pair I = (∆I , ·I), where ∆I is a non-empty domain,
and ·I is a function that maps every a ∈ NI to an element
aI ∈ ∆I , every A ∈ NC to a fuzzy set AI : ∆I → [0, 1],
and every role name r ∈ NR to a fuzzy binary relation
rI : ∆I×∆I → [0, 1]. This function is extended to arbitrary
concepts using the Gödel operators as shown in Table 1.

Notice that we have not introduced an explicit construc-
tor for the residual negation 	x := x ⇒ 0 or disjunction,
as they are expressible using >, ¬, u, and →. The resid-
ual negation is often used in fuzzy logics, but under Gödel
semantics it is much less expressive than the involutive nega-
tion since we have 	0 = 1 and 	x = 0 for all x ∈ (0, 1].

In the literature on fuzzy DLs, interpretations are usu-
ally restricted to be witnessed (Hájek 2005), which means
that existential and value restrictions must be interpreted as
maxima and minima, respectively. More formally, an inter-
pretation I is witnessed if for every existential restriction
∃r.C and every x ∈ ∆I there is a witness y ∈ ∆I such
that (∃r.C)

I
(x) = min(rI(x, y), CI(y)), and similarly for

value restrictions. We also adopt this restriction here, and for
the rest of this paper consider only witnessed interpretations.
For brevity, we call them simply interpretations.

The knowledge of a domain is represented using axioms
that restrict the class of interpretations that are relevant for
the different reasoning tasks.

Definition 1 (axioms). A crisp assertion is either a con-
cept assertion of the form a :C or a role assertion of the
form (a, b):r for a concept C, r ∈ NR, and a, b ∈ NI.
An (order) assertion is of the form 〈α ./ β〉, where α
is a crisp assertion and β is either a crisp assertion or a
value from [0, 1]. An interpretation I satisfies an order as-
sertion 〈α ./ β〉 if αI ./ βI , where (a :C)

I
:= CI(aI),



((a, b):r)
I

:= rI(aI , bI), and qI := q for all q ∈ [0, 1].
An ordered ABoxA is a finite set of order assertions. An in-
terpretation is a model of A if it satisfies all order assertions
in A.

A general concept inclusion (GCI) is an expression of the
form 〈C v D ≥ q〉 for concepts C,D, and q ∈ [0, 1]. An
interpretation I satisfies this GCI if CI(x) ⇒ DI(x) ≥ q
holds for all x ∈ ∆I . A TBox is a finite set of GCIs. An
ontology is a pairO = (A, T ), whereA is an ordered ABox
and T is a TBox. An interpretation is a model of a TBox T
if it satisfies all GCIs in T , and it is a model of an ontology
O = (A, T ) if it is a model of both A and T .

We will usually abbreviate 〈C v D ≥ 1〉 as 〈C v D〉.
Ordered ABoxes are more expressive than ABoxes usually
considered for fuzzy DLs (Straccia 2001) since they allow
to state order relations between concepts. This more general
kind of ABox is better suited for our algorithms.

We denote by sub(O) the closure under negation of the
set of all subconcepts appearing in an ontology O. The con-
cepts ¬¬C and C are equivalent, and we regard them here
as equal, which means that sub(O) is always finite. We fur-
ther denote by VO the closure of the set of all truth degrees
appearing in O, together with 0, 0.5, and 1, under the oper-
ator x 7→ 1− x. Since this operator is involutive, VO is also
always finite. We often denote the elements of VO ⊆ [0, 1]
as 0 = q0 < q1 < · · · < qk = 1.

As with classical DLs, the most basic reasoning task in
G-IALC is to decide whether a given ontology has a (wit-
nessed) model. However, one might also be interested in
computing the degree to which an entailment holds.

Definition 2 (reasoning). An ontology O is consistent if it
has a model. Given p ∈ [0, 1], a concept C is p-satisfiable
w.r.t. O if there is a model I of O and an x ∈ ∆I with
CI(x) ≥ p. The best satisfiability degree of C w.r.t. O is
the supremum over all p such that C is p-satisfiable w.r.t.O.
Furthermore, C is p-subsumed by a concept D w.r.t. O if
all models of O satisfy the GCI 〈C v D ≥ p〉. The best
subsumption degree of C and D w.r.t. O is the supremum
over all p such that C is p-subsumed by D w.r.t. O.

If consistency is decidable, then satisfiability and sub-
sumption can be restricted without loss of generality to
ontologies containing an empty ABox: if O is incon-
sistent, then these two problems are trivial, and if O is
consistent, then the ABox assertions cannot contradict the
p-satisfiability of C, and therefore C is p-satisfiable w.r.t.
O = (A, T ) iff it is p-satisfiable w.r.t. (∅, T ). A similar
argument can be made for subsumptions.

We show in Section 5 that ontology consistency has the
same complexity in G-IALC as in classical ALC: it is
EXPTIME-complete. As a first step, we establish the com-
plexity of consistency for the special case of ontologies
with so-called local ordered ABoxes in Section 4, adapt-
ing an automata-based technique known from classical and
finitely-valued DLs (Baader, Hladik, and Peñaloza 2008;
Borgwardt and Peñaloza 2013a). We later lift these results
to the satisfiability and subsumption problems. But first, we
illustrate why the naı̈ve approach of restricting reasoning to
finitely-valued reasoning cannot work in this logic.

1 2 3
r : 1

2 r : 1
3

A : 1
2 A : 1

3 A : 1
4

Figure 1: The model I1 from Example 3

3 Restricting to Finitely Many Values
It is a simple observation that any set of truth values that
contains 0 and 1 is closed w.r.t. the Gödel connectives. Ow-
ing to this observation, it is common to restrict reasoning
in fuzzy DLs with Gödel semantics to the finitely many
truth values occurring in the ontology (Bobillo et al. 2012;
Bobillo and Straccia 2013). This restriction is also some-
times justified by the “limited precision of computers” (Bo-
billo et al. 2009).

Earlier works have, however, neglected to study whether
the restriction to a fixed finite set of values preserves the
semantics of the logic. We now show that this is not the
case, even for the simple description logics G-AL, which
allows only ∃, ∀, u, and >. and G-IEL, where con-
cepts are built using only ∃, u, →, and >. We show even
stronger results: reasoning in these logics cannot, without
loss of generality, be restricted to finitely-valued models,
i.e. models that only use values from an arbitrary finite sub-
set of [0, 1]. We note that for the related Zadeh semantics,
which differ from the Gödel semantics only in the operator
used for implications, reasoning can be restricted to finitely-
valued models without loss of generality (Straccia 2001;
Bobillo, Delgado, and Gómez-Romero 2008).
Example 3. Let T1 be the G-AL TBox

T1 = {〈∀r.A v A ≥ 1〉, 〈∃r.> v A ≥ 1〉}.
We show that > is not 1-subsumed by A w.r.t. the ontology
O = (∅, T1), but every finitely-valued model of this ontol-
ogy also satisfies 〈> v A ≥ 1〉.

For the former, we construct a model I1 of T1 as follows
(see Figure 1). Let ∆I1 be the set of all natural numbers.
We define AI1(n) := rI1(n, n + 1) := 1

n+1 for all n ∈ N
and rI1(n,m) := 0 if m 6= n + 1. It is straightforward
to check that this is a witnessed model of T1 that violates
〈> v A ≥ 1〉. Thus, > is not 1-subsumed by A w.r.t. O. In
fact, the best subsumption degree of > and A w.r.t. O is 0.

Assume now that there is a witnessed model I of T1 using
only finitely many truth values that violates 〈> v A ≥ 1〉.
Since I uses only finitely many truth values, there exists
an element y ∈ ∆I for which AI(y) is minimal, that is,
AI(y) ≤ AI(x) holds for all x ∈ ∆I . Furthermore, since
I violates 〈> v A ≥ 1〉 there must be some x0 ∈ ∆I

satisfying AI(x0) < 1. In particular, this yields AI(y) < 1.
As I is witnessed, there must exist a z ∈ ∆I such that

(∀r.A)
I
(y) = rI(y, z) ⇒ AI(z). The first axiom of T1

entails rI(y, z)⇒ AI(z) ≤ AI(y) < 1, and in particular

rI(y, z) > AI(z). (1)

The second axiom from T1 yields

rI(y, z) = min(rI(y, z), 1) ≤ (∃r.>)
I
(y) ≤ AI(y). (2)
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Figure 2: The model I2 from Example 4

From (1) and (2) we obtain AI(y) > AI(z), contradicting
the minimality of AI(y). We have thus shown that a wit-
nessed model of T1 with only finitely many truth values can-
not violate 〈> v A ≥ 1〉. That is, T1 entails 〈> v A ≥ 1〉
when reasoning is restricted to finite sets of values.

It is thus not possible to restrict reasoning in G-AL to only
finitely-valued models without changing the consequences.
A similar example shows that this also holds for G-IEL.
Example 4. Consider the TBox

T2 = {〈B v A〉, 〈A→B v B〉, 〈> v ∃r.>〉, 〈∃r.A v B〉}.
As in Example 3, one can show that > is not 1-subsumed
by A w.r.t. O := (∅, T2), but every finitely-valued model
of O satisfies 〈> v A ≥ 1〉. A witnessed model I2 of T2

can be built as follows (see Figure 2). Let ∆I2 be the set of
all natural numbers. Set AI2(n) := 1

n+1 , BI2(n) := 1
n+2 ,

rI2(n, n + 1) := 1 for all n ∈ N, and rI2(n,m) := 0 if
m 6= n + 1. It is straightforward to check that this is in-
deed a witnessed model of T2 that violates 〈> v A ≥ p〉
for every p > 0; in particular for p = 1. Using a proof
by contradiction similar to Example 3 it can be shown that
no witnessed model of T2 with only finitely many truth val-
ues can violate 〈> v A ≥ 1〉. All details can be found in
(Borgwardt, Distel, and Peñaloza 2013).

Recall that a (fuzzy) DL has the finite model property if
every consistent ontology has a model with finite domain. A
simple consequence of the last two examples is that G-AL
and G-IEL do not have the finite model property. Indeed,
each Ii is a model of the ontology ({〈a :A = 0.5〉}, Ti) if we
interpret the individual name a as aIi := 1. This shows that
these ontologies are consistent. However, any finite model I
of Ti uses only finitely many truth degrees. As shown in the
examples, such an interpretation must satisfyAI(x) = 1 for
all x ∈ ∆I , and hence violate the assertion 〈a :A = 0.5〉.
We thus obtain the following result.
Theorem 5. G-AL and G-IEL do not have the finite model
property or the finitely-valued model property.

The lack of the finitely-valued model property implies
that some of the standard techniques used for reasoning in
fuzzy DLs cannot be directly applied to any logic that con-
tains G-AL or G-IEL. For example, termination of the
tableaux-based approach (Stoilos et al. 2007; Straccia and
Bobillo 2007) relies on the existence of finitely many types
that can describe domain elements by specifying the mem-
bership degrees for all relevant concepts, while any sound
and complete reduction to crisp reasoning (Bobillo, Del-
gado, and Gómez-Romero 2008; Bobillo et al. 2012) implies
the finitely-valued model property.

Moreover, all known undecidability proofs for fuzzy DLs
(Baader and Peñaloza 2011a; Baader and Peñaloza 2011b;

1 2 3

0 < A < 1

0 < A < r ≤ A↑ < 1

0 < A < r ≤ A↑ < 1

Figure 3: An abstract description of I1 from Example 3

Borgwardt and Peñaloza 2012; Cerami and Straccia 2013)
are based on the fact that one can enforce models to have
infinitely many values. One could thus be inclined to be-
lieve that consistency in G-IALC is also undecidable. In the
rest of this paper, we show that this is not the case, provid-
ing EXPTIME automata-based algorithms that decide con-
sistency, subsumption, and satisfiability.

4 Deciding Local Consistency
In this section, we consider only the special case where the
ontology O = (A, T ) is such that A is a local ordered
ABox, which means that it contains no role assertions and
uses only a single individual name a. In Section 5, we ex-
tend the approach to handle arbitrary ontologies.

The algorithm is based on the observation that the axioms
and the semantics of the constructors only introduce restric-
tions on the order of the values that models can assign to
concepts, not on the values themselves. For example, an in-
terpretation I satisfies an assertion 〈a :(A → B) = p〉 iff
AI(aI) > BI(aI) and BI(aI) = p. Thus, rather than
building a model directly, we first create an abstract repre-
sentation of a model that encodes for each domain element
only the order between concepts.

Example 6. Consider again the TBox T1 from Example 3.
When trying to construct a model violating 〈> v A ≥ 1〉,
we start with a domain element satisfying the restriction
that the value of A is strictly smaller than 1 (see Figure 3).
The second axiom implies that the degree of any outgoing
r-connection is bounded by the value of A. Moreover, the
first axiom states that the witness of ∀r.A must satisfy A to
a degree strictly smaller than the value of the r-connection,
and thus strictly smaller than the original value of A.

This yields an abstract description of two domain ele-
ments in terms of order relations between values of concepts
at the current node and the parent node (denoted by a sub-
script ↑). Applying the same argument to the new element
yields another element with the same restrictions. In order
to construct a model, it is easy to see that the value ofA at all
considered elements has to be strictly greater than 0—once
the value of A is 0, there can be no successors with smaller
values for A. Note that it suffices to consider order rela-
tions between concepts of neighboring elements, which are
directly connected by some role to a degree greater than 0.

As in this example, we use the subscript ↑ to refer to val-
ues of the parent node in the tree-like model that we will
construct. We additionally use a new element λ to represent
the degree of the role connection from the parent node.

Definition 7 (order structure U). We define the set
sub↑(O) := {C↑ | C ∈ sub(O)} and the order structure



U := VO ∪ sub(O)∪ sub↑(O)∪{λ,¬λ} with the involutive
operation inv given by inv(λ) := ¬λ, inv(C) := ¬C, and
inv(C↑) := (¬C)↑ for all C ∈ sub(O).

For convenience, we extend the notation of sub↑(O) to
the elements of VO by setting q↑ := q for all q ∈ VO.

Using total preorders from order(U), we can now de-
scribe the relationships between all the subconcepts from O
and the truth degrees from VO at given domain elements.
One can think of such a preorder as the type of a domain el-
ement, from which a tree-shaped interpretation can be built,
represented by a Hintikka tree.

In the following, let n be the number of quantified con-
cepts in sub(O) and φ an arbitrary but fixed bijection be-
tween the set of all quantified concepts in sub(O) and
{1, . . . , n}. This bijection specifies which quantified con-
cept is witnessed by which successor in the Hintikka tree.
For a given role r ∈ NR, we denote by Φr the set of all in-
dices φ(E) where E ∈ sub(O) is a quantified concept of
the form ∃r.C or ∀r.C. Our algorithm will try to decide the
existence of an n-ary infinite tree whose nodes are labeled
with preorders from order(U), such that the semantics of the
constructors and all the axioms in O are preserved.
Definition 8 (Hintikka ordering). A Hintikka ordering is a
total preorder .H ∈ order(U) that satisfies the following
conditions for every C ∈ sub(O):
• C = > implies C ≡H 1,
• if C = D1 uD2, then C ≡H minH(D1, D2),
• if C = D1 → D2, then C ≡H resH(D1, D2).
This preorder is compatible with the TBox T if for every
GCI 〈C v D ≥ q〉 ∈ T we have resH(C,D) &H q. It is
compatible with A if for every order assertion 〈a :C ./ q〉
or 〈a :C ./ a :D〉 in A, we have C ./H q or C ./H D,
respectively.

The conditions imposed on Hintikka orderings ensure that
they preserve the semantics of all the propositional construc-
tors. For every quantified concept E, we still need to ensure
the existence of a witness. This is achieved through φ and
the following Hintikka condition.
Definition 9 (Hintikka condition). The Hintikka condition
consists of the following requirements for an (n+1)-tuple
(.0,.1, . . . ,.n) of Hintikka orderings:
• for every 1 ≤ i ≤ n and all α, β ∈ VO ∪ sub(O), we have
α .0 β iff α↑ .i β↑, where q↑ := q for all q ∈ VO;

• for every ∃r.D ∈ sub(O), we have
– (∃r.D)↑ ≡i mini(λ,D) for i = φ(∃r.D), and
– (∃r.D)↑ &i mini(λ,D) for all i ∈ Φr; and

• for every ∀r.D ∈ sub(O), we have
– (∀r.D)↑ ≡i resi(λ,D) for i = φ(∀r.D), and
– (∀r.D)↑ .i resi(λ,D) for all i ∈ Φr.

A Hintikka tree for O is an infinite n-ary tree,1 where ev-
ery node u is associated with a Hintikka ordering .u com-
patible with T , such that:

1We will use words from {1, . . . , n}∗ to denote the nodes in an
infinite n-ary tree.

ε

1 2

11 12

0 <ε ∀r.A
<ε A ≡ε ∃r.> ≡ε (∀r.A)↑
<ε λ ≡ε A↑ ≡ε (∃r.>)↑
<ε 0.5 <ε 1 ≡ε > ≡ε >↑

.1=.ε

.2=.ε
.11=.ε

.12=.ε

Figure 4: A Hintikka tree for Example 3

• every tuple (.u,.u1, . . . ,.un) satisfies the Hintikka
condition, and

• .ε is compatible with A.

For instance, Figure 4 shows a Hintikka tree for the
TBox T1 from Example 3 and the ABoxA = {〈a :A < 1〉}.
Notice that every node is labeled with the same preorder and
the tree is invariant w.r.t. the choice of φ. We now show that
the existence of a Hintikka tree for an ontologyO character-
izes the consistency of O.

Proposition 10. If there is a Hintikka tree forO, thenO has
a model.

Proof. Given a Hintikka tree, we construct a model in two
steps. In the first step, we recursively define a function
v : U × {1, . . . , n}∗ → [0, 1] satisfying the following condi-
tions for all nodes u and all α, β ∈ U :

(P1) for all values q ∈ VO we have v(q, u) = q,
(P2) v(α, u) ≤ v(β, u) iff α .u β,
(P3) v(inv(α), u) = 1− v(α, u),
(P4) for all C ∈ sub(O) and all i ∈ {1, . . . , n}

v(C, u) = v(C↑, ui).

In the second step, we construct, with the help of this func-
tion v, an interpretation Iv = ({1, . . . , n}∗, ·Iv ) satisfying
CIv (u) = v(C, u) for all concepts C and all nodes u, and
show that Iv is indeed a model of O.

Step 1 The function v is defined recursively, starting from
the root node ε. Let U/≡ε be the set of all equivalence
classes of ≡ε. Then .ε yields a total order on U/≡ε. In
particular, [0]ε <ε [q1]ε <ε [q2]ε <ε · · · <ε [qk−1]ε <ε [1]ε
holds if we extend <ε to U/≡ε in the obvious way. For an
equivalence class [α]ε, we set inv([α]ε) := [inv(α)]ε, which
is well-defined since .ε is an element of order(U).

We first define an auxiliary function ṽε : U/≡ε → [0, 1].
For all q ∈ VO we define ṽε([q]ε) := q. It remains to de-
fine a value for all equivalence classes that do not contain a
value from VO. Notice that due to the minimality of [0]ε and
maximality of [1]ε every such class must be strictly between
[qi]ε and [qi+1]ε for two adjacent truth degrees qi, qi+1. For



every i ∈ {0, . . . , k − 1}, let νi be the number of equiv-
alence classes that are strictly between [qi]ε and [qi+1]ε.
We assume that these classes are denoted by Eij such that
[qi]ε <ε E

i
1 <ε E

i
2 <ε · · · <ε Eiνi <ε [qi+1]ε. We then

define values qi < si1 < si2 < · · · < siνi < qi+1 as

sij := qi + j
νi+1 (qi+1 − qi) (3)

and set ṽε(Eij) := sij for every j, 1 ≤ j ≤ νi. Finally, we
define v(α, ε) := ṽε([α]ε) for all α ∈ U . This construction
ensures that (P1) and (P2) hold at the node ε. To see that (P3)
is also satisfied, note that 1−qi+1 and 1−qi are also adjacent
in VO and have exactly the inverses inv(Eij) between them
in reversed order.

For the recursion step, assume that we have already de-
fined v for a node u, such that (P1)–(P3) are satisfied at u
and let i ∈ {1, . . . , n}. We initialize the auxiliary func-
tion ṽui : U/≡ui → [0, 1] by setting ṽui([q]ui) := q for all
q ∈ VO and ṽui([C↑]ui) := v(C, u) for all C ∈ sub(O).
To see that this is well-defined, consider [C↑]ui = [D↑]ui,
i.e. C↑ ≡ui D↑. From the Hintikka condition, it follows that
C ≡u D, and from (P2) at u we obtain v(C, u) = v(D,u).
A similar argument can be used to show that [q]ui = [C↑]ui
implies v(q, u) = v(C, u). For the remaining equivalence
classes, we can use a construction analogous to the case
for ε by considering the two unique neighboring equivalence
classes that contain an element of VO ∪ sub↑(O). We now
define v(α, ui) := ṽui([α]ui). This construction ensures
that (P1)–(P3) hold at ui, and that (P4) holds for u.

Step 2 We define the interpretation Iv over the domain
{1, . . . , n}∗ as follows. For every concept name A ∈ NC

and all domain elements u, we set

AIv (u) :=

{
v(A, u) if A ∈ sub(O),
0 otherwise.

For every role name r ∈ NR and all domain elements u, we
likewise define

rIv (u,w) :=

{
v(λ, ui) if w = ui with i ∈ Φr,
0 otherwise.

Finally, we define aIv := ε for the individual name a. It can
be shown by induction on the structure of C that

CIv (u) = v(C, u) for all C ∈ sub(O), u ∈ {1, . . . , n}∗
(4)

holds. In this proof by induction

• the base case follows trivially from the definition of Iv ,
• the cases >, C uD, and C → D follow from (P1), (P2),

and Definition 8,
• the case ¬C follows from (P3), and
• Definition 9 and (P4) entail the cases ∃r.C and ∀r.C.

For details, we refer the reader to the technical report (Borg-
wardt, Distel, and Peñaloza 2013).

It remains to show that Iv is indeed a model of O. For
every 〈a :C ./ q〉 ∈ A, the Hintikka tree satisfies C ./ε q,
and thus we obtain from (4), (P1), and (P2):

CIv (aIv ) = v(C, ε) ./ v(q, ε) = q,

and similarly for assertions of the form 〈a :C ./ a :D〉.
Now, let u ∈ {1, . . . , n}∗ be a domain element of Iv and

〈C v D ≥ q〉 ∈ T . Since p ∈ VO and .u is compatible
with T , it must hold that

q .u resu(C,D) =

{
1 if C .u D
D if D <u C

(P2)
=

{
1 if v(C, u) ≤ v(D,u)

D if v(D,u) < v(C, u).

Thus, (P1) and (P2) yield

q = v(q, u) ≤
{
v(1, u) if v(C, u) ≤ v(D,u)

v(D,u) if v(D,u) < v(C, u)

= v(C, u)⇒ v(D,u)

=CIv (u)⇒ DIv (u).

Conversely, every model can be transformed into a Hin-
tikka tree. The idea is to unravel the model into an infinite
tree, and then abstract from the specific values by just con-
sidering the ordering between the elements of U . This idea
is formalized next.
Proposition 11. If O has a model, then there is a Hintikka
tree for O.

Proof. Let I be a model of O. We use this model to
guide the construction of a Hintikka tree for O. During
this construction, we will recursively generate a mapping
g : {1, . . . , n}∗ → ∆I specifying which domain elements
correspond to the nodes in the tree. This mapping will sat-
isfy the following condition for all α, β ∈ VO ∪ sub(O) and
all u ∈ {1, . . . , n}∗:

(P5) α .u β iff αI(g(u)) ≤ βI(g(u)),

where we define qI(x) := q for all q ∈ VO and x ∈ ∆I .
We first consider the root node ε of the tree. Recall that

the ontology contains a local ordered ABox, using only the
individual name a. We define g(ε) := aI and the Hintikka
ordering .ε as follows for all α, β ∈ VO ∪ sub(O):

α .ε β iff αI(aI) ≤ βI(aI).

We extend this order to the elements in sub↑(O) ∪ {λ,¬λ}
arbitrarily, in such a way that for all α, β ∈ U we have
α .ε β iff inv(β) .ε inv(α). It is straightforward to show
that .ε is an element of order(U) satisfying (P5) at ε, and
that furthermore .ε is a Hintikka ordering that is compatible
with T (cf. (Borgwardt, Distel, and Peñaloza 2013)).

Assume now that we have already defined g(u) and .u
for a node u ∈ {1, . . . , n}∗ such that (P5) is satisfied. For all
i ∈ {1, . . . , n}, we now construct .ui in such a way that the
tuple (.u,.u1, . . . ,.un) satisfies the Hintikka condition.
For brevity, we consider only the case that i = φ(∃r.D);



value restrictions can be handled using similar arguments.
Since I is witnessed, there must be a yi ∈ ∆I such that
(∃r.D)

I
(g(u)) = min(rI(g(u), yi), D

I(yi)). We define
g(ui) := yi, and .ui for all α, β ∈ U by

α .ui β iff αI(g(ui)) ≤ βI(g(ui)), (5)

where we abbreviate λI(g(ui)) := rI(g(u), g(ui)) and
(C↑)

I
(g(ui)) := CI(g(u)) for all concepts C ∈ sub(O).

It is clear that .ui behaves on VO ∪ sub↑(O) exactly as .u
does on VO ∪ sub(O). Following the same arguments used
for the root node, it is easy to show that .ui is actually a
Hintikka ordering compatible with T .

We show the Hintikka condition for (.u,.u1, . . . ,.un).
For the case i = φ(∃r.D), the construction of g yields that
(∃r.D)

I
(g(u)) = min

(
rI(g(u), g(ui)), DI(g(ui))

)
, and

thus

((∃r.D)↑)
I(g(ui)) = min

(
λI(g(ui)), DI(g(ui))

)
.

Using (5), we obtain (∃r.D)↑ ≡ui minui(λ,D) as required.
Furthermore, for all i ∈ Φr, it holds that

(∃r.D)
I
(g(u)) = sup

y∈∆I
min

(
rI(g(u), y), DI(y)

)
≥ min

(
rI(g(u), g(ui)), DI(g(ui))

)
,

which similarly shows (∃r.D)↑ &ui minui(λ,D). Similar
arguments apply to the value restrictions in sub(O).

Finally, for every 〈a :C ./ q〉 ∈ A, we have CI(aI) ./ q,
and thus C ./ε q by definition of .ε, and similarly for as-
sertions of the form 〈a :C ./ a :D〉. Hence, the tree defined
by .u, for u ∈ {1, . . . , n}∗, is a Hintikka tree for O.

Propositions 10 and 11 show that Hintikka trees character-
ize consistency of an ontology with a local ordered ABox. In
other words, deciding the existence of a Hintikka tree for O
suffices for deciding consistency of O. We now turn our at-
tention to the former problem, and show that it can be solved
in exponential time in the size of O. For this, we construct
a looping tree automaton whose runs correspond exactly to
such Hintikka trees. Thus, the automaton accepts a non-
empty language iff the ontology O is consistent.

A looping automaton over n-ary (infinite) trees is a tu-
ple A = (Q, I,∆), consisting of a non-empty set Q of
states, a subset I ⊆ Q of initial states, and a transition re-
lation ∆ ⊆ Qn+1. A run of this automaton is a mapping
ρ : {1, . . . , n}∗ → Q such that (i) ρ(ε) ∈ I , and (ii) for all
u ∈ {1, . . . , n}∗, we have

(
ρ(u), ρ(u1), . . . , ρ(un)

)
∈ ∆.

A is non-empty iff it has a run.
Definition 12. The Hintikka automaton for an ontology O
is the looping tree automaton AO := (QO, IO,∆O), where
• QO is the set of all Hintikka orderings compatible with T ,
• IO := {.H ∈ QO | .H is compatible with A}, and
• ∆O contains all tuples from Qn+1

O that satisfy the Hin-
tikka condition.
It is easy to see that the runs of AO are exactly the Hin-

tikka trees for O. Observe that the number of Hintikka or-
derings for O is bounded by 2|U|

2

and the cardinality of

U = VO ∪ sub(O)∪ sub↑(O)∪ {λ,¬λ} is linear in the size
of O. Likewise, the arity n of the automaton is bounded by
|sub(O)|, which is linear in the size of O. Thus, the size of
the Hintikka automaton AO is exponential in the size of O.
Since (non-)emptiness of looping tree automata can be de-
cided in polynomial time (Vardi and Wolper 1986), we ob-
tain overall an EXPTIME-decision procedure for consistency
of ontologies with local ordered ABoxes in G-IALC. Note
that concept satisfiability in classical ALC is already EXP-
TIME-hard w.r.t. general TBoxes (Schild 1991), and hence
our complexity bounds are tight.
Theorem 13. Consistency in G-IALC w.r.t. local ordered
ABoxes and witnessed models is EXPTIME-complete.

In the following section, we remove the restriction to local
ordered ABoxes and show that consistency remains EXP-
TIME-complete in the general case.

5 Reducing Consistency to Local Consistency
To decide consistency of G-IALC-ontologies containing
more that one individual name, we adapt a technique from
classical DLs known as pre-completion (Hollunder 1996).
Intuitively, we try to build a forest-shaped model that satis-
fies the ontology. This model is composed of a finite set of
trees, one for each individual name appearing in the ABox,
whose roots can be arbitrarily interconnected due to the pres-
ence of role assertions. As before, rather than explicitly
building such models, we use total preorders to represent
them in an abstract manner.

The idea of pre-completion is to extend the input ABox to
a full specification of each individual, and then decide con-
sistency w.r.t. the local ABoxes associated with each individ-
ual name. In our setting, this amounts to extending the input
ABox to a total preorder .A. This preorder represents the
nucleus of a model of the ontology. To extend this to a full
model, we check an (ordered) local consistency condition
for each of the individual names, and use .A to combine
the resulting tree-shaped interpretations.

More formally, let O = (A, T ) be an ontology, and let
Ind(A) denote the set of individual names occurring in A.
We define the order structure

W := VO ∪ {a :C | a ∈ Ind(A), C ∈ sub(O)}
∪ {(a, b):r | a, b ∈ Ind(A), r occurs in O}
∪ {(a, b):¬r | a, b ∈ Ind(A), r occurs in O}

with inv(a :C) := a :¬C and inv((a, b):r) := (a, b):¬r.
Definition 14 (pre-completion). A pre-completion of A
w.r.t. T is a total preorder .A ∈ order(W) such that:
a) for every a ∈ Ind(A) and all C ∈ sub(O),
• if C = >, then a :C ≡A 1,
• if C = D1 uD2, then a :C ≡A minA(a :D1, a :D2),
• if C = D1 → D2, then a :C ≡A resA(a :D1, a :D2);

b) for every ∃r.C ∈ sub(O) and a, b ∈ Ind(A), we have

a :∃r.C &A minA((a, b):r, b :C);

c) for every ∀r.C ∈ sub(O) and a, b ∈ Ind(A), we have

a :∀r.C .A resA((a, b):r, b :C);



d) for all a ∈ Ind(A) and every GCI 〈C v D ≥ q〉 ∈ T ,
we have resA(a :C, a :D) &A q; and

e) for every assertion 〈α ./ β〉 ∈ A, we have α ./A β.

This definition generalizes the local conditions of Defini-
tions 8 and 9 to handle several named individuals simulta-
neously. One difference is that we do not create witnesses
for the quantified concepts here. This will be taken care of
by testing the following local ordered ABoxes for consis-
tency. For a pre-completion .A and a ∈ Ind(A), we define
the local ordered ABox Aa as the set of all order assertions
〈α ./ β〉 over a and sub(O) satisfying α ./A β.2 That is,

Aa := {〈a :C ./ q〉 | C ∈ sub(O), q ∈ VO, a :C ./A q}
∪ {〈a :C ./ a :D〉 | C,D ∈ sub(O), a :C ./A a :D}.

Lemma 15. An ontology O = (A, T ) is consistent iff there
is a pre-completion .A of A w.r.t. T such that, for every
a ∈ Ind(A), the ontology Oa := (Aa, T ) is consistent.

Proof. Let I be a model of O. We define the total pre-
order .A by setting α .A β if and only if αI ≤ βI , where
we set ((a, b):¬r)I := 1 − rI(aI , bI). A straightforward
argument that .A is a pre-completion of A w.r.t. T and that
I is a model of (Aa, T ) for each a ∈ Ind(A) can be found
in (Borgwardt, Distel, and Peñaloza 2013).

Conversely, let .A be a pre-completion of A w.r.t. T and
each (Aa, T ) be consistent. By Proposition 11, there are
Hintikka trees for (Aa, T ) that consist of Hintikka order-
ings .au for all u ∈ {1, . . . , n}∗, where n is the number
of existential and value restrictions in sub(O). Similar to
the proof of Proposition 10, we first construct a function
v : W ∪ (Ind(A)× U × {1, . . . , n}∗)→ [0, 1] such that

• for all values q ∈ VO, we have v(q) = q,
• for all α, β ∈ W , we have v(α) ≤ v(β) iff α .A β,
• for all α ∈ W , we have v(inv(α)) = 1− v(α),
• for every C ∈ sub(O) and all a ∈ Ind(A), we have
v(a :C) = v(a,C, ε),

• for all u ∈ {1, . . . , n}∗ and all a ∈ Ind(A),
– for all values q ∈ VO, we have v(a, q, u) = q,
– for all α, β ∈ U , we have v(a, α, u) ≤ v(a, β, u) iff
α .au β,

– for all α ∈ U , we have v(a, inv(α), u) = 1−v(a, α, u),
and

– for all concepts C ∈ sub(O) and all i ∈ {1, . . . , n},
we have that v(a,C, u) = v(a,C↑, ui).

We will then use this function to define a model of O.
Using the technique from the proof of Proposition 10,

we first define v on W . On the set W/≡A of all equiv-
alence classes of ≡A, we define an auxiliary function
ṽA : W/≡A → [0, 1], by setting ṽA([q]A) := q for each
q ∈ VO and treating the remaining equivalence classes as
in (3). We then define v(α) := ṽA([α]A) for all α ∈ W .

For each a ∈ Ind(A), C ∈ sub(O), and q ∈ VO, we now
set v(a,C, ε) := v(a :C) and v(a, q, ε) := q. The values of

2It actually suffices to consider only ./ ∈ {>,=, <}.

v(a, α, ε) for elements α ∈ sub↑(O) ∪ {λ,¬λ} are irrele-
vant for the desired properties and can be fixed arbitrarily,
as long as we have v(a, α, ε) ≤ v(a, β, ε) iff α .aε β and
v(a, inv(α), ε) = 1− v(a, α, u) for all α, β ∈ U , e.g. using
the technique in (3). The definition of v(a, α, u) can now
proceed as in the proof of Proposition 10 based on the Hin-
tikka trees for (Aa, T ). This construction ensures that v has
the desired properties.

We now define the interpretation I as follows:

• ∆I := Ind(A)× {1, . . . , n}∗,
• aI := (a, ε) for each a ∈ Ind(A),
• AI(a, u) := v(a,A, u) for all a ∈ Ind(A), concept

names A ∈ sub(O), and u ∈ {1, . . . , n}∗, and
• rI((a, u), (b, u′)) :=

v(a, λ, ui) if a = b and u′ = ui with i ∈ Φr,
v((a, b):r) if u = u′ = ε and r occurs in O,
0 otherwise.

The interpretation of the remaining individual and concept
names is irrelevant and can be fixed arbitrarily. As in Propo-
sition 10, we can show by induction on the structure of C
that CI(a, u) = v(a,C, u) holds for all C ∈ sub(O),
a ∈ Ind(A), and u ∈ {1, . . . , n}∗ by induction on the struc-
ture of C. The claim for>, ¬C, CuD, and C → D follows
as before from Condition a) of Definition 14 and the fact that
each .au is a Hintikka ordering.

Consider now an existential restriction ∃r.C ∈ sub(O)
and the domain element (a, ε) for some a ∈ Ind(A). By
the Hintikka condition and the induction hypothesis, we
have v(a,∃r.C, u) = min

(
rI((a, ε), (a, i0)), CI(a, i0)

)
,

where i0 = φ(∃r.C), as in the proof of Proposition 10.
Likewise, v(a,∃r.C, u) ≥ min(rI((a, ε), (a, i)), CI(a, i))
holds for all i ∈ Φr. Finally, for each b ∈ Ind(A), we have
v(a,∃r.C, u) ≥ min(rI((a, ε), (b, ε)), CI(b, ε)) by Condi-
tion b) of Definition 14. Since (a, ε) does not have any other
relevant r-successors, this shows the claim for ∃r.C at (a, ε).
At the other domain elements, it can be shown as for Propo-
sition 10. Similar arguments apply to all ∀r.C ∈ sub(O).

Finally, the fact that I is actually a model of O is ensured
by compatibility of all Hintikka orderings with T and Con-
ditions e) and d) of Definition 14.

Note that the cardinality of order(W) is exponential in the
size of O, and all elements of order(W) are of polynomial
size. We can thus enumerate order(W), check for each el-
ement whether it satisfies Definition 14 in polynomial time,
and then execute the polynomially many local consistency
tests as described by Lemma 15. This yields the following
complexity result.

Corollary 16. Consistency in G-IALC w.r.t. witnessed
models is EXPTIME-complete.

6 Satisfiability and Subsumption
We have described an exponential-time algorithm for de-
ciding consistency of G-IALC ontologies. We now direct
our attention at other standard reasoning problems in fuzzy



DLs; namely, deciding concept satisfiability and subsump-
tion, and computing the best truth degrees to which these
hold. Recall from Section 2 that for these reasoning prob-
lems we can restrict our attention to ontologies with an
empty ABox.

Let now O = (∅, T ) be an ontology. It is easy to see that
p-subsumption and p-satisfiability w.r.t.O can be reduced in
polynomial time to consistency w.r.t. local ordered ABoxes.
More precisely, for any two concepts C,D and p ∈ [0, 1],
• C is p-satisfiable w.r.t. O iff ({〈a :C ≥ p〉}, T ) is consis-

tent, and
• C is p-subsumed byD w.r.t.O iff ({〈a :C→D < p〉}, T )

is inconsistent,
where a is an arbitrary individual name. We thus obtain the
following result from Theorem 13.
Theorem 17. Satisfiability and subsumption in G-IALC
w.r.t. witnessed models are EXPTIME-complete.

We now shift our attention to the problems of comput-
ing the best satisfiability and subsumption degrees. We first
show that the local consistency checks required for deciding
p-satisfiability and p-subsumption only depend on the posi-
tion of p relative to the values occurring in T , but not on the
precise value of p. To prove this, we again use the preorders
of the previous sections, and in particular Hintikka trees.
Lemma 18. Let p, p′ ∈ (qi, qi+1) for two adjacent values
qi, qi+1 ∈ VO, andC be a concept. Then ({〈a :C ./ p〉}, T )
is consistent iff ({〈a :C ./ p′〉}, T ) is consistent.

Proof. By Propositions 10 and 11, both consistency condi-
tions are equivalent to the existence of Hintikka trees, albeit
over different order structures. We denote by Up the order
structure from Definition 7 over Vp := VO ∪ {p, 1 − p},
and by Up′ the one over Vp′ := VO ∪ {p′, 1− p′}. Observe
that the bijection ι : Vp → Vp′ that simply maps p to p′ and
1 − p to 1 − p′ and leaves the other values as they are, can
be extended to a bijection between Up and Up′ by defining it
as the identity on all elements outside of Vp. Furthermore, it
is compatible with the involutive operator inv, i.e. we have
ι(inv(α)) = inv(ι(α)) for all α ∈ Up.

It is straightforward to extend this bijection to Hintikka
orderings and Hintikka tress (see (Borgwardt, Distel, and
Peñaloza 2013) for details). Then there is a Hintikka tree for
({〈a :C ./ p〉}, T ) iff there is one for ({〈a :C ./ p′〉}, T ),
which concludes the proof.

This shows that subsumption betweenC andD or satisfia-
bility ofC either holds for all values in an interval (qi, qi+1),
or for none of them.
Corollary 19. For any two concepts C and D, the best sub-
sumption degree of C and D w.r.t. O and the best satisfia-
bility degree of C w.r.t. O are always in VO.

Since the best subsumption degree p ofC andD is always
a subsumption degree, i.e. C is p-subsumed by D, it suffices
to check subsumption w.r.t. the values from VO in order to
determine the best subsumption degree. Thus, we only have
to execute linearly many (in-)consistency checks to compute
the best subsumption degree.

However, it is possible that C is p-satisfiable for every
p ∈ (qi, qi+1), but not qi+1-satisfiable. Therefore, we check
satisfiability for all values qi+qi+1

2 . The best satisfiability
degree is then the largest qi+1 for which this check succeeds
(or 0 if it never succeeds). Again, this means that we have
to execute linearly many consistency checks to compute the
best satisfiability degree.

By combining these reductions with Theorem 13, we ob-
tain the following results.

Corollary 20. In G-IALC w.r.t. witnessed models, best sub-
sumption and satisfiability degrees can be computed in ex-
ponential time.

7 Conclusions
We have studied the standard reasoning problems for the
fuzzy DL G-IALC w.r.t. witnessed model semantics. The
contributions of the paper are twofold. First, we have
shown that, contrary to popular belief, reasoning in this
logic cannot be restricted to reasoning over finitely-valued
models without affecting its consequences. In particu-
lar, this implies that the algorithms based on maintain-
ing only a finite set of truth degrees (Bobillo et al. 2009;
Bobillo et al. 2012) are incomplete for the general seman-
tics. Moreover, this also implies that the logic does not have
the finite model property, and hence standard tableau-based
approaches cannot terminate (Bobillo and Straccia 2007;
Straccia and Bobillo 2007; Bobillo, Bou, and Straccia 2011).

As the second contribution of the paper, we showed that
all standard reasoning problems can be solved in exponen-
tial time. To achieve this, we developed an automaton that
decides the existence of a Hintikka tree, which is an abstract
representation of a model of a given ontology. The main in-
sight needed for this approach is that we can abstract from
the precise truth degrees assigned by an interpretation, and
focus only on their ordering.

As an added benefit, in our formalism we can express or-
der assertions like 〈ana :Tall > bob :Tall〉, intuitively stating
that Ana is taller than Bob, without needing to specify the
precise degrees to which ana and bob belong to the concept
Tall. This is similar to concrete domains (Lutz 2003), which
can even compare values at unnamed domain elements. But
concrete domains allow only for atomic attributes, whereas
order assertions can also contain complex concepts.

As we have developed an automata-based algorithm,
it is natural to ask whether previous automata-based ap-
proaches (Baader, Hladik, and Peñaloza 2008; Borgwardt
and Peñaloza 2013a) can be adapted to this setting in order
to handle the expressivity up to G-ISCHI, or provide better
upper-bounds for reasoning w.r.t. acyclic TBoxes. We will
study this problem in future work. We also plan to adapt
these ideas into a tableau-based algorithm which is more
suitable for implementation.

Recall that we have restricted our framework to reasoning
w.r.t. witnessed models only. Indeed, this restriction is fun-
damental for our proof of Proposition 11. One open question
is whether consistency of G-IALC ontologies w.r.t. general
models is still decidable. We conjecture that it is, and in fact
remains in EXPTIME.
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Peñaloza, R. 2013a. The complexity of lattice-based fuzzy
description logics. J. Data Semant. 2(1):1–19.
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[Hájek 2001] Hájek, P. 2001. Metamathematics of Fuzzy
Logic (Trends in Logic). Springer.
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