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Abstract. We study the fuzzy extension of the Description Logic FL0

with semantics based on the Gödel t-norm. We show that subsumption
w.r.t. a finite set of primitive definitions, using greatest fixed-point se-
mantics, can be characterized by a relation on weighted automata. We
use this result to provide tight complexity bounds for reasoning in this
logic, showing that it is PSpace-complete. If the definitions do not con-
tain cycles, subsumption becomes co-NP-complete.

1 Introduction

Description logics (DLs) are used to describe the knowledge of an application
domain in a formally well-defined manner [3]. The basic building blocks are
concepts that intuitively describe a set of elements of the domain, and roles,
which model binary relations over the domain. The expressivity of DLs is given
by a set of constructors that are used to build complex concepts from so-called
concept names, and is usually chosen to end up in decidable fragments of first-
order predicate logic.

Knowledge about domain-specific terminology can be expressed by different
kinds of axioms. For example, the concept definition

Father
.
= Human uMale u ∃hasChild.>

is used to determine the extension of the concept name Father in terms of other
concept names (Human, Male) and roles (hasChild). In contrast, a primitive con-
cept definition like

Human v Mammal u Biped

only bounds the interpretation of a concept name from above. Sometimes, one
restricts (primitive) definitions to be acyclic, which means that the definition of
a concept name cannot use itself (directly or indirectly via other definitions). In
general concept inclusions (GCIs) such as

∀hasParent.Human v Human

? Partially supported by the DFG under grant BA 1122/17-1, in the research train-
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one can relate arbitrary complex expressions. These axioms are collected into
so-called TBoxes, which can be either acyclic (containing acyclic definitions),
cyclic (containing possibly cyclic definitions), or general (containing GCIs). To
interpret cyclic TBoxes, several competing semantics have been proposed [19].

Different DLs vary in the choice of constructors allowed for building complex
concepts. For example, the small DL EL uses the constructors top (>), conjunc-
tion (u), and existential restriction (∃r.C for a role r and a concept C). We
consider here mainly FL0, which has top, conjunctions, and value restrictions
(∀r.C). The DL ALC combines all the above constructors with negation (¬C).

Fuzzy description logics have been introduced as extensions of classical DLs
capable of representing and reasoning with vague or imprecise knowledge. The
main idea behind these logics is to allow for a set of truth degrees, beyond the
standard true and false; usually, the real interval [0, 1] is considered. In this way,
one can allow fuzzy concepts like Tall to assign an arbitrary degree of tallness to
each individual, instead of simply classifying them into tall and not tall. Based
on Mathematical Fuzzy Logic [13], a so-called t-norm defines the interpretation
of conjunctions, and determines the semantics of the other constructors as well.
The three main continuous t-norms are Gödel (G), Łukasiewicz (Ł), and Prod-
uct (Π). The Zadeh semantics is another popular choice that is based on fuzzy
set theory [25].

The area of fuzzy DLs recently experienced a shift, when it was shown that
reasoning with GCIs easily becomes undecidable [4,7,9]. To guarantee decidabil-
ity in fuzzy DLs, one can (i) restrict the semantics to consider finitely many truth
degrees [8]; (ii) allow only acyclic or unfoldable TBoxes [5,22]; or (iii) restrict to
Zadeh or Gödel semantics [6,17,20,21].

In the cases where the Gödel t-norm is used, the complexity of reasoning is
typically the same as for its classical version, as shown for subsumption w.r.t.
GCIs in G-EL, which is polynomial [17,20], and G-ALC, ExpTime-complete [6].
This latter result implies that subsumption in G-FL0 with general TBoxes is also
ExpTime-complete since it is ExpTime-hard already in classical FL0 [2]. On
the other hand, if TBoxes are restricted to contain only (cyclic) definitions, then
deciding subsumption in classical FL0 under the greatest fixed-point semantics is
known to be PSpace-complete [1]. For acyclic TBoxes, the complexity reduces to
co-NP-complete [18]. In this paper, we analyze reasoning in the Gödel extension
of this logic.

Consider the cyclic definition of a tall person with only tall offspring (Toto):

Toto v Person u Tall u ∀hasChild.Toto

Choosing greatest fixed-point semantics is very natural in this setting, as it
requires to always assign the largest possible degree for an individual to belong
to Toto. Otherwise, Toto could simply assign degree 0 to all individuals, which
is clearly not the intended meaning.

We show that the PSpace-upper bound for reasoning in the classical case also
applies to this fuzzy DL. To prove this, we characterize the greatest fixed-point
semantics of G-FL0 by means of [0, 1]-weighted automata. We then show that



reasoning with these automata can be reduced to a linear number of inclusion
tests between unweighted automata, which can be solved using only polynomial
space [11]. For the case of acyclic TBoxes, our reduction yields acyclic automata
and thus implies a co-NP upper bound, again matching the complexity of rea-
soning in classical FL0.

2 Preliminaries

We first introduce some basic notions of lattice theory, which we use later to
define the greatest fixed-point semantics in our fuzzy DL. For a more compre-
hensive overview on the topic, refer to [12]. Afterwards, we introduce fuzzy logics
based on Gödel semantics, which are studied in more detail in [10,13,16].

2.1 Lattices, Operators, and Fixed-Points

A lattice is an algebraic structure (L,∨,∧) with two commutative, associative
and idempotent binary operations ∨ (supremum) and ∧ (infimum) that dis-
tribute over each other. It is complete if suprema and infima of arbitrary subsets
S ⊆ L, denoted by

∨
x∈S x and

∧
x∈S x respectively, exist. In this case, the

lattice is bounded by the greatest element 1 :=
∨
x∈L x and the least element

0 :=
∧
x∈L x. Lattices induce a natural partial ordering on the elements of L

where x ≤ y iff x ∧ y = x.
One common complete lattice used in fuzzy logics (see e.g. [10,13]) is the

interval [0, 1] with the usual order on the real numbers. Other complete lattices
can be constructed as follows. Given a complete lattice L and a set S, the set LS
of all functions f : S → L is also a complete lattice, if infimum and supremum
are defined component-wise. More precisely, for any two f1, f2 ∈ LS , we define
f1 ∨ f2 for all x ∈ S as (f1 ∨ f2)(x) := f1(x) ∨ f2(x). If we similarly define the
infimum, we obtain a lattice with the order f1 ≤ f2 iff f1(x) ≤ f2(x) holds for
all x ∈ S. It is easy to verify that infinite infima and suprema can then also
be computed component-wise. We are particularly interested in operators on
complete lattices L and their properties.

Definition 1 (fixed-point). Let L be a complete lattice. A fixed-point of an
operator T : L → L is an element x ∈ L such that T (x) = x. It is the greatest
fixed-point of T if for any fixed-point y of T we have y ≤ x.

The operator T is monotone if for all x, y ∈ L, x ≤ y implies T (x) ≤ T (y).
It is downward ω-continuous if for every decreasing chain x0 ≥ x1 ≥ x2 ≥ . . .
in L we have T (

∧
i≥0 xi) =

∧
i≥0 T (xi).

If it exists, the greatest fixed-point of T is unique and denoted by gfp(T ).
It is easy to verify that every downward ω-continuous operator is also mono-

tone. By a fundamental result from [24], every monotone operator T has a great-
est fixed-point. If T is downward ω-continuous, then gfp(T ) corresponds to the
infimum of the decreasing chain 1 ≥ T (1) ≥ T (T (1)) ≥ · · · ≥ T i(1) ≥ . . . [15].
Proposition 2. If L is a complete lattice and T a downward ω-continuous op-
erator on L, then gfp(T ) =

∧
i≥0 T

i(1).



2.2 Gödel Fuzzy Logic

Our fuzzy DL is based on the well-known Gödel semantics for fuzzy logics,
which is one of the main t-norm-based semantics used in Mathematical Fuzzy
Logic [10,13] over the standard interval [0, 1]. The Gödel t-norm is the binary
minimum operator on [0, 1]. For consistency, we use the lattice-theoretic notation
∧ instead of min. An important property of this operator is that it preserves
arbitrary infima and suprema on [0, 1], i.e.

∧
i∈I(xi ∧ x) =

(∧
i∈I xi

)
∧ x and∨

i∈I(xi ∧ x) =
(∨

i∈I xi
)
∧ x for any index set I and elements x, xi ∈ [0, 1] for

all i ∈ I. In particular, this means that the Gödel t-norm is monotone in both
arguments. The residuum of the Gödel t-norm is the binary operator ⇒G on
[0, 1] defined for all x, y ∈ [0, 1] by

x⇒G y :=

{
1 if x ≤ y,
y otherwise.

It is a fundamental property of a t-norm and its residuum that for all values
x, y, z ∈ [0, 1], x∧ y ≤ z iff y ≤ x⇒G z. As with the Gödel t-norm, its residuum
preserves arbitrary infima in its second component. However, in the first com-
ponent the order on [0, 1] is reversed.

Proposition 3. For any index set I and values x, xi ∈ [0, 1], i ∈ I, we have

x⇒G

(∧
i∈I

xi

)
=
∧
i∈I

(x⇒G xi) and
(∨
i∈I

xi

)
⇒G x =

∧
i∈I

(xi ⇒G x).

This shows that the residuum is monotone in the second argument and antitone
in the first argument. The following reformulation of nested residua in terms of
infima will also prove useful.

Proposition 4. For all values x, x1, . . . , xn ∈ [0, 1], we have(
(x1 ∧ · · · ∧ xn)⇒G x

)
=
(
x1 ⇒G . . . (xn ⇒G x) . . .

)
.

Proof. Both values are either x or 1, and they are 1 iff one of the operands xi,
1 ≤ i ≤ n, is smaller than or equal to x. ut

3 Fuzzy FL0

The fuzzy description logic G-FL0 has the same syntax as classical FL0. The
difference lies in the interpretation of G-FL0-concepts.

Definition 5 (syntax). Let NC and NR be two non-empty, disjoint sets of con-
cept names and role names, respectively. Concepts are built from concept names
using the constructors > (top), CuD (conjunction), and ∀r.C (value restriction
for r ∈ NR).

A (primitive concept) definition is of the form 〈A v C ≥ p〉, where A ∈ NC,
C is a concept, and p ∈ [0, 1]. A (cyclic) TBox is a finite set of definitions.
Given a TBox T , a concept name is defined if it appears on the left-hand side
of a definition in T , and primitive otherwise.



In contrast to the treatment of classical FL0 in [1], we permit several primitive
definitions instead of only one (full) definition of the form 〈A .

= C1u· · ·uCn ≥ p〉
for each concept name. This allows us to specify fuzzy degrees pi for each of the
conjuncts Ci independently. An acyclic TBox is a finite set of definitions without
cyclic dependencies between the defined concept names.

We use the expression ∀w.C with w = r1r2 . . . rn ∈ N∗R to abbreviate the
concept ∀r1.∀r2. . . .∀rn.C. We also allow w = ε, in which case ∀w.C is simply C.
We denote the set of concept names occurring in the TBox T by NTC , the set
of defined concept names in NTC by NTD , and the set of primitive concept names
in NTC by NTP . Likewise, we collect all role names occurring in T into the set NTR .

Definition 6 (semantics). An interpretation is a pair I = (∆I , ·I), where
∆I is a non-empty set, called the domain of I, and the interpretation func-
tion ·I maps every concept name A to a fuzzy set AI : ∆I → [0, 1] and every
role name r to a fuzzy binary relation rI : ∆I × ∆I → [0, 1]. This function is
extended to concepts by setting >I(x) := 1, (C uD)I(x) := CI(x)∧DI(x), and
(∀r.C)I(x) :=

∧
y∈∆I (rI(x, y)⇒G C

I(y)) for all x ∈ ∆I .
The interpretation I satisfies (or is a model of) the definition 〈A v C ≥ p〉

if AI(x) ⇒G C
I(x) ≥ p holds for all x ∈ ∆I . It satisfies (or is a model of) a

TBox if it satisfies all its definitions.

For an interpretation I = (∆, ·I), w = r1r2 . . . rn ∈ N∗R, and elements x0, xn ∈ ∆,
we set wI(x0, xn) :=

∨
x1,...,xn−1∈∆(rI1 (x0, x1)∧· · ·∧rIn(xn−1, xn)), and can thus

treat ∀w.C like an ordinary value restriction with

(∀w.C)I(x0) :=
∧
xn∈∆

(wI(x0, xn)⇒G C
I(xn))

=
∧

x1,...,xn∈∆

((
rI1 (x0, x1) ∧ · · · ∧ rIn(xn−1, xn)

)
⇒G C

I(xn)
)

=
∧

x1,...,xn∈∆

(
rI1 (x0, x1)⇒G . . . (r

I
n(xn−1, xn)⇒G C

I(xn)) . . .
)

= (∀r1. . . .∀rn.C)I(x0)

for all x0 ∈ ∆ (see Propositions 3 and 4).
It is convenient to consider TBoxes in normal form. The TBox T is in normal

form if all definitions in T are of the form 〈A v ∀w.B ≥ p〉, where A,B ∈ NC,
w ∈ N∗R, and p ∈ [0, 1], and there are no two definitions 〈A v ∀w.B ≥ p〉,
〈A v ∀w.B ≥ p′〉 with p 6= p′. Every TBox can be transformed into an equivalent
TBox in normal form, as follows. First, we distribute the value restrictions over
the conjunctions.

Lemma 7. For every r ∈ NR, concepts C,D, and interpretation I = (∆, ·I), it
holds that (∀r.(C uD))I = (∀r.C u ∀r.D)I .



Proof. For every x ∈ ∆, we have

(∀r.(C uD))I(x) =
∧
y∈∆

(
rI(x, y)⇒G (CI(y) ∧DI(y))

)
=
∧
y∈∆

(
(rI(x, y)⇒G C

I(y)) ∧ (rI(x, y)⇒G D
I(y))

)
=
( ∧
y∈∆

(rI(x, y)⇒G C
I(y))

)
∧
( ∧
y∈∆

(rI(x, y)⇒G D
I(y))

)
= (∀r.C u ∀r.D)I(x)

by Proposition 3. ut

Thus, we can equivalently write the right-hand sides of the definitions in T in the
form ∀w1.B1u· · ·u∀wn.Bn, where wi ∈ N∗R and Bi ∈ NC∪{>}, 1 ≤ i ≤ n. Since
∀r.> is equivalent to >, we can remove all conjuncts of the form ∀w.> from
this representation. After this transformation, all the definitions in the TBox
are of the form 〈A v ∀w1.B1 u · · · u ∀wn.Bn ≥ p〉 with Bi ∈ NC, 1 ≤ i ≤ n, or
〈A v > ≥ p〉. The latter axioms are tautologies, and can hence be removed from
the TBox without affecting the semantics.

It follows from Proposition 3 that an interpretation I satisfies the definition
〈A v ∀w1.B1 u · · · u ∀wn.Bn ≥ p〉 iff it satisfies 〈A v ∀wi.Bi ≥ p〉, 1 ≤ i ≤ n.
Thus, the former axiom can be equivalently replaced by the latter set of axioms.

After these steps, the TBox contains only axioms of the form 〈A v ∀w.B ≥ p〉
with A,B ∈ NC, satisfying the first condition of the definition of normal form.
Suppose now that T contains the axioms 〈A v ∀w.B ≥ p〉 and 〈A v ∀w.B ≥ p′〉
with p > p′. Then T is equivalent to the TBox T \ {〈A v ∀w.B ≥ p′〉}, i.e. the
weaker axiom can be removed. It is clear that all of these transformations can
be done in polynomial time in the size of the original TBox.

Concept definitions can be seen as a restriction of the interpretation of the
defined concepts, depending on the interpretation of the primitive concepts. We
use this intuition and consider greatest fixed-point semantics. The following con-
struction is based on the classical notions from [1].

A primitive interpretation is a pair J = (∆, ·J ) as in Definition 6, except that
·J is only defined on NR and NTP . Given such a J , we use functions f ∈ ([0, 1]∆)N

T
D

to describe the interpretation of the remaining (defined) concept names. Recall
that these functions form a complete lattice. In the following, we use the ab-
breviation LTJ := ([0, 1]∆)N

T
D for this lattice. Given a primitive interpretation J

and a function f ∈ LTJ , the induced interpretation IJ,f has the same domain
as J and extends the interpretation function of J to the defined concepts names
A ∈ NTD by taking AIJ,f := f(A). The interpretation of the remaining concept
names, i.e. those that do not occur in T , is fixed to 0.

We can describe the effect that the axioms in T have on LTJ by the operator
T TJ : LTJ → LTJ , which is defined as follows for all f ∈ LTJ , A ∈ NTD , and x ∈ ∆:

T TJ (f)(A)(x) :=
∧

〈AvC≥p〉∈T

(p⇒G C
IJ,f (x)).



This operator computes new values of the defined concept names according to
the old interpretation IJ,f and their definitions in T .

We are interested in using the greatest fixed-point of T TJ , for some primitive
interpretation J , to define a new semantics for TBoxes T in G-FL0. Before being
able to do this, we have to ensure that such a fixed-point exists.

Lemma 8. Given a TBox T and a primitive interpretation J = (∆, ·J ), the
operator T TJ on LTJ is downward ω-continuous.

Proof. Consider a decreasing chain f0 ≥ f1 ≥ f2 ≥ . . . of functions in LTJ . We
use the abbreviations f :=

∧
i≥0 fi, I := IJ,f , and Ii := IJ,fi for all i ≥ 0, and

have to show that T TJ (f) =
∧
i≥0 T

T
J (fi) holds.

First, we prove by induction on the structure of C that CI =
∧
i≥0 C

Ii holds
for all concepts C built from NTR and NTC , where

∧
is defined as usual over the

complete lattice [0, 1]∆.
For A ∈ NTP , by the definition of IJ,f and IJ,fi we have AI = AJ = AIi for

all i ≥ 0, and thus AI = AJ =
∧
i≥0A

Ii . For A ∈ NTD , we have

AI = f(A) =
( ∧
i≥0

fi

)
(A) =

∧
i≥0

fi(A) =
∧
i≥0

AIi

by the definition of IJ,f and IJ,fi and the component-wise ordering on the
complete lattice LTJ .

For concepts of the form CuD, by the induction hypothesis and associativity
of ∧ we have

(CuD)I = CI ∧DI =
( ∧
i≥0

CIi
)
∧
( ∧
i≥0

DIi
)

=
∧
i≥0

(CIi ∧DIi) =
∧
i≥0

(CuD)Ii .

Consider now a value restriction ∀r.C. Using Proposition 3 we get for all x ∈ ∆,

(∀r.C)I(x) =
∧
y∈∆

(rI(x, y)⇒G C
I(y))

=
∧
y∈∆

(
rI(x, y)⇒G

( ∧
i≥0

CIi(y)
))

=
∧
y∈∆

∧
i≥0

(rIi(x, y)⇒G C
Ii(y)) =

( ∧
i≥0

(∀r.C)Ii
)

(x)

by the induction hypothesis and the component-wise ordering on [0, 1]∆.
Using this, we can now prove the actual claim of the lemma. For all A ∈ NTD

and all x ∈ ∆, we get, using again Proposition 3 and the previous claim,

T TJ (f)(A)(x) =
∧

〈AvC≥p〉∈T

(p⇒G C
I(x))

=
∧

〈AvC≥p〉∈T

(
p⇒G

( ∧
i≥0

CIi(x)
))



=
∧

〈AvC≥p〉∈T

∧
i≥0

(p⇒G C
Ii(x)) =

( ∧
i≥0

T TJ (fi)
)

(A)(x)

by the definition of T TJ and the component-wise ordering on LTJ . ut

By Proposition 2, we know that gfp(T TJ ) exists and is equal to
∧
i≥0(T TJ )i(1),

where 1 is the greatest element of the lattice LTJ that maps all defined concept
names to >J . In the following, we denote by gfpT (J ) the interpretation IJ,f for
f := gfp(T TJ ). Note that I := gfpT (J ) is actually a model of T since for every
〈A v C ≥ p〉 ∈ T and every x ∈ ∆ we have

AI(x) = f(A)(x) = T TJ (f)(A)(x) =
∧

〈AvC′≥p′〉∈T

(p′ ⇒G C
′I(x)) ≤ p⇒G C

I(x),

and thus p ∧AI(x) ≤ CI(x), which is equivalent to p ≤ AI(x)⇒G C
I(x).

We can now define the reasoning problem in G-FL0 that we want to solve.

Definition 9 (gfp-subsumption). An interpretation I is a gfp-model of a
TBox T if there is a primitive interpretation J such that I = gfpT (J ). Given
A,B ∈ NC and p ∈ [0, 1], A is gfp-subsumed by B to degree p w.r.t. T (written
T |=gfp 〈A v B ≥ p〉), if for every gfp-model I of T and every x ∈ ∆I we have
AI(x)⇒G B

I(x) ≥ p. The best gfp-subsumption degree of A and B w.r.t. T is
the supremum over all p such that T |=gfp 〈A v B ≥ p〉.

Let now T be a TBox and T ′ the result of transforming T into normal form as
described before. It is easy to verify that the operators T TJ and T T

′

J coincide, and
therefore the gfp-models of T are the same as those of T ′. To solve the problem
of deciding gfp-subsumptions, it thus suffices to consider TBoxes in normal form.

4 Characterizing Subsumption Using Finite Automata

To decide gfp-subsumption between concept names, we employ an automata-
based approach following [1]. However, here we use weighted automata.

Definition 10 (WWA). A weighted automaton with word transitions (WWA)
is a tuple A = (Σ,Q, q0,wt, qf ), where Σ is a finite alphabet of input symbols,
Q is a finite set of states, q0 ∈ Q is the initial state, wt : Q × Σ∗ × Q → [0, 1]
is the transition weight function with the property that its support

supp(wt) := {(q, w, q′) ∈ Q×Σ∗ ×Q | wt(q, w, q′) > 0}

is finite, and qf ∈ Q is the final state.
A finite path in A is a sequence π = q0w1q1w2 . . . wnqn, where qi ∈ Q

and wi ∈ Σ∗ for all i ∈ {1, . . . , n}, and qn = qf . Its label is the finite word
`(π) := w1w2 . . . wn. The weight of π is wt(π) :=

∧n
i=1 wt(qi−1, wi, qi). The

set of all finite paths with label w in A is denoted paths(A, w). The behavior
‖A‖ : Σ∗ → [0, 1] of A is defined by ‖A‖(w) :=

∨
π∈paths(A,w) wt(π) for w ∈ Σ∗.



If the image of the transition weight function is included in {0, 1}, then we
have a classical finite automaton with word transitions (WA). In this case, wt is
usually described as a subset of Q × Σ∗ × Q and the behavior is characterized
by the set L(A), called the language of A, of all words whose behavior is 1.
The inclusion problem for WA is to decide, given two such automata A and A′,
whether L(A) ⊆ L(A′). This problem is known to be PSpace-complete [11].

Our goal is to describe the restrictions imposed by a G-FL0 TBox T using a
WWA. For the rest of this paper, we assume w.l.o.g. that T is in normal form.

Definition 11 (automata ATA,B). For concept names A,B ∈ NTC , the WWA
ATA,B = (NR,N

T
C , A,wtT , B) is defined by the transition weight function

wtT (A′, w,B′) :=

{
p if 〈A′ v ∀w.B′ ≥ p〉 ∈ T ,
0 otherwise.

For a TBox T and A,A′, B,B′ ∈ NTC , the automata ATA,B and ATA′,B′ differ only
in their initial and final states; their states and transition weight function are
identical. Since T is in normal form, for any A′, B′ ∈ NTC and w ∈ N∗R, there
is at most one axiom 〈A′ v ∀w.B′ ≥ p〉 in T , and hence the transition weight
function is well-defined. This function has finite support since T is finite.

We now characterize the gfp-models of T by properties of the automataATA,B .

Lemma 12. For every gfp-model I = (∆, ·I) of T , x ∈ ∆, and A ∈ NTC ,

AI(x) =
∧

B∈NTP

∧
w∈N∗R

(
‖ATA,B‖(w)⇒G (∀w.B)I(x)

)
.

Proof. If A is primitive, then the empty path π = A ∈ paths(ATA,A, ε) has
weight wtT (π) = 1, and hence ‖ATA,A‖(ε) = 1. We also have (∀ε.A)I(x) = AI(x);
thus, AI(x) = (1 ⇒G AI(x)) ≥

∧
B∈NTP

∧
w∈N∗R

(
‖ATA,B‖(w) ⇒G (∀w.B)I(x)

)
.

Let now B ∈ NTP and w ∈ N∗R such that A 6= B or w 6= ε. Since A is primitive,
by Definition 11 any finite path π in ATA,B with `(π) = w must have weight 0;
i.e. ‖ATA,B‖(w) = 0, and thus 0 ⇒G (∀w.B)I(x) = 1 ≥ AI(x). This shows that
the whole infimum is equal to AI(x).

Consider now the case that A ∈ NTD . Since I is a gfp-model of T , there is a
primitive interpretation J such that I = gfpT (J ); let f := gfp(T TJ ). Thus, we
have AI = f(A) = T TJ (f)(A) =

∧
i≥0(T TJ )i(1)(A) for all A ∈ NTD .

[≤] By Proposition 3 it suffices to show that for all x ∈ ∆, A ∈ NTD , B ∈ NTP ,
and all finite non-empty paths π in ATA,B it holds that

AI(x) ≤ wtT (π)⇒G (∀w.B)I(x), (1)

where w := `(π). This obviously holds for wtT (π) = 0, and thus it remains to
show this for paths with positive weight. Let π = Aw1A1w2 . . . wnAn, where
Ai ∈ NTC and wi ∈ N∗R for all i ∈ {1, . . . , n} and An = B is the only primitive



concept name in this path. We prove (1) by induction on n. For n = 1, we have
π = Aw1B and wtT (A,w1, B) = wtT (π) > 0, and thus T contains the definition
〈A v ∀w1.B ≥ p〉, with p := wtT (A,w1, B). By the definition of T TJ , we obtain

AI(x) = T TJ (f)(A)(x) ≤ p⇒G (∀w1.B)I(x) = wtT (π)⇒G (∀w.B)I(x).

For n > 1, consider the subpath π′ = A1w2 . . . wnB in ATA1,B
with the label

`(π′) = w′ := w2 . . . wn. For all y ∈ ∆, the induction hypothesis yields that
AI1 (y) ≤ wtT (π′) ⇒G (∀w′.B)I(y). Again, p := wtT (A,w1, A1) ≥ wtT (π) > 0,
and thus T contains the definition 〈A v ∀w1.A1 ≥ p〉. By the definitions of T TJ ,
wtT (π), wI , and Propositions 3 and 4, we have

AI(x) = T TJ (f)(A)(x)

≤ p⇒G (∀w1.A1)I(x)

=
∧
y∈∆

(
p⇒G (wI1 (x, y)⇒G A

I
1 (y))

)
≤
∧
y∈∆

(
p⇒G

(
wI1 (x, y)⇒G

(
wtT (π′)⇒G (∀w′.B)I(y)

)))
=
(
p ∧ wtT (π′)

)
⇒G

( ∧
y∈∆

(
wI1 (x, y)⇒G (∀w′.B)I(y)

))
= wtT (π)⇒G (∀w.B)I(x).

[≥] We show by induction on i that for all x ∈ ∆, A ∈ NTD , and i ≥ 0, it holds

(T TJ )i(1)(A)(x) ≥
∧

B∈NTP

∧
w∈N∗R

(
‖ATA,B‖(w)⇒G (∀w.B)I(x)

)
. (2)

For i = 0, we have (T TJ )0(1)(A)(x) = 1(A)(x) = 1, which obviously satisfies (2).
For i > 0, by Proposition 3 we obtain

(T TJ )i(1)(A)(x) = T TJ ((T TJ )i−1(1))(A)(x)

=
∧

〈Av∀w′.A′≥p〉∈T

(p⇒G (∀w′.A′)Ii−1(x)), (3)

where Ii−1 := IJ ,(TTJ )i−1(1). Consider now any definition 〈A v ∀w′.A′ ≥ p〉 ∈ T .
Then π′ = Aw′A′ is a finite path in ATA,A′ with label w′ and weight p.

If A′ is a primitive concept name, then we have

p⇒G (∀w′.A′)Ii−1(x) ≥ ‖ATA,A′‖(w′)⇒G (∀w′.A′)I(x)

by the definition of ‖ATA,A′‖(w′) and the fact that the interpretation of ∀w′.A′
under Ii−1 and I only depends on J . If A′ is defined, then we similarly get

p⇒G (∀w′.A′)Ii−1(x)

=
∧
y∈∆

(
p⇒G

(
w′J (x, y)⇒G A

′Ii−1(y)
))



≥
∧
y∈∆

∧
B∈NTP

∧
w∈N∗R

(
p⇒G

(
w′I(x, y)⇒G (‖ATA′,B‖(w)⇒G (∀w.B)I(y))

))
=

∧
B∈NTP

∧
w∈N∗R

((
p ∧ ‖ATA′,B‖(w)

)
⇒G

( ∧
y∈∆

(
w′I(x, y)⇒G (∀w.B)I(y)

)))
=

∧
B∈NTP

∧
w∈N∗R

(( ∨
π∈paths(AT

A′,B ,w)

(wtT (π′) ∧ wtT (π))
)
⇒G (∀w′w.B)I(x)

)
≥

∧
B∈NTP

∧
w∈N∗R

(
‖ATA,B‖(w′w)⇒G (∀w′w.B)I(x)

)
by the induction hypothesis, Propositions 3 and 4, and the definition of ‖ATA,B‖.

In both cases, p⇒G (∀w′.A′)Ii−1(x) is an upper bound for the infimum in (2),
and thus by (3) the same is true for (T TJ )i(1)(A)(x). ut

This allows us to prove gfp-subsumptions by comparing the behavior of WWA.

Lemma 13. Let A,B ∈ NTC and p ∈ [0, 1]. Then T |=gfp 〈A v B ≥ p〉 iff for all
C ∈ NTP and w ∈ N∗R it holds that p ∧ ‖ATB,C‖(w) ≤ ‖ATA,C‖(w).

Proof. Assume that there exist C ∈ NTP and w = r1 . . . rn ∈ N∗R such that
p∧‖ATB,C‖(w) > ‖ATA,C‖(w). We define the primitive interpretation J = (∆, ·J )

where ∆ := {x0, . . . , xn}, and for all D ∈ NTP and r ∈ NR, the interpretation
function is given by

DJ (x) :=

{
‖ATA,C‖(w) if D = C and x = xn,
1 otherwise; and

rJ (x, y) :=

{
1 if x = xi−1, y = xi, and r = ri for some i ∈ {1, . . . , n},
0 otherwise.

Consider now the gfp-model I := gfpT (J ) of T . By construction, for all pairs
(w′, D) ∈ N∗R × NTP \ {(w,C)} we have (∀w′.D)I(x0) = 1. Moreover, we know
that (∀w.C)I(x0) is equal to ‖ATA,C‖(w), and thus strictly smaller than p and
‖ATB,C‖(w). By Lemma 12, all this implies that

AI(x0) = ‖ATA,C‖(w)⇒G (∀w.C)I(x0) = 1 and

BI(x0) = ‖ATB,C‖(w)⇒G (∀w.C)I(x0) = (∀w.C)I(x0).

Thus AI(x0)⇒G B
I(x0) = (∀w.C)I(x0) < p, and T 6|=gfp 〈A v B ≥ p〉.

Conversely, assume that there are a primitive interpretation J = (∆, ·J )
and an element x ∈ ∆ such that AI(x) ⇒G BI(x) < p, where I := gfpT (J ).
Thus, we have p ∧AI(x) > BI(x), which implies by Lemma 12 the existence of
a C ∈ NTP and a w ∈ N∗R with p ∧ AI(x) > ‖ATB,C‖(w) ⇒G (∀w.C)I(x). Again
by Lemma 12, this shows that

p ∧ ‖ATB,C‖(w) > AI(x)⇒G (∀w.C)I(x)

≥
(
‖ATA,C‖(w)⇒G (∀w.C)I(x)

)
⇒G (∀w.C)I(x).



In particular, the latter value cannot be 1, and thus it is equal to (∀w.C)I(x).
But this can only be the case if ‖ATA,C‖(w) ≤ (∀w.C)I(x). To summarize, we
obtain p ∧ ‖ATB,C‖(w) > (∀w.C)I(x) ≥ ‖ATA,C‖(w), as desired. ut

Denote by VT := {0, 1} ∪ {p ∈ [0, 1] | 〈A v ∀w.B ≥ p〉 ∈ T } the set of
all values appearing in T , together with 0 and 1. Since wtT has finite sup-
port and takes only values from VT , p ∧ ‖ATB,C‖(w) > ‖ATA,C‖(w) holds iff
p′ ∧ ‖ATB,C‖(w) > ‖ATA,C‖(w), where p′ is the smallest element of VT such that
p′ ≥ p. This shows that it suffices to be able to check gfp-subsumptions for the
values in VT . We now show how to do this by simulating ATB,C and ATA,C by
polynomially many unweighted automata.

Definition 14 (automata A≥p). Given a WWA A = (Σ,Q, q0,wt, qf ) and a
value p ∈ [0, 1], the WA A≥p = (Σ,Q, q0,wt≥p, qf ) is given by the transition
relation wt≥p := {(q, w, q′) ∈ Q×Σ∗ ×Q | wt(q, w, q′) ≥ p}.

The language of this automaton has an obvious relation to the behavior of the
original WWA.

Lemma 15. Let A be a WWA over the alphabet Σ and p ∈ [0, 1]. Then we have
L(A≥p) = {w ∈ Σ∗ | ‖A‖(w) ≥ p}.

Proof. We have w ∈ L(A≥p) iff there is a finite path π = q0w1q1 . . . wnqn in A
with label w such that wt(qi−1, wi, qi) ≥ p holds for all i ∈ {1, . . . , n}. The latter
condition is equivalent to the fact that wt(π) ≥ p. Thus, w ∈ L(A≥p) implies
that ‖A‖(w) ≥ p. Conversely, since wt has finite support, there are only finitely
many possible weights for any finite path in A, and thus ‖A‖(w) ≥ p also implies
that there exists a π ∈ paths(A, w) with wt(π) ≥ p, and thus w ∈ L(A≥p). ut

We thus obtain the following characterization of gfp-subsumption.

Lemma 16. Let A,B ∈ NTC and p ∈ VT . Then T |=gfp 〈A v B ≥ p〉 iff for all
C ∈ NTP and p′ ∈ VT with p′ ≤ p it holds that L((ATB,C)≥p′) ⊆ L((ATA,C)≥p′).

Proof. Assume that we have T |=gfp 〈A v B ≥ p〉 and consider any C ∈ NTP ,
w ∈ N∗R, and p

′ ∈ VT ∩ [0, p] with w ∈ L((ATB,C)≥p′). By Lemma 15, we obtain
‖ATB,C‖(w) ≥ p′, and by Lemma 13 we know that ‖ATA,C‖ ≥ p∧‖ATB,C‖(w) ≥ p′.
Thus, w ∈ L((ATA,C)≥p′).

Conversely, assume that T |=gfp 〈A v B ≥ p〉 does not hold. Then by
Lemma 13 there are C ∈ NTP and w ∈ N∗R such that p∧‖ATB,C‖(w) > ‖ATA,C‖(w).
For the value p′ := p ∧ ‖ATB,C‖(w) ∈ VT ∩ [0, p], we have ‖ATB,C‖(w) ≥ p′, but
‖ATA,C‖(w) < p′, and thus L((ATB,C)≥p′) * L((ATA,C)≥p′) by Lemma 15. ut

Since the automata (ATA,C)≥p′ correspond to those from [1] simulating subsump-
tion in the (classical) TBoxes T≥p′ := {A′ v C ′ | 〈A′ v C ′ ≥ q〉 ∈ T , q ≥ p′},
we have shown that gfp-subsumption in G-FL0 can be reduced to polynomially
many subsumption tests in FL0. The detour through WWA was necessary to
account for the differences between the gfp-models of T and those of T≥p′ .

A direct consequence of this reduction is that gfp-subsumption between con-
cept names in G-FL0 remains in the same complexity class as for classical FL0.



Theorem 17. In G-FL0 with cyclic TBoxes, deciding gfp-subsumption between
concept names is PSpace-complete.

Proof. By the reductions above, it suffices to decide the language inclusions
L((ATB,C)≥p) ⊆ L((ATA,C)≥p) for all C ∈ NTP and p ∈ VT . These polynomially
many inclusion tests for WA can be done in polynomial space [11]. The problem
is PSpace-hard since gfp-subsumption in classical FL0 is PSpace-hard [1]. ut

To compute the best gfp-subsumption degree between A and B, we have to check
the above inclusions for increasing values p ∈ VT . The largest p for which these
checks succeed is the requested degree.

In the case of an acyclic TBox T , it is easy to verify that the automata
(ATB,C)≥p constructed above are in fact acyclic. Since inclusion between acyclic
automata can be decided in co-NP [11], we again obtain the same complexity
as in the classical case.

Corollary 18. In G-FL0 with acyclic TBoxes, deciding gfp-subsumption be-
tween concept names is co-NP-complete.

5 Conclusions

We have studied the complexity of reasoning in G-FL0 w.r.t. primitive concept
definitions under greatest fixed-point semantics. Specifically, we have shown that
gfp-subsumption between concept names can be reduced to a comparison of the
behavior of weighted automata with word transitions. The latter can be solved
by a polynomial number of inclusion tests on unweighted automata, and thus
gfp-subsumption is PSpace-complete for this logic, just as in the classical case.
The same reduction yields co-NP-completeness in the case of acyclic TBoxes.

In fuzzy DLs, reasoning is often restricted to so-called witnessed models [14].
Intuitively, they guarantee that the semantics of value restrictions can be com-
puted as minima instead of possibly infinite infima. As our reduction does not
make use of this property and the model constructed in the proof of Lemma 13
is witnessed, our results hold under both witnessed and general semantics.

These complexity results are consistent with previous work on extensions of
description logics with Gödel semantics. Indeed, such extensions of EL [17,20]
and ALC [6] have been shown to preserve the complexity of their classical coun-
terpart. Since reasoning in both FL0 and in G-ALC w.r.t. general TBoxes is
ExpTime-complete, so is deciding subsumption in G-FL0 w.r.t. general TBoxes.

We expect our results to generalize easily to any other set of truth degrees
that form a total order. However, the arguments used in this paper fail for
arbitrary lattices, where incomparable truth degrees might exist [8,23]. Studying
these two cases in detail is a task for future work. We also plan to consider fuzzy
extensions of FL0 with semantics based on non-idempotent t-norms, such as the
Łukasiewicz or product t-norms [13].
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