
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000

CLASSIFYING SOFTWARE BUG REPORTS USING METHODS

FROM FORMAL CONCEPT ANALYSIS

DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

Abstract. We provide experience in applying methods from formal concept

analysis to the problem of classifying software bug reports characterized by dis-
tinguished features. More specifically, we investigate the situation where we are

given a set of already processed bug reports together with the components of

the program that contained the corresponding error. The task is the following:
given a new bug report with specific features, provide a list of components of the

program based on the bug reports already processed that are likely to contain

the error. To this end, we investigate several approaches that employ the idea
of implications between features and program components. We describe these

approaches in detail, and apply them to real-world data for evaluation. The
best of our approaches is capable of identifying in just a fraction of a second the

component causing a bug with an accuracy of over 70 percent.

1. Motivation

Maintaining large software systems is a non-trivial task, and processing bug re-
ports efficiently is a crucial part of this process. Modern software systems can easily
contain thousands of lines of code, distributed over several modules and subsystems.
When the system reaches such a size, and no single programmer can oversee its overall
complexity, finding components of the program which are likely to contain the error
that causes a given bug report becomes much more demanding. This is a known
challenge in software development. For example, a recent study has shown that in
average it takes 19 days for the Eclipse project and 38 days for the Mozilla project
to find a first component assignment for a bug report [6], and there is no guarantee
that this first assignment is correct. Finding the responsible component is a main
bottleneck in the debugging process, and it may even require more time than fixing
the error itself. In such cases, speeding up the process of identifying the responsible
components would increase maintainability, and thus the quality, of the software.

The purpose of this work is to share some experimental experience we have ob-
tained while trying to solve this problem. The approaches we follow in this work are
all based on ideas from formal concept analysis. More precisely, we employed the idea

Key words and phrases. Formal Concept Analysis, Classification, Software Maintenance,
Implications.

D. Borchmann supported by DFG Graduiertenkolleg 1763 (QuantLA). R. Peñaloza partially

supported by DFG within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’

(cfAED).

1

2 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

that the information contained in a bug report (its so-called “features”) somehow
determine in an implicational manner the component of the program containing the
error. Therefore, we devised several methods based on the notion of implications in
formal contexts to find such components, and tried to evaluate them experimentally
on some real-world data obtained from bug reports in a large software company.

Obviously, one could argue here that the assumption that features of bug re-
port determine the responsible components precisely is somehow simplified: it is not
unlikely—and it is in fact not very hard to come up with an example for this—that two
identical bug reports are caused by two completely unrelated errors in the software
system. Clearly, this defeats our main assumption of an implicational dependency
between features of bug report and responsible components. On the other hand,
one could argue that the cause for such situation is that the bug reports are under-
specified, and that the implicational dependencies between features of bug report and
responsible components would still hold if we would include more features, which add
information that can separate the two reports. This could be achieved by requesting
more information from the user reporting the bug. However, even in the case where
we do not request additional information, we can still use our assumption to find a
set of likely components that caused the bug report, thus reducing the number of
components which need to investigated.

The main practical problem we have to face when following the indicated ap-
proaches is to find the implicational dependencies between features of bug report and
their responsible components. To cope with this difficulty, our approaches more or
less follow a common pattern: all bug reports already processed so far are brought
together in a formal context Kreports. This formal context is then examined for impli-
cational dependencies between features and components. Then, if a new bug report,
given as a set of features, is received, the implications extracted from the initial con-
text are applied to this set of features, and the components contained in the resulting
closure are considered candidate causes for the new bug report. Additionally, some
of our approaches introduce a meaningful way of rating the candidate components
according to their likelihood; that is, the higher the rank of a candidate component,
the more likely it is that the new bug was caused in that component.

While this idea is relatively simple to describe and understand, it faces several
practical issues. As already discussed, if the set of features does not determine respon-
sible components uniquely, the standard approaches of extracting valid implications
from the context Kreports are not applicable. Hence, we have to devise new methods
to achieve this goal, relaxing the restrictions that implications must satisfy. Further-
more, already processed bug reports do not always need to be correct; for example,
it may happen that the actual cause of some historical report was never fixed, but
rather that the circumstances of the bug were altered in such a way that it was not
observed any more. In such cases, the component stored as cause for this error in
the historical records is itself not correct. Assuming that such cases are possible but
unlikely, we have to adapt our approaches to include methods that can handle those
exceptional errors correctly. Finally, the context Kreports itself can be quite large, and
existing approaches to extract implications from contexts may simply not work on

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 3

such large contexts, due to memory and time restrictions. Devising ideas for scalable
extraction algorithms is thus also necessary in this setting.

Clearly, the problem of suggesting components that are likely responsible for bug
reports is a classification problem in the sense of machine learning [11]. However, it is
not the aim of this work, at this early stage of development, to compete with existing
approaches in machine learning. Indeed, the purpose of this work is more to share
experiences on how to approach this problem from the perspective of formal concept
analysis, which we consider a natural, although often neglected, choice for this situ-
ation. A comparison with other existing classification approaches, or a combination
with them, would be a logical next step in this direction of research. We leave that
road open for possible future work.

This work is organized as follows. After giving a formal specification of our
problem and some related work in Section 2, we introduce and discuss in Section 3
the approaches we investigate in this paper. Thereafter, we describe our experimental
setup, show and discuss our results, and evaluate the individual approaches. This is
done in Section 4. We close this paper with conclusions and outlook for further
research in Section 5.

2. Problem Specification and Related Work

We start by describing the problem we want to solve in a more precise way. For
the rest of this paper, we assume that the reader is familiar with the basic notions of
formal concept analysis. More details from this area can be found in [5].

Let Kreports = (G,M, I) be a finite formal context, which we call the context of
reports, and let M = F ∪C be a partition of M , i. e. F ∩C = ∅ and both F and C are
non-empty. We call the elements of F features, and the elements of C components.
Intuitively, we will understand Kreports as the formal context of all previous issues (also
called old issues, or bug reports) that have been reported for our software system.
For every such issue g ∈ G, the elements of g′ ∩ F are the features of the issue of
g; more precisely, the information that was observed and reported when the user
encountered the error. Possible such features can be statements like “segmentation
fault” or “screen turned blue”. On the other hand, the elements of g′ ∩ C are the
responsible components of the issue g, i. e. the elements of the software that were the
reason for the issue g to exist, and were located when the old issue g was solved. In
other words, fixing these components resulted in the issue to disappear.

Given such a formal context Kreports and the partition M = F ∪C, we want to find
for a given new issue (that is, for a set of features o ⊆ F) a set of components which
are “likely” to be responsible for it. To achieve this goal, we want to make use of
the historical knowledge from the already solved issues collected in Kreports. Thus, we
want to be able to learn from the old issues as a means to identifying the components
that are responsible for a new issue.

If one sees this formalization of our problem, one may be reminded of a similar
approach to model learning from positive and negative examples within the framework
of formal concept analysis [8]. Within this approach we assume a formal context
L = (H,N, J), and a target attribute ω /∈ M which objects in H may or may not

4 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

have. Let H+ ⊆ H be the set of objects which are known to have the attribute ω,
H− ⊆ H the set of objects which are known to not have the attribute ω and let
H? = H \ (H+ ∪ H−) be the set of objects for which it is not known whether they
have the attribute ω or not. Note that the three sets H+, H−, and H? are mutually
disjoint. We call the elements of H+ positive examples for ω, and likewise elements of
H− negatives examples for ω. The elements of H? are called undetermined examples.

The sets H+, H−, H? give rise to three subcontexts L+,L−,L? of L defined as
the restrictions of L to the corresponding sets of objects. The derivation operators of
L+,L−,L? are denoted by (·)+, (·)−, (·)?, respectively.

To decide for objects in H? whether they may have the target attribute ω or not,
we extract hypotheses from L+ and L−. In this setting a positive hypothesis T for ω
is an intent of L+ such that T+ 6= ∅ and T is not contained in any object intent of
L−, i. e. T * g− for all negative examples g ∈ H−. Negative hypotheses are defined
analogously. To decide for an undetermined example g ∈ H? whether it has the
target attribute ω or not, we consider its object intent g? in the context L?. If this set
contains positive hypotheses but no negative ones, then g is classified positively, and
correspondingly, if g? contains negative hypotheses but no positive ones, g is classified
negatively. If g? does not contain any hypotheses at all, then g is unclassified, and
if g? contains both positive and negative hypotheses, then the classification of g is
contradictory.

This method could also be applied to our problem of classifying software issues.
In this case, we would consider every component we have as a target attribute, and
try to apply the above method to obtain a classification. However, this idea becomes
impractical as the number of components increases: for each component we would
need to construct the contexts L+,L−,L? and classify using the method sketched
above, which is actually known to be hard [7]. This theoretical hardness may or may
not be an issue in practical applications.

Furthermore, as already discussed, it may happen that bug reports having the
exact same features, actually describe different errors in the software, and thus may
have different responsible components. In those cases, we would still like to obtain a
meaningful set of potentially responsible components (if possible, with an associated
rating). However, the approach for learning from examples [8] would always result in
an undetermined or contradictory classification.

Nevertheless, we can draw some inspiration from this approach for our own prob-
lem, and we do so in the following section, where we describe some methods for
proposing responsible components for new issues.

3. Method Descriptions

We have tried several approaches for detecting the responsible components for
a given issue. Each of these approaches is motivated by different ideas, which we
describe in detail next. Their common property is that they all make use of a historical
collection of old issues stored in the context Kreports of reports to predict the component
of a new issue. After having described these methods, in the next section we provide
the results of an experimental evaluation on real-world issues from a software company.

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 5

object a b c X Y

1 × × ×
2 × × ×
3 × ×
4 × × × ×
5 × ×
6 × × ×

Table 1. The context Kexa used as a running example

For the following descriptions we assume that the attribute set M of Kreports

is partitioned into features and components as described before, i. e. M = F ∪ C.
Furthermore, we assume that we are given a new issue o ⊆ F which we want to
classify. For this, each of the following methods proposes a set candidates(o) ⊆ C
of the components that are likely to be responsible for the issue o. Furthermore, all
but the first method additionally yield a score score(x) ∈ [0, 1] for each component
x ∈ candidates(o). The higher this score, the more likely the method considers x to
be responsible for o.

To help understanding the ideas behind all these methods, we will apply them
over the simple context Kexa shown in Table 1. In this context, the features are a, b,
and c, while the components are X and Y . As the new issue to be classified we
consider the set of features oexa = {b, c}.

The new-incident method. A very simple idea for classifying a new issue would
be to search in the historical records Kreports for a previous occurrence of the same
issue. The component that was responsible for the old issue can then be suggested as
being responsible also for the new issue. This idea has two obvious problems. On one
hand, the historical record is not necessarily complete, and hence there might exist
no matching report; in this case, no responsible component would be suggested. On
the other hand, since historical records may contain errors, components might change
over time, and the set of features might not fully describe all possible problems,
there might exist more than one matching issue in Kreports, which may lead to several
components being proposed. To alleviate these issues, we slightly generalize this
simple classification idea, yielding an approach which we call new-incident, which
works as follows. Recall that the new issue is described by its set of features o ⊆ F .
For every object g in the context Kreports, if g′ ∩ F ⊆ o, then g′ ∩ C is suggested as a
responsible component, i. e.

candidates(o) = {x ∈ g′ ∩ C | g′ ∩ F ⊆ o}.
Note that there is no scoring among the candidates of o, i. e. all proposed components
are equally preferred.

In our example context Kexa, for the new issue oexa we get that only the objects 3
and 5 are such that g′ ∩ F ⊆ oexa: 3′ ∩ F = {c}, and 5′ ∩ F = {b}. The proposed
components are then X and Y , and these are preferred equally.

6 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

This approach is in fact very similar to the one using hypotheses for classification,
as we have described in Section 2. Namely, what we do here is to consider for all
components x ∈ C in Kreports the sets of features belonging to issues in Kreports with
responsible component x. These sets actually correspond to hypotheses in the sense
of Section 2. The only difference may be that for one such set of features T it may
happen that T is actually contained in some set of features which belongs to a previous
issue which had a responsible component different from x. Then, in the approach of
Section 2 we would discard T as a hypothesis. However, as we have already argued
previously, that is not a wanted behavior in our setting, as otherwise we would end
up with a large number of contradictory classifications. Instead, we keep T as a
hypothesis, and allow for a classification to more than one component. In this way,
new-incident is similar to the classification of Section 2.

A drawback of the new-incident method is that the whole context needs to be
processed whenever a new issue arises. As the historical records can be very large,
this might be a very time-consuming task. Thus, we analyze methods based on the
pre-computation of bases of implications to assist in a more efficient classification of
issues.

The can+lux method. Recall that the reports context may contain contradictory
information or may be incomplete. It thus makes sense to try to use a base capable
of producing implications that are violated by a small number of exceptions, like
Luxenburger’s base [9, 10, 14]. The definition of this base relies on the notions of
support and confidence of an implication [1]. Intuitively, the support describes the
proportion of objects that satisfy the implication, while the confidence measures the
number of objects that do not violate it.

Definition 1 (support, confidence). Let K = (G,M, I) be a formal context and
A ⊆M . The support of A is

supp(A) :=
|A′|
|G|

.

The support and confidence of an implication A→ B are defined, respectively, as

supp(A→ B) := supp(A ∪B), conf(A→ B) :=
supp(A ∪B)

supp(A)
.

Luxenburger’s base includes only implications between intents having support
and confidence larger than the given parameters minsupp and minconf, respectively,
which are input values from the interval [0,1] of real numbers, provided by the user.
Moreover, the implications belonging to this base can only relate direct neighbors
from the lattice of intents of the given formal context.

Definition 2 (Luxenburger’s base). For a finite formal context K, the Luxenburger
base of K w.r.t. minsupp,minconf ∈ [0, 1] is the set of all implications A→ B such that
A and B are intents of K, A is a direct lower neighbor of B in the lattice of intents of K
ordered by ⊆, and both (i) conf(A→ B) ≥ minconf and (ii) supp(A→ B) ≥ minsupp
hold.

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 7

Notice that Luxenburger’s base does not include implications that are valid in
the formal context K, because for two intents A,B of K to yield a valid implication
A → B of K, one must have A = B, and then A cannot be a direct lower neighbor
of B anymore. To ensure that we do not miss implicational dependencies which are
actually true in Kreports we therefore have to take the valid implications separately,
and we do so by extending Luxenburger’s base with the canonical base of Kreports.

Given a new issue defined by a set of features o, the can+lux method computes
the closure of o over the canonical and Luxenburger’s bases of Kreports, and suggests
all components appearing in this closure as candidates. Each candidate component
x ∈ C is associated with a score, defined as the maximum of the confidences of all
rules A→ {x } such that A ⊆ o, i. e.

score(x) := max{conf(A→ {x}) | A ⊆ o}.
Note that this involves an exhaustive search among all subsets of o, and can hence
become very expensive. However, for the experimental setup that we discuss in the
next section this is not an issue, as the size of o is usually small.

Let us consider our example context Kexa again. Its canonical base is

{ {Y } → {b}, {b,X} → {a}, {c} → {X}, {a, b, Y,X} → {c} },
and the Luxenburger’s base of Kexa with minsupp = 0.01 and minconf = 0.01 consists
of the implications

∅ → {X}, ∅ → {b}, {b} → {Y }, {X} → {c},
∅ → {a}, {X} → {a}, {a} → {X}, {b} → {a},

{a} → {b}, {a,X} → {b}, {a, b} → {X}, {b, Y } → {a},
{a, b} → {Y }, {c,X} → {a}, {a,X} → {c}, {a, b,X} → {c},

{a, c,X} → {b}.

The closure of our observation oexa = {b, c} over these two bases includes both com-
ponents X,Y , and hence both are proposed as responsible. Since the rule {c} → {X}
is in the canonical base, X is proposed with score 1, while Y is proposed with score
2
4 , which is the confidence of the rule {b} → {Y }.

The can+lux method provides a higher degree of liberty, as it is parameterized on
the minimal support and minimal confidence that are used to compute Luxenburger’s
base. Moreover, the time required for computing the closure of the two bases and the
scores of each proposed component is neglectable. Unfortunately, the same is not true
for the computation of the bases. Indeed, as we will see in the following section, this
computation was very costly in terms of time in our software issue scenario. Moreover,
the performance of this classification was, surprisingly, rather disappointing.

Since the approach of considering Luxenburger’s base turned out to be inappro-
priate, we studied different approaches for producing implications that are tolerant
to a few exceptions. The main idea of the following three methods is to partition the
context into smaller pieces, and compute only valid implications in these subcontexts.
The intuition is that a small number of exceptions will violate such implications in
only a few of all the subcontexts.

8 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

object a b c

1 × ×
3 ×
4 × × ×
6 × ×

object a b c

2 × ×
5 ×

Table 2. The subcontexts KX (left) and KY (right) from the
subcontext method

The subcontext method. For this method, we first create one subcontext Kx for
every component x ∈ C appearing in Kreports. The context Kx is defined as the
restriction of Kreports to the set of objects x′ and thereafter removing all components
and attributes which have an empty extent. In other words,

Kx = (Ḡ := x′, F̄ := {m ∈ F | m′ ∩ x′ 6= ∅ }, I ∩ Ḡ× F̄).

Intuitively, the intents from the context Kx are sets of attributes that are always
together whenever component x is responsible, and can hence be used as a premise
for suggesting this component. To get rid of exceptions, we consider only implications
whose premise have a support larger than a threshold, which is given as a parameter
to the method. Formally, K is a frequent intent of a context K w.r.t. minsupp if it is
an intent of K and supp(K) ≥ minsupp. For every component x, and every frequent
intent K of KC , we include the implication K → {x}. Notice that every intent L
that is a subset of a frequent intent K is also a frequent intent. Thus, it suffices
to consider only the minimal frequent intents as premises for the implications. The
proposed components are then

candidates(o) = {x | K frequent non-empty intent of Kx,K ⊆ o}.

Note that this is the same as considering all components in the closure of o under all
implications K → {x} where K is a frequent, non-empty intent of Kx.

Consider again our example context Kexa. The two subcontexts KX and KY are
shown in Table 2. If we set the minimal support to minsupp = 0.1, then the minimal
frequent intents of KX are {a} and {c}, and the only minimal frequent intent of KY

is {b}. Thus, we obtain the rules {a} → X, {b} → Y , and {c} → X. Given the new
issue oexa = {b, c}, both components X and Y are suggested as potentially responsible
for the issue.

To provide a more fine-grained suggestion of the responsible components, we score
these implications according to their relevance among the context of reports. More
precisely, for each component we set

score(x) := max{conf(K → {x}) | K frequent non-empty intent of Kx}.

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 9

object a b c X

1 × × ×
3 × ×
6 × × ×

object a b c X Y

2 × × ×
4 × × × ×
5 × ×

Table 3. A partition K1,K2 of Kexa for the partition and
partition-pp methods

In our example, the scores are:

score(X) = max{conf({a} → X), conf({c} → X)} = 1,

score(Y) = max{conf({b} → Y)} =
2

3
.

As a result, component X is suggested with a higher priority (namely, 1) than Y (2
3).

The partition and partition-pp methods. A different method for partitioning
the context of all historical reports is to divide it in several subcontexts of equal
size, regardless of the component they are associated with. Under the assumption
that exceptions occur rarely, we expect these exceptions to violate the implications
in only a few of the generated subcontexts. As the first step in the partition and
partition-pp methods, we randomly partition Kreports into contexts of a specified
size n. These subcontexts are then simplified by removing all attributes that appear
in no object. For instance, the context Kexa can be partitioned into two contexts of
size 3 as shown in Table 3.

Notice that in the first context we have removed the attribute Y , since it appears
in no object of this context. Given a new issue o, the partition method computes, for
every context K in the partition, the closure o′′K of o over K. The proposed components
are those that appear in any of these closures; that is, we propose

(1) candidates(o) = C ∩
⋃
{o′′K | K subcontext in the partition, o′K 6= ∅}

as candidates for the observation, where (·)′K and (·)′′K denote the derivation and double
derivation operator in the corresponding context K.

The score of each proposed component x ∈ C is given by the proportion of
subcontexts K in the partition such that x ∈ o′′K, i. e.

score(x) :=
|{K | K subcontext in the partition, x ∈ o′′K}|

k

where k = d |G|n e is the number of contexts in the partition.
The closure of our example observation oexa = {b, c} over the subcontexts K1 and

K2 is {a, b, c,X} in both cases. Thus, component X is proposed with score 1 (since
it appears in the closure for all the subcontexts), and component Y is not proposed.

While the partition method behaves well in our scenario of software issues, as
shown in the following section, one might still increase its accuracy by allowing more
components to be suggested. The partition-pp method achieves this by considering

10 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

the proper premises for the components in each subcontext, rather than a direct
closure.

Definition 3 (proper premise). Given a set of attributes B ⊆M , we define B• as

B• := B′′ \ (B ∪
⋃
S(B

S′′).

B is called a proper premise if B• 6= ∅. It is a proper premise of m ∈M if m ∈ B•.

The idea of considering proper premises arises from the existence of the partition
M = F ∪ C of the attribute set. More precisely, what we are actually interested in
are implicational dependencies “from F to C,” i. e. implications A → B satisfying
A ⊆ F and B ⊆ C. Then sets L of implications of this type are iteration-free, i. e.
the computation of closures L(F̄) of sets F̄ ⊆ F can be achieved by

L(F̄) = F̄ ∪
⋃
{B | (A→ B) ∈ L, A ⊆ F̄}.

In other words, the computation given by the right-hand side of this equation does
not need to be iterated to compute L(F̄) [5].

We now want to compute bases of this type of implications for each subcontext
in partition and to use them instead of (·)′′. Of course, one would like to have such
a set to be as small as possible, and indeed proper premises provide a way to obtain
such a base. In other words, the set

{B → B• ∩ C | B ⊆ F is a proper premise for some element in C}
is a minimal iteration-free base for all implications from F to C [2, 5]. This motivates
why we would want to consider proper premises. Note that proper premises allow for
interesting optimizations with respect to their computation [13].

We put this idea into action as follows: for each subcontext in the partition of
Kreports, the partition-pp method computes the proper premises of the components
appearing in it. We only include those proper premises which have positive support
withing this subcontext. For each such proper premise B for a component x, we
collect the implication B → {x} into a set L. Responsible components are then
proposed by finding all collected implications (B → {x}) ∈ L such that B ⊆ o, and
suggesting their associated components x. The score of suggesting x is given by the
maximal confidence of an implication (B → {x}) ∈ L such that B ⊆ o, i. e.

score(x) = max{conf(B → {x}) | (B → {x}) ∈ L, B ⊆ o}
where the confidence is computed in Kreports.

The proper premises for X in the context K1 from Table 3 are {a}, {b}, and {c}.
In K2 there are no proper premises for Y and the only proper premise for X is {c}.
The confidence of the implications {a} → {X}, {b} → {X}, and {c} → {X} over Kexa

is 3
4 ,

2
4 , and 1, respectively. Thus, given our observation oexa, only the component X

is suggested with score 1, due to the implication {c} → {X}.
We can expect partition-pp to return more candidates than partition, which

is also confirmed by our experiments. This is due to the following reason: in (1), a
candidate set o′′K is excluded when o′K = ∅, i. e. if no object in the subcontext has

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 11

all the features in o. In other words, we always consider the whole set o in every
such subcontext. However, it may still be the case that there exists a subset p ⊆ o
which meaningfully entails responsible components, in the sense that p′K 6= ∅ and
pK 6= p′′K. Those sets p are ignored in partition, but not in partition-pp: If
x ∈ p′′K, then there exists a proper premise as subset p for x with positive support,
and thus partition-pp proposes x as a candidate.

4. Results and Discussions

We have implemented all methods described in the previous section on top of
conexp-clj, a general-purpose library for formal concept analysis.1 Our implemen-
tation has then been applied to data describing software issues, collected by a large
German software company. We considered this data as a multivalued context. The
original data had six features that received several different manifestations. As a first
step, we scaled this context nominally, resulting in a formal context of size 2951×2973
with incidence density of roughly 0.002. Using this data, we have conducted the fol-
lowing experiments to measure the quality of these methods with respect to classify-
ing bug reports: for varying n ∈ N+, we have randomly chosen a subcontext with n
objects, removing all attributes which have empty extent in the corresponding sub-
context. Then b0.9·nc of these items have been used to train the methods; i. e. formed
the context of reports Kreports, and the remaining d0.1 · ne data items have been used
to test them. A test consisted in classifying the set of features of the data items, and
comparing the proposed components with the known responsible component. For
each fixed n, the whole procedure was repeated five times; that is, 5 different, ran-
domly chosen subcontexts have been considered. We recorded the averages of all the
values measured during each of these five executions.

To evaluate the testing data, and obtain a better evaluation of our proposed
methods, we also implemented a random classifier. This method simply proposes a
randomly chosen proportion of all the available components. The number of proposed
components is determined by an input parameter. This method allows us to determine
whether the components are uniformly represented in the data, and avoid giving
special importance to over-represented components.

The testing of the methods was done in two steps, when applicable: first of all,
every method proposes a set of components as being responsible for the issue at hand.
We say that such a test is positive if and only if the original responsible component
is among those proposed. In addition, we also measured the mean percentage of
proposed components among all components in the data. In this way, we can discern
methods that yield positive answers simply because they propose a large amount of
components, from those that yield more informative answers. Most of our methods
also graded the proposed components. For those methods we say that a test is correct
if and only if the original responsible component is among the top-most proposed ones.
Again, we also measure the mean percentage of the topmost proposed components.

1http://github.com/exot/conexp-clj

12 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

Table 4. Experimental Results

Method n train (ms) test (ms) positive proposed correct proposed

random(0.2) 1000 7.25 26.32 20.81% 20.00% – –
random(0.2) 2000 15.12 24.87 19.09% 19.72% – –

random(0.5) 1000 4.85 16.64 51.38% 50.00% – –
random(0.5) 2000 22.63 30.65 51.16% 49.82% – –

random(0.9) 1000 12.58 26.21 90.50% 89.61% – –
random(0.9) 2000 13.37 33.40 87.00% 89.68% – –

new-incident 1000 0.02 19856.95 36.00% 3.11% – –
new-incident 2000 0.02 59371.25 44.50% 3.00% – –

subcontext(0.05) 750 3181598.62 11.98 69.33% 28.15% 30.67% 0.55%
subcontext(0.05) 1000 2841258.02 14.10 73.00% 29.94% 51.00% 0.54%

subcontext(0.01) 750 3355400.12 12.65 73.33% 25.48% 37.33% 0.50%
subcontext(0.01) 1000 2923139.74 15.09 72.00% 27.93% 41.00% 0.50%

can+lux(0.01,0.7) 1000 1375682.73 113.01 9.00% 0.05% 9.00% 0.05%
can+lux(0.01,0.7) 2000 3260189.07 219.74 8.50% 0.03% 8.50% 0.03%

can+lux(0.01,0.9) 1000 1359721.46 148.44 14.00% 0.07% 14.00% 0.07%
can+lux(0.01,0.9) 2000 3378045.62 199.46 7.50% 0.03% 7.50% 0.03%

can+lux(0.05,0.7) 1000 310803.29 0.24 0.00% 0.00% 0.00% 0.00%
can+lux(0.05,0.7) 2000 724341.14 0.13 0.00% 0.00% 0.00% 0.00%

can+lux(0.05,0.9) 1000 340270.58 119.62 5.00% 0.03% 5.00% 0.03%
can+lux(0.05,0.9) 2000 787725.99 0.09 0.00% 0.00% 0.00% 0.00%

partition(3) 1000 18961.75 193.25 33.94% 0.84% 30.00% 0.23%
partition(3) 2000 73898.59 519.63 49.13% 0.69% 47.00% 0.19%

partition(10) 1000 6161.62 109.95 34.00% 0.21% 34.00% 0.21%
partition(10) 2000 23895.38 268.83 46.00% 0.34% 45.00% 0.19%

partition(15) 1000 4943.22 109.95 36.00% 0.23% 34.06% 0.17%
partition(15) 2000 16468.57 245.98 41.69% 0.27% 40.56% 0.16%

partition(30) 1000 2488.06 94.70 40.00% 0.23% 40.00% 0.20%
partition(30) 2000 8529.07 218.02 44.50% 0.25% 43.50% 0.18%

partition-pp(3) 1000 89773.62 83.68 78.19% 31.12% 64.00% 0.50%
partition-pp(3) 2000 418524.89 217.82 88.38% 37.96% 71.00% 0.39%

partition-pp(10) 1000 142692.24 63.23 77.38% 7.32% 68.00% 0.52%
partition-pp(10) 2000 498504.77 151.32 82.19% 10.79% 72.22% 0.43%

partition-pp(12) 1000 182192.81 57.21 78.63% 7.30% 69.69% 0.49%
partition-pp(12) 2000 491516.69 120.77 81.66% 9.29% 70.84% 0.39%

partition-pp(15) 1000 267326.75 53.75 76.88% 7.08% 61.31% 0.51%
partition-pp(15) 2000 630232.06 109.49 80.91% 7.56% 70.91% 0.38%

partition-pp(30) 1000 1083661.64 38.19 66.63% 3.62% 59.00% 0.44%
partition-pp(30) 2000 2201360.65 85.13 80.94% 4.16% 71.56% 0.36%

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 13

The results of our experiments are shown in Table 4. This table includes the
training and testing times, which however should be considered with care: the exper-
iments were conducted in parallel on a 24 core machine, and the times measured are
the overall execution times, not the ones per thread. Thus, the actual computation
times could be lower than the ones stated in the table. However, we still included
these numbers to give a feeling on how these methods perform, and these times pro-
vide at least an upper bound for this. Also note that we applied a timeout of 5 hours
for each experiment, including repetitions.

From the experimental results we first see that the random classifiers behave as
expected: if we choose randomly 20% of all components we have, then roughly 20%
of the tests are positive; that is, the responsible component is among those proposed.
The same is true for 50% and 90%. Thus, our data behaves mostly like random data
with respect to our classification task.

With respect to this random selection, we can observe that even our simple ap-
proach new-incident performs much better: for n = 1000, only around 3% of the
components are proposed while 36% of all tests were positive. This performance in-
creases for n = 2000. However, while the training time is negligible (there is, in fact,
no training phase), the testing time is quite high, and increases with the size of the
data. This may render this approach difficult to apply in realistic scenarios, where
the classification time is the real bottleneck.

Fortunately, only the new-incident method has such long testing times. In
all the following approaches, the testing time is negligible. However, the price to
pay for this are rather huge training times, which are sometimes even larger than
the timeout used. On the other hand, in comparison to testing, training is usually
conducted rarely, which means that huge training times can still be acceptable in
practical applications.

The first method in this category we want to discuss is subcontext, which we
applied with parameters 0.05 and 0.01 to our data. We see that the rate of positive
tests is quite high, but also the percentage of components proposed. On the other
hand, the scoring function provides a good method for further reducing the set of
proposed components: only one out of each 200 components is rated with the highest
score, and the correct answer is still provided in approximately half of the cases.
However, the training times for this method were the largest among all the approaches
we tested, by a broad margin. As an overall comparison with other methods, we
conclude that the subcontext method is not the best suited for achieving a convincing
classification.

The approach can+lux, based on combining the canonical and Luxenburger’s
bases, has an even worse performance, much to our surprise: although the proportion
between the number of proposed components and positive, respectively correct, tests
is comparatively good, the latter is too low to be of any use in our classification
problem. Moreover, the rating provided by this method yields no improvement over
the unrated classification. As the percentage of proposed components is almost the
same, we can conclude that most components receive the same (highest) score. This
behavior is not necessarily an intrinsic problem of the method, but could be attributed

14 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

to a faulty choice of the scoring function. Notice, however, that the method proposes
in average less than one component as the responsible one. Thus, the same behavior
would be observed, regardless of the scoring function used.

This picture changes drastically when we come to the approaches based on par-
titioning the training data into smaller subcontexts. For partition we not only
achieved rather high positive rates, but additionally, the number of proposed compo-
nents was radically reduced. Interestingly, the rating provided by this method also
behaves well in the sense that it keeps high rates of correct tests but reduces the num-
ber of proposed components. This is especially true if the partitioned contexts are
very small (e. g. have 3 objects), but is also observable for larger contexts. Finally, the
training times are practically irrelevant, and should scale rather nicely for even larger
data sets. Notice that the training time depends linearly on the number of objects
in the training data; if we additionally want to restrict to only the highest-ranking
components, then the training time becomes O(n log n) since an additional sorting
step is needed.

While partition behaves relatively well, the proportion of positive tests remains
always below 50%. It would clearly be nicer to increase this number, even if the rate of
proposed components increases. This is achieved by introducing implicational depen-
dencies as in partition-pp, where both the positive and correct rates are increased.
The cost of this improvement is to propose more components in both cases, but the
ratios between proposed and positive or correct rates are still very good. What is
very surprising, though, is that the rating provided by this approach is working very
effectively, reducing the number of proposed components by factors of 10 or more
while keeping high rates of correct tests. This is especially true for n = 2000, and one
can conjecture that this even improves for larger training sets. Moreover, we can also
see that the larger the subcontexts we consider in our partition, the smaller the sets
of proposed components are. However, we have to pay for this with an increase in
the training time, which may or may not be relevant in practice. In particular, this
method proposes in average less than six top-rated components, and it might not be
worth spending many resources trying to reduce this number further.

The results of Table 4 are further depicted in Figure 1 for positive classification
and Figure 2 for correct classification. In the figures, the horizontal axis corresponds
to the percentage of positively or correctly classified tests, respectively, while the
vertical axis shows the percentage of suggested components. Thus, the ideal situation
is an element in the lower-right corner: a high percentage of success, while suggesting
only a few candidates. In the plots, the different methods are depicted using different
node shapes, while the shade of gray expresses the size of the training set: a darker
shade means a larger set. As it can be seen, the nodes sharing the same figure and the
same shade of gray form natural clusters in these plots. This suggests that the quality
of the results depends mainly on the method chosen, and the size of training set, while
the parameters used in the specific method are not that relevant. As described before,
the best results were obtained by the partition-pp method with a training set of
size 2000. This corresponds to the cluster of nodes depicted by in the plots. It
can be easily seen that this method indeed showcases the best behavior. The only

CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 15

25% 50% 75%

10%

20%

30%

40%

Positive

P
ro

p
o
se

d

new-incident

subcontext

can+lux
partition

partition-pp

Figure 1. Proportion of positive vs. proportion of proposed components

exception is the case where partitions have size three, which is the single node in
the upper-right corner of Figure 1. This case was the most successful w.r.t. positive
classification, but at the cost of suggesting over a third of all available components.

These experimental results suggest that our initial idea of using implicational
dependencies between attributes to classify bug reports is not completely unreason-
able, however only if considered “locally” as it has been done in partition and
partition-pp. If those dependencies are considered in the overall training data,
then the resulting classification fails miserably, as shown by the results for can+lux.
This also suggests that the partitions used in partition and partition-pp should
not contain too large, nor too small, contexts.

For putting these methods into practice, we can also think of a combined approach
of both partition and partition-pp: the former one has an acceptable performance
and suggests only very few components. Therefore, considering those components
may be a good starting point. If it turns out that the responsible component is not
among those proposed by partition, one can resort to considering those proposed by
partition-pp, which may be more (especially if not rated), but which are also more
likely to contain the real cause of the issue. Here, also different sizes of the partition
are imaginable, increasing the performance of the classification but also the number

16 DANIEL BORCHMANN, RAFAEL PEÑALOZA, AND WENQIAN WANG

25% 50% 75%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

Correct

P
ro

p
os

ed

subcontext

can+lux
partition

partition-pp

Figure 2. Proportion of correct vs. proportion of proposed components

of proposed components. Of course, if all this fails, one has to fall back to manual
classification. However, this last resource is needed only sporadically.

5. Conclusions

The goal of our study was to analyze whether formal concept analysis tools can
be useful for classifying software issues according to their responsible component.
Contrary to standard machine learning techniques, formal concept analysis methods
provide logical implications between the symptoms (features of the bug) and the
causes (the responsible component). These implications can be understood by users,
and provide more detailed information of the software system itself.

The use of association rules to detect faults and vulnerabilities in software sys-
tems has been studied previously [3, 4, 12]. The main difference with this paper is
that we study and compare different approaches for handling erroneous and incom-
plete information, and detected empirically which is best suited for our software bug
classification scenario.

We have tried several approaches, all based in ideas developed in the area of formal
concept analysis. Each of the methods presented was inspired by different approaches
towards the problem. In particular, one of the important issues was how to deal
with potential errors, incomplete knowledge, and change of the software structure

REFERENCES 17

over time. Surprisingly to us, the obvious idea of using Luxenburger’s base to handle
uncommon exceptions yielded relatively bad results: the responsible component was
usually not among those proposed, regardless of the chosen minimal support and
confidence.

The method that behaved best in our scenario was to compute a base of proper
premises over a partition of the historical records, together with a scoring function
for the proposed components. This method behaves very well from partitions of size
3 up to 30, yielding the right answer in over two-thirds of the cases, while proposing
less than 0.5% of the available components. This method also scales well: whenever
new historical records are added, only the proper premises over a partition of the
new cases need to be computed. All previous records remain unchanged. Moreover,
it is easy to get rid of old historical records, by simply deleting their corresponding
partitions.

In general, our experimental results show that it is feasible to classify objects
from large historical records using formal concept analysis, provided that training
can be done in an off-line stage. Indeed, while training in the partition-pp method
could take more than 10 minutes, in a context of 1000 objects, the classification time
was almost instantaneous, taking less than 100ms. For our software issue scenario,
these conditions are satisfactory: new issues would be entered to the training data
sporadically, and training may take place over-night. However, lower classification
times, with higher success rates and small sets of candidate components, translate
into faster repair of software bugs.

We have not compared our approach with existing classification methods from
machine learning and other areas. Given that we obtained promising results with
our approach, we will make such comparison in future work. We also notice that
our implementation is based on prototype tools, and requires further optimization for
industrial-strength use. Studying some applicable optimization techniques will also
be a focus of future work.

References

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. “Mining Association
Rules between Sets of Items in Large Databases”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 1993, pp. 207–216.

[2] Karell Bertet and Bernard Monjardet. “The multiple facets of the canonical
direct unit implicational basis”. In: Theoretical Computer Science 411.22-24
(2010), pp. 2155–2166.

[3] Peggy Cellier. “Formal concept analysis applied to fault localization”. In: Com-
panion Volume of the 30th International Conference on Software Engineering.
(Leipzig, Germany). Ed. by Wilhelm Schäfer, Matthew B. Dwyer, and Volker
Gruhn. ACM, 2008, pp. 991–994. isbn: 978-1-60558-079-1.

18 REFERENCES

[4] Peggy Cellier et al. “Formal Concept Analysis Enhances Fault Localization in
Software”. In: Proceedings of the 6th International Conference on Formal Con-
cept Analysis. (Montreal, Canada). Ed. by Raoul Medina and Sergei A. Obied-
kov. Vol. 4933. Lecture Notes in Computer Science. Springer, 2008, pp. 273–
288.

[5] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical
Foundations. Berlin-Heidelberg: Springer, 1999.

[6] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. “Improving bug triage
with bug tossing graphs”. In: Proceedings of the 7th joint meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering. (Amsterdam, The Nether-
lands). Ed. by Hans van Vliet and Valérie Issarny. ACM, 2009, pp. 111–120.

[7] Sergei O. Kuznetsov. “Complexity of learning in concept lattices from posi-
tive and negative examples”. In: Discrete Applied Mathematics 142.1-3 (2004),
pp. 111–125.

[8] Sergei O. Kuznetsov. “Machine Learning and Formal Concept Analysis”. In:
Proceedings of the Second International Conference on Formal Concept Analy-
sis. (Sydney, Australia). Ed. by Peter W. Eklund. Vol. 2961. Lecture Notes in
Computer Science. Springer, 2004, pp. 287–312. isbn: 3-540-21043-1.

[9] Michael Luxenburger. “Implications partielles dans un contexte”. In: Mathéma-
tiques, Informatique et Sciences Humaines 29.113 (1991), pp. 35–55.

[10] Michael Luxenburger. “Implikationen, Abhngigkeiten und Galois-Abbildungen”.
German. PhD thesis. TH Darmstadt, 1993.

[11] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-
Hill, Inc., 1997.

[12] Stephan Neuhaus and Thomas Zimmermann. “The Beauty and the Beast: Vul-
nerabilities in Red Hats Packages”. In: Proceedings of the 2009 USENIX Annual
Technical Conference. 2009.

[13] Uwe Ryssel, Felix Distel, and Daniel Borchmann. “Fast algorithms for impli-
cation bases and attribute exploration using proper premises”. In: Annals of
Mathematics and Artificial Intelligence Special Issue 65 (2013), pp. 1–29.

[14] Gerd Stumme et al. “Intelligent Structuring and Reducing of Association Rules
with Formal Concept Analysis”. In: KI 2001: Advances in Artificial Intelligence,
Proceedings of the Joint German/Austrian Conference on AI. (Vienna, Austria).
Ed. by Franz Baader, Gerhard Brewka, and Thomas Eiter. Vol. 2174. Lecture
Notes in Computer Science. Springer, 2001, pp. 335–350.

Theoretical Computer Science, TU Dresden, Germany

E-mail address: daniel.borchmann@mailbox.tu-dresden.de

Theoretical Computer Science, TU Dresden, Germany. Center for Advancing Elec-

tronics Dresden
E-mail address: penaloza@tcs.inf.tu-dresden.de

SAP, Germany

E-mail address: wenqian.wang@sap.com

