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Abstract. We consider the fuzzy description logic ALCOI with seman-
tics based on a finite residuated De Morgan lattice. We show that rea-
soning in this logic is ExpTime-complete w.r.t. general TBoxes. In the
sublogicsALCI andALCO, it is PSpace-complete w.r.t. acyclic TBoxes.
This matches the known complexity bounds for reasoning in classical de-
scription logics between ALC and ALCOI.

1 Introduction

OWL 2, the current standard ontology language for the semantic web, is a syn-
tactic variant of the crisp description logic (DL) SROIQ(D). The knowledge of
an application domain can be formalized in such an ontology, and then reasoning
problems such as ontology consistency, concept satisfiability, and concept sub-
sumption can be used to infer new knowledge. As all crisp logics, this language
is not well suited for expressing vague or imprecise notions that can be found
in numerous domains. For instance, in the biomedical areas it is common to
encounter concepts, such as HighTemperature or Large, that cannot be precisely
represented using a classical logic.

Fuzzy extensions of DLs have been studied for the last two decades, and the
literature on the topic is very extensive (see the surveys [27,34]). Most of those
approaches are based on the very simple Zadeh semantics, where the conjunction
of two statements is interpreted as the minimum of their truth values; these
values range over the interval [0, 1] of rational numbers. The last decade has
seen a shift towards more general semantics for treating vagueness, motivated
by the development of mathematical fuzzy logic [23]. On the one hand, the use of
continuous t-norms as the underlying interpretation function for conjunction was
proposed in [24]. On the other hand, [33] considers incomparable truth degrees,
which are structured into a lattice. However, this latter work still restricts to
Zadeh-like semantics.

Most of the work on fuzzy DLs since then has focused on t-norm-based se-
mantics over the unit interval; yet, even in those cases, ontologies are usually
restricted to be unfoldable or acyclic [7,8,9]. Indeed, it has been shown that
? Partially supported by the DFG under grant BA 1122/17-1, in the research training
group 1763 (QuantLA), and in the Cluster of Excellence ‘cfAED’



general concept inclusion axioms (GCIs) can cause undecidability even in fuzzy
extensions of the basic DL ALC [4,5,15,16,20]. In order to allow the expressivity
of GCIs within the knowledge base, while retaining decidability, it is necessary
to restrict the expressivity of the logic in other ways. This has motivated the
study of fuzzy DLs over finitely-valued semantics [19]. The notion of t-norm
can be rephrased in terms of finite lattices to preserve the relationship with
mathematical fuzzy logic.

If one considers the Łukasiewicz t-norm over finitely many values, then rea-
soning is decidable even for very expressive DLs, as shown in [10] through a
reduction to crisp reasoning. When restricted to ALC without terminological ax-
ioms, concept satisfiability is PSpace-complete as in the crisp case [18].3 In the
presence of general TBoxes, this problem becomes ExpTime-complete [13,14],
again matching the complexity of the crisp case, even if arbitrary (finite) lattices
and t-norms are allowed. However, the complexity of subsumption of concepts
was left as an open problem, as the standard reduction used in crisp DLs does
not work with general t-norm semantics.

In [11,12,17], matching complexity bounds were shown for other reasoning
tasks and for logics up to SHI, which extends ALC with transitive and inverse
roles, and allows for role inclusion axioms. More precisely, it was shown that all
standard reasoning tasks are ExpTime-complete in lattice-valued SHI w.r.t.
general TBoxes. If restricted to acyclic TBoxes, then the complexity reduces to
PSpace in ALCHI; the same holds for SI under a restriction on the interpre-
tation of the roles. For SH, reasoning is ExpTime-complete, even if the TBox
is empty.

In this paper we complement those complexity results by showing that finite
lattices do not affect the complexity of reasoning even if nominals are allowed,
and provide tight complexity bounds for the fuzzy logic L-ALCOI over a fi-
nite lattice L. More precisely, we show that in this logic concept satisfiability
is ExpTime-complete w.r.t. general TBoxes and acyclic TBoxes. It was shown
in [11,17] that the restriction to acyclic TBoxes and the sublogic L-ALCI leads
to a PSpace-complete satisfiability problem. We show here that this is also the
case in L-ALCO. Moreover, the same complexity bounds hold for deciding sub-
sumption between concepts. These results are in accordance with the complexity
of reasoning in the classical DLs underlying these logics.

2 Preliminaries

We first recall some results about automata on infinite trees from [2] that will
allow us to obtain tight upper bounds for our reasoning problems. Afterwards,
we briefly introduce residuated lattices, which will be used for the semantics of
our logic. For a more comprehensive view on residuated lattices, in particular in
connection with mathematical fuzzy logic, we refer the reader to [21,22,23].

3 The paper [18] considers the fuzzy modal logic K, which can be seen as a syntactic
variant of fuzzy ALC with only one role.



2.1 Looping Automata on Infinite Trees

To obtain upper bounds for the complexity of reasoning in L-ALCOI, we de-
scribe in Section 4 a reduction to the emptiness problem of looping automata
on infinite trees. Such automata receive as input the unlabeled infinite k-ary
tree for a fixed k ∈ N. The nodes of this tree are represented by words in K∗,
where K := {1, . . . , k}: the empty word ε represents the root node, and ui rep-
resents the i-th successor of the node u. An ancestor of a node u ∈ K∗ is a
node u′ ∈ K∗ for which there exists a u′′ ∈ K∗ such that u = u′u′′. A path is a
sequence v1, . . . , vm of nodes such that v1 = ε and each vi+1 is a successor of vi
for every i, 1 ≤ i < m.

Definition 1 (looping automaton). A looping (tree) automaton is a tuple
A = (Q, I,∆) where Q is a finite set of states, I ⊆ Q is a set of initial states,
and ∆ ⊆ Qk+1 is the transition relation. A run of A is a mapping r : K∗ → Q
assigning states to each node of K∗ such that r(ε) ∈ I and for every u ∈ K∗,
(r(u), r(u1), . . . , r(uk)) ∈ ∆. The emptiness problem for looping automata is to
decide whether a given looping automaton has a run.

The emptiness of looping automata can be decided in polynomial time using a
bottom-up approach that finds all states that can appear in a run [37]. Alterna-
tively, one can use a top-down approach, which relies on the fact that if there
is a run, then there is also a periodic run. To speed up this search, the period
should be as short as possible. This motivates the notion of blocking automata.

Definition 2 (m-blocking). Let A = (Q, I,∆) be a looping automaton. We
say that A is m-blocking for m ∈ N if every path v1, . . . , vm of length m in a
run r of A contains two nodes vi and vj (i < j) such that r(vi) = r(vj).

Clearly, every looping automaton is m-blocking for all m > |Q|. However, the
main interest in blocking automata arises when one can find a smaller bound
on m. One way to reduce this is through a so-called faithful family of functions.

Definition 3 (faithful). Let A = (Q, I,∆) be a looping automaton. The family
of functions fq : Q→ Q, q ∈ Q, is faithful w.r.t. A if for all q, q0, q1, . . . , qk ∈ Q,

– if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆; and
– if (q0, q1, . . . , qk) ∈ ∆, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆.

The subautomaton AS = (Q, I,∆S) of A induced by this family has the transition
relation ∆S = {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆}.

Lemma 4 ([2]). Let A be a looping automaton and AS its subautomaton induced
by a faithful family of functions. Then A has a run iff AS has a run.

The construction in Section 4 produces automata that are exponential in the
size of the input. For such cases, it has been shown that if the automata are
m-blocking for some m bounded polynomially in the size of the input (that is,
logarithmically in the size of the automaton), then the emptiness test requires
only polynomial space.



Definition 5 (PSPACE on-the-fly construction). Consider a set I of inputs
and a construction that yields, for every i ∈ I, an mi-blocking looping automa-
ton Ai = (Qi, Ii,∆i) on ki-ary trees. This construction is a PSpace on-the-fly
construction if there is a polynomial P such that, for every input i of size n,

(i) mi ≤ P (n) and ki ≤ P (n),
(ii) every element of Qi has size bounded by P (n), and
(iii) one can nondeterministically guess in time bounded by P (n) an element

of Ii, and, for a state q ∈ Qi, a transition from ∆i with first component q.

As hinted at by the name, these conditions guarantee the following complexity
result for checking emptiness of the constructed automata.

Theorem 6 ([2]). If the looping automata Ai are obtained from the inputs i ∈ I
by a PSpace on-the-fly construction, then the emptiness of Ai can be checked in
space polynomial in the size of i.

In Section 5, we will use this theorem to give PSpace upper bounds on the
complexity of reasoning in sublogics of L-ALCOI.

2.2 Residuated Lattices

A lattice is an algebraic structure (L,∨,∧) over a carrier set L with two idem-
potent, associative, and commutative binary operations join ∨ and meet ∧ that
satisfy the absorption laws `1∨(`1∧`2) = `1 = `1∧(`1∨`2) for all `1, `2 ∈ L. The
order ≤ on L is uniquely defined by `1 ≤ `2 iff `1 ∧ `2 = `1 for all `1, `2 ∈ L. A
lattice L is distributive if ∨ and ∧ distribute over each other, finite if L is finite,
and bounded if it has a minimum and a maximum element, denoted as 0 and 1,
respectively. It is complete if joins and meets of arbitrary subsets T ⊆ L, denoted
by
∨

t∈T t and
∧

t∈T t respectively, exist. Every finite lattice is also bounded and
complete. Whenever it is clear from the context, we simply use the carrier set L
to represent the lattice (L,∨,∧).

A De Morgan lattice is a distributive lattice with an involutive and anti-
monotonic unary operator ∼, called (De Morgan) negation, satisfying the De
Morgan laws ∼(`1∨`2) = ∼`1∧∼`2 and ∼(`1∧`2) = ∼`1∨∼`2 for all `1, `2 ∈ L.
For example, for every n ∈ N, let Ln = {k/n | 0 ≤ k ≤ n}. Then (Ln,max,min)
is a distributive lattice which, together with the negation ∼` = 1 − `, forms a
De Morgan lattice.

An important notion in mathematical fuzzy logic is that of a triangular norm,
or t-norm for short. We define this for arbitrary (bounded) lattices, although in
the literature the term is usually only used in the context of the real interval [0, 1]
or finite chains [22,23,26].

Definition 7 (t-norm, residuum). Given a bounded lattice L, a (generalized)
t-norm is an associative and commutative binary operator on L that is mono-
tone w.r.t. the lattice order and has unit 1. A residuated lattice is a bounded
lattice L extended with a t-norm ⊗ and a binary operator⇒ (called (generalized)
residuum) such that, for all `1, `2, `3 ∈ L, we have `1 ⊗ `2 ≤ `3 iff `2 ≤ `1 ⇒ `3.



Notice that what we call a residuated lattice corresponds to a commutative,
distributive, integral, zero-bounded FL-algebra from [22]. We chose to call it a
residuated lattice to keep the relation with mathematical fuzzy logic explicit. A
simple consequence of Definition 7 is that, for every `1, `2 ∈ L,

– 1⇒ `1 = `1, and
– `1 ≤ `2 iff `1 ⇒ `2 = 1.

For a t-norm ⊗ over a complete lattice L, there is a binary operator ⇒ that
satisfies the residuation property w.r.t. ⊗ iff the t-norm is join-preserving [22],
i.e. for all ` ∈ L and T ⊆ L we have

`⊗
( ∨

`′∈T

`′
)

=
∨
`′∈T

(`⊗ `′).

If ⊗ also preserves arbitrary meets in the dual way, then ⇒ is uniquely deter-
mined as the function that satisfies, for all `1, `2 ∈ L,

`1 ⇒ `2 =
∨
{x | `1 ⊗ x ≤ `2}.

Using this result, we often characterize a complete residuated lattice through its
(join- and meet-preserving) t-norm, without explicitly mentioning its residuum.
The t-norm and the De Morgan negation also uniquely determine the t-conorm
`1 ⊕ `2 := ∼(∼`1 ⊗∼`2) and the residual negation 	` := `⇒ 0.

For the rest of this paper, we fix a complete residuated De Morgan lattice L
with De Morgan negation ∼ and a join- and meet-preserving t-norm ⊗. The
operators ⇒, ⊕, and 	 are then given by the above equations.

3 L-ALCOI

We now describe the fuzzy description logic L-ALCOI, whose semantics is based
on the operators of L. It generalizes the classical DL ALCOI by using the
elements of L as truth values, instead of just the Boolean true and false. The
syntax of L-ALCOI is very similar to that of ALCOI. It is based on non-empty
and pairwise disjoint sets NC, NR, and NI of concept names, role names, and
individual names, respectively.

Definition 8 (syntax). A (complex) role is of the form r or r− for r ∈ NR.
(Complex) concepts are constructed from concept names using the constructors
> (top), {a} (nominal for a ∈ NI), ¬C (negation), C uD (conjunction), C → D
(implication), ∃s.C (existential restriction for a complex role s), and ∀s.C (value
restriction).

For a complex role s, the inverse of s (denoted by s) is s− if s ∈ NR and r if
s = r−. The main difference to the syntax of classical ALCOI is the explicit
presence of the implication constructor.

The semantics of this logic is based on interpretation functions that map
every concept C to a fuzzy set over the truth degrees from L, i.e. a function
specifying the membership degree of every domain element to C.



Definition 9 (semantics). An interpretation is a pair I = (∆I , ·I), where
∆I is a non-empty set, called the domain of I, and ·I is an interpretation
function that maps every concept name A to a function AI : ∆I → L, every role
name r to a function rI : ∆I × ∆I → L, and every individual name a to an
element aI ∈ ∆I . This function is extended to complex roles and concepts for
all x, y ∈ ∆I as follows:

– (r−)I(x, y) := rI(y, x),
– >I(x) := 1,
– {a}I(x) := 1 if x = aI , and {a}I(x) := 0 otherwise,
– (¬C)I(x) := ∼CI(x),
– (C uD)I(x) := CI(x)⊗DI(x),
– (C → D)I(x) := CI(x)⇒ DI(x),
– (∃s.C)I(x) :=

∨
z∈∆I s

I(x, z)⊗ CI(z),
– (∀s.C)I(x) :=

∧
z∈∆I s

I(x, z)⇒ CI(z).

Note that we did not include the disjunction constructor, usually interpreted by
the t-conorm, as it can be expressed using conjunction and negation. Likewise,
the residual negation can be simulated by the implication, negation, and top.
However, unlike in classical DLs, existential and universal quantifiers are not dual
to each other, i.e. in general it does not hold that (¬∃s.C)I(x) = (∀s.¬C)I(x).

The axioms of this logic also have an associated lattice value, which expresses
the degree to which the restriction must be satisfied.

Definition 10 (axioms). An axiom is an assertion 〈a:C ./ `〉, a concept def-
inition 〈A .

= C ≥ `〉, or a general concept inclusion (GCI) 〈C v D ≥ `〉, where
A ∈ NC, a ∈ NI, ` ∈ L, C,D are concepts, and ./ ∈ {<,≤,=,≥, >}. An ABox
is a finite set of assertions. A general TBox is a finite set of GCIs. An acyclic
TBox is a finite set of concept definitions such that every concept name occurs at
most once on the left-hand side of an axiom, and there is no cyclic dependency
between definitions. A TBox is either a general TBox or an acyclic TBox.4 An
ontology is a pair O = (A, T ) where A is an ABox and T is a TBox.

The interpretation I satisfies (or is a model of)

– an assertion 〈a:C ./ `〉 if CI(aI) ./ `;
– a concept definition 〈A .

= C ≥ `〉 if for every element x ∈ ∆I it holds that(
AI(x)⇒ CI(x)

)
⊗
(
CI(x)⇒ AI(x)

)
≥ `;

– a GCI 〈C v D ≥ `〉 if for every x ∈ ∆I we have CI(x)⇒ DI(x) ≥ `; and
– an ABox, TBox, or ontology if it satisfies all axioms in it.

If T is an acyclic TBox, then all concept names occurring on the left-hand side
of some definition in T are called defined, all others are called primitive. If T is
a general TBox, then all concept names appearing in it are primitive.

4 We do not consider mixed TBoxes. We could allow axioms of the form 〈A v C ≥ `〉
in acyclic TBoxes, as long as they do not introduce cyclic dependencies. To avoid
overloading the notation, we exclude this case.



Usually, ABoxes also contain role assertions of the form 〈(a, b):r ./ `〉,
expressing that rI(aI , bI) ./ ` should hold. We do not consider such axioms
here, since they can be simulated by the concept assertion 〈a:∃r.{b} ./ `〉 (or
〈b:∃r−.{a} ./ `〉).

We emphasize that ALCOI is a special case of L-ALCOI, where the under-
lying lattice contains only the elements 0 and 1, which may be interpreted as
false and true, respectively, and the t-norm is simply the classical conjunction.
Accordingly, one can generalize the reasoning problems for ALCOI to lattices.

Definition 11 (reasoning). Let C,D be concepts, O an ontology, and ` ∈ L.

– O is consistent if it has a model.
– C is `-satisfiable w.r.t. O if there is a model I of O and an element x ∈ ∆I

such that CI(x) ≥ `.
– C is `-subsumed by D w.r.t. O if every model of O is also a model of
〈C v D ≥ `〉.

– The best satisfiability degree for C w.r.t. O is the supremum of all `′ ∈ L
such that C is `′-satisfiable w.r.t. O.

– The best subsumption degree of C and D w.r.t. O is the supremum of all
`′ ∈ L such that C is `′-subsumed by D w.r.t. O.

Unfortunately, consistency and satisfiability even in the smaller logic L-ALC are
undecidable in general [1,4,5,15,16,20]. Here we analyze the complexity of these
problems under the assumption that L is finite and given as a list of its elements,
and all lattice operations are computable in polynomial time in the size of their
operands.

Observe that C is `-satisfiable w.r.t. (A, T ) iff (A ∪ {〈a:C ≥ `〉}, T ) is con-
sistent, where a is a fresh individual name. Likewise, C is not `-subsumed by
D w.r.t. (A, T ) iff (A ∪ {〈a:C → D < `〉}, T ) is consistent. To obtain the best
degrees to which these inferences hold, one has to solve at most polynomially
many consistency problems. For more details on these reductions, see e.g. [12].
We can thus focus on deciding consistency of ontologies to solve all other rea-
soning problems.

We show in Section 4 that the complexity of this problem is the same as
for classical ALCOI: it is ExpTime-complete w.r.t. both general and acyclic
TBoxes [29,30,35,36]. However, in the sublogics ALCO (without inverse roles)
and ALCI (without nominals), consistency w.r.t. acyclic TBoxes is decidable in
PSpace [2,3], and PSpace-hard already in ALC [31]. We show in Section 5 that
these bounds also apply to L-ALCO for arbitrary finite lattices L. The same
holds for L-ALCI [11,17].

4 Consistency

We now show that consistency of L-ALCOI ontologies is in ExpTime. To
achieve this, we adapt the approach from [2], where reasoning in classical DLs
is reduced to the emptiness of an exponentially large looping automaton. To
handle nominals and inverse roles correctly, we adapt ideas from [3,25].



Recall that the semantics of the quantifiers requires the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. To obtain an effective decision procedure, reasoning is
usually restricted to witnessed models [24].

Definition 12 (n-witnessed). An interpretation I is n-witnessed, n ∈ N, if
for every x ∈ ∆I and every concept of the form ∃s.C there exist n elements
x1, . . . , xn ∈ ∆I such that

(∃s.C)I(x) =

n∨
i=1

sI(x, xi)⊗ CI(xi),

and analogously for all value restrictions ∀s.C.

In particular, if n = 1, then the suprema and infima from the semantics of ∃r.C
and ∀r.C become maxima and minima, respectively. In this case, we simply say
that I is witnessed.

It was shown in [17] that every interpretation over the finite lattice L is
n-witnessed for some n bounded by the cardinality of L. To simplify the descrip-
tion of the algorithm, in the following we consider only the case of n = 1. All
constructions can easily be adapted for any other n ∈ N.

Our algorithm for deciding consistency exploits the fact that an ontology O
has a model iff it has a well-structured forest model, consisting of interconnected
tree-like structures rooted in the named individuals. We model them using so-
called Hintikka trees that abstract from the complexity of a full model by only
expressing the membership degrees for all relevant concepts. We construct au-
tomata that have exactly these Hintikka trees as their runs, and use the initial
states to verify the restrictions imposed by the ABox. Reasoning is hence re-
duced to a polynomial guessing step and polynomially many emptiness tests for
these automata.

In the following, we consider an ontology O = (A, T ) for which we want
to decide consistency. We denote by sub(O) the set of all subconcepts occurring
in O, and by Ind(O) the set of all individual names occurring in O. Similarly, the
set Rol(O) contains all role names used in O, and Rol−(O) contains all complex
roles occurring in O. The nodes of the Hintikka trees are labeled with so-called
Hintikka functions over the domain sub(O) ∪ {ρ}, where ρ is an arbitrary new
element that will be used to express the degree with which the role relation to
the parent node holds.

Definition 13 (Hintikka function). A Hintikka function for O is a partial
function H : sub(O) ∪ {ρ} → L satisfying the following conditions:

(i) H(ρ) is defined;
(ii) if H(>) is defined, then H(>) = 1;
(iii) if H({a}) is defined, then H({a}) ∈ {0,1};
(iv) if H(¬D) is defined, then H(D) is defined and H(¬D) = ∼H(D);
(v) if H(C uD) is defined, then H(C) and H(D) are also defined and it holds

that H(C uD) = H(C)⊗H(D); and



(vi) if H(C → D) is defined, then H(C) and H(D) are also defined and it holds
that H(C → D) = H(C)⇒ H(D).

This function is compatible with

– an assertion 〈a:C ./ `〉 if H(C) is defined and H(C) ./ `;
– a concept definition 〈A .

= C ≥ `〉 if, whenever H(A) is defined, then H(C)
is defined and (H(A)⇒ H(C))⊗ (H(C)⇒ H(A)) ≥ `;5

– a GCI 〈C v D ≥ `〉 if H(C) and H(D) are defined and H(C)⇒ H(D) ≥ `;
and

– an ABox/TBox if it is compatible with all axioms in it.

The support of H is the set supp(H) of all C ∈ sub(O) for which H is defined,
and Ind(H) is the set of all a ∈ Ind(O) for which {a} ∈ supp(H) and H({a}) = 1.

We denote by H|sub(O) the restriction of a Hintikka function H to sub(O).
The first step of our decision procedure is to guess Hintikka functions for

all named individuals. Since a domain element can have several names, we first
need a partition P of Ind(O) that groups together all names referring to the same
element. Given P, we denote by [a]P the class of P that contains a ∈ Ind(O).
Then, we guess, for each X ∈ P, one Hintikka function describing the behavior of
the individual designated by the names inX. This is similar to the approach used
in [3] to decide concept satisfiability in classicalALCOQ with acyclic TBoxes. We
additionally guess the values of the role connections between all named elements
using fuzzy binary relations rP on P for every role name r ∈ Rol(O).

Definition 14 (pre-completion). A pre-completion for the ontology O is a
triple (P,HP ,RP), where P is a partition of Ind(O), HP = (HX)X∈P is a
family of Hintikka functions for O, and RP = (rP)r∈Rol(O) is a family of fuzzy
binary relations rP : P × P → L such that, for all X ∈ P,

– Ind(HX) = X;
– HX is compatible with T ; and
– HX is compatible with AX := {〈a:C ./ `〉 ∈ A | a ∈ X}.

A Hintikka function H for O is compatible with this pre-completion if for all
a ∈ Ind(H), we have H|sub(O) = H[a]P |sub(O).

Each HX is compatible with the pre-completion (P,HP ,RP) since, for every
a ∈ Ind(HX) = X we have [a]P = X. We extend the family RP to complex roles
by setting r−P (X,Y ) := rP(Y,X) for all X,Y ∈ P.

Hintikka trees are k-ary trees labelled with Hintikka functions, where k is the
number of existential and value restrictions in sub(O). Intuitively, each successor
acts as the witness for one of these restrictions. As in Section 2.1, we define
K := {1, . . . , k}. Since we need to know which successor in the tree corresponds
to which restriction, we fix an arbitrary bijection

ϕ : {C | C ∈ sub(O) is of the form ∃s.D or ∀s.D} → K,

5 This method, called lazy unfolding, is only correct for acyclic TBoxes.



and denote by ϕs(O) for a role s the set of all indices i ∈ K such that i = ϕ(C)
for a C ∈ sub(O) of the form ∃s.D or ∀s.D.

Definition 15 (Hintikka condition). The tuple (H0, H1, . . . ,Hk) of Hintikka
functions for O satisfies the Hintikka condition if the following hold:

(i) For every existential restriction ∃s.C ∈ sub(O):
– If ∃s.C ∈ supp(H0) and i = ϕ(∃s.C), then we have C ∈ supp(Hi) and
H0(∃s.C) = Hi(ρ)⊗Hi(C).

– If ∃s.C ∈ supp(H0), then for all i ∈ ϕs(O) we have C ∈ supp(Hi) and
H0(∃s.C) ≥ Hi(ρ)⊗Hi(C).

– For all i ∈ ϕs(O) with ∃s.C ∈ supp(Hi), we have C ∈ supp(H0) and
Hi(∃s.C) ≥ Hi(ρ)⊗H0(C).

(ii) For every universal restriction ∀s.C ∈ sub(O):
– If ∀s.C ∈ supp(H0) and i = ϕ(∀s.C), then we have C ∈ supp(Hi) and
H0(∀s.C) = Hi(ρ)⇒ Hi(C).

– If ∀s.C ∈ supp(H0), then for all i ∈ ϕs(O) we have C ∈ supp(Hi) and
H0(∀s.C) ≤ Hi(ρ)⇒ Hi(C).

– For all i ∈ ϕs(O) with ∀s.C ∈ supp(Hi), we have C ∈ supp(H0) and
Hi(∀s.C) ≥ Hi(ρ)⇒ H0(C).

(iii) For all s ∈ Rol−(O), i, j ∈ ϕs(O), a ∈ Ind(Hi), and b ∈ Ind(Hj) with
[a]P = [b]P , we have Hi(ρ) = Hj(ρ).

(iv) For all a ∈ Ind(H0), s ∈ Rol−(O), i ∈ ϕs(O), and b ∈ Ind(Hi), we have
Hi(ρ) = sP([a]P , [b]P).

Condition (i) makes sure that an existential restriction ∃s.C is witnessed by its
designated successor ϕ(∃s.C) and all other s-successors do not contradict the
witness; this in particular includes possible s-predecessors.6 Condition (ii) treats
the universal restrictions analogously. Condition (iii) ensures that the value of
a role connection to a named individual remains the same regardless of which
index i is used to express it, and by Condition (iv) we enforce the previously
guessed role connections between named elements.

Definition 16 (Hintikka tree). Let (P,HP ,RP) be a pre-completion for O
and X ∈ P. A Hintikka tree for O starting with HX is a mapping T that assigns
to each node u ∈ K∗ a Hintikka function for O such that

(i) T(ε) = HX ;
(ii) for every u ∈ K∗, T(u) is compatible with T and the pre-completion; and
(iii) for every u ∈ K∗, (T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condition.

The definition of compatibility ensures that all axioms of T are satisfied at every
node of the Hintikka tree, while the Hintikka condition makes sure that the tree
satisfies the witnessing conditions for all relevant quantified concepts.

The proof of the following theorem uses arguments similar to those in [2,17].
The main difference to the classical case is the presence of successors witness-
ing the universal restrictions. We additionally have to deal here with the side
condition of compatibility with the pre-completion.
6 There is at most one such predecessor, namely the parent node.



Lemma 17. O is consistent iff there are a pre-completion (P,HP ,RP) for O
and, for each X ∈ P, a Hintikka tree for O starting with HX .

Proof. Assume that a pre-completion and the required Hintikka trees TX for O
starting with HX exist. We first remove irrelevant nodes in these Hintikka trees.
A node u ∈ K∗ is relevant inTX if Ind(TX(u′)) = ∅ for all (non-empty) ancestors
u′ ∈ K+ of u. The idea is that if a ∈ Ind(TX(u′)), then by the compatibility
with the pre-completion TX(u′) agrees with H[a]P = T[a]P (ε) on the values of
all concepts in sub(O), and thus TX(u′) can be replaced with T[a]P (ε). The
root nodes are always relevant since they are needed to represent the named
individuals. We now define the interpretation I with domain

∆I := {(X,u) ∈ P ×K∗ | u is relevant in TX}.

We set aI := ([a]P , ε) for all a ∈ Ind(O). For r ∈ NR and (X,u), (Y, v) ∈ ∆I ,

– rI((X,u), (Y, v)) := TX(ui)(ρ) if there is an index i ∈ ϕr(O) such that
either (i) (Y, v) = (X,ui) or (ii) v = ε and Ind(TX(ui)) ∩ Y 6= ∅;

– rI((X,u), (Y, v)) := TY (vi)(ρ) if there is an index i ∈ ϕr−(O) such that
either (i) (X,u) = (Y, vi) or (ii) u = ε and Ind(TY (vi)) ∩X 6= ∅; and

– rI((X,u), (Y, v)) := 0 otherwise.

To see that this is well-defined, consider the following three cases.

– If there are i, j ∈ ϕr(O) such that v = ε and both Ind(TX(ui)) ∩ Y and
Ind(TX(uj)) ∩ Y are non-empty, then from Condition (iii) of Definition 15
we obtain TX(ui)(ρ) = TX(uj)(ρ).

– For the dual case of i, j ∈ ϕr−(O) with u = ε, Ind(TY (vi)) ∩ X 6= ∅, and
Ind(TY (vj))∩X 6= ∅, we haveTY (vi)(ρ) = TY (vj)(ρ) by the same condition.

– If u = v = ε and there are i ∈ ϕr(O), j ∈ ϕr−(O), a ∈ Ind(TX(i)) ∩ Y , and
b ∈ Ind(TY (j))∩X, then we have Y = [a]P and X = [b]P . By Condition (iv)
of Definition 15, this implies TX(i)(ρ) = rP(X,Y ) = r−P (Y,X) = TY (j)(ρ).

We now define the interpretation of concept names. For a primitive concept
name A, we simply set AI(X,u) := TX(u)(A) for all (X,u) ∈ ∆I . I is extended
to the defined concept names while showing the following claim:

for all (X,u) ∈ ∆I and all C ∈ sub(O) for which TX(u)(C) is defined,
we have CI(X,u) = TX(u)(C).

(1)

We prove this by induction on the (non-negative) weight o(C), which is defined
inductively as follows:

– o(A) := o(>) := o({a}) := 0 for every primitive concept name A and every
a ∈ NI;

– o(A) := o(C) + 1 for every definition 〈A .
= C ≥ `〉 ∈ T ;

– o(¬C) := o(C) + 1;
– o(C uD) := o(C → D) := max{o(C), o(D)}+ 1; and
– o(∃s.C) := o(∀s.C) := o(C) + 1.



This weight is well-defined for general and acyclic TBoxes.
For C = >, Claim (1) follows immediately from Definition 13. For a primitive

concept name A, it holds by the definition of AI above.
If TX(u)({a}) is defined for some a ∈ Ind(O), then by Definition 13 this value

is either 0 or 1. If it is 0, then we cannot have TX(u) = H[a]P by Definition 14.
Thus, aI = ([a]P , ε) 6= (X,u), and hence {a}I(X,u) = 0 = TX(u)({a}). Other-
wise, we have TX(u)({a}) = 1, i.e. a ∈ Ind(TX(u)). Since u is relevant in TX ,
we infer that u = ε. By Definition 14, we get a ∈ Ind(TX(u)) = Ind(HX) = X,
and thus aI = ([a]P , ε) = (X,u). We conclude {a}I(X,u) = 1 = TX(u)({a}).

Consider now a defined concept name A with the definition 〈A .
= C ≥ `〉 ∈ T .

If TX(u)(A) is defined, then by the compatibility with T the value TX(u)(C)
is also defined and

(
TX(u)(A) ⇒ TX(u)(C)

)
⊗
(
TX(u)(C) ⇒ TX(u)(A)

)
≥ `.

Since o(C) < o(A), we get CI(X,u) = TX(u)(C) by induction. Thus, we can
define AI(X,u) := TX(u)(A) to ensure that I satisfies 〈A .

= C ≥ `〉 at (X,u).
Whenever TX(u)(A) is undefined, we can set AI(X,u) := CI(X,u) to satisfy
this concept definition without violating the claim.

If TX(u)(¬C) is defined, then TX(u)(C) is also defined. By induction, we
obtain (¬C)I(X,u) = ∼CI(X,u) = ∼TX(u)(C) = TX(u)(¬C). Similar argu-
ments show Claim (1) for conjunctions and implications.

Assume now that ` := TX(u)(∃s.C) is defined for a complex role s and
a concept C, and let i := ϕ(∃s.C). We first prove the existence of a witness
(Y, v) ∈ ∆I such that sI((X,u), (Y, v)) ⊗ CI(Y, v) = `. By the Hintikka condi-
tion, we know that TX(ui)(C) is defined and ` = TX(ui)(ρ)⊗TX(ui)(C). Since
u is relevant in TX , ui can only be irrelevant in TX if Ind(TX(ui)) 6= ∅. We
make a case distinction on whether ui is relevant or not. (1) If there exists an
a ∈ Ind(TX(ui)), then the compatibility of TX(ui) with the pre-completion im-
plies that T[a]P (ε)(C) = H[a]P (C) = TX(ui)(C) is defined. Since the root node ε
is relevant in T[a]P , by induction we get CI([a]P , ε) = T[a]P (ε)(C). Furthermore,
by the definition of sI we know that sI((X,u), ([a]P , ε)) = TX(ui)(ρ), and thus
we can choose the witness (Y, v) := ([a]P , ε). (2) Otherwise, Ind(TX(ui)) = ∅ and
(X,ui) ∈ ∆I . By induction, we have CI(X,ui) = TX(ui)(C), and from the defi-
nition of sI we obtain sI((X,u), (X,ui)) = TX(ui)(ρ), which allows us to choose
(Y, v) := (X,ui). It remains to show that sI((X,u), (Z,w))⊗CI(Z,w) ≤ ` holds
for all other (Z,w) ∈ ∆I , which implies that (∃s.C)I(X,u) = `, as desired. In
the case that sI((X,u), (Z,w)) = 0, the claim is trivial. Otherwise, one of the
following two alternatives must hold:

– There is an index i ∈ ϕs(O) with sI((X,u), (Z,w)) = TX(ui)(ρ) and
(i) (Z,w) = (X,ui) or (ii) w = ε and Ind(TX(ui)) ∩ Z 6= ∅. From the
Hintikka condition we know that the value TX(ui)(C) is defined and sat-
isfies ` = TX(u)(∃s.C) ≥ TX(ui)(ρ) ⊗ TX(ui)(C). It thus suffices to show
that CI(Z,w) = TX(ui)(C). In the first case, TZ(w)(C) = TX(ui)(C) is
defined, and thus induction yields that CI(Z,w) = TZ(w)(C) = TX(ui)(C).
In Case (ii), we know that TZ(ε)(C) = HZ(C) = TX(ui)(C) by the com-
patibility of TX(ui) with the pre-completion. By induction we thus obtain
CI(Z,w) = CI(Z, ε) = TZ(ε)(C) = TX(ui)(C).



– There is an index i ∈ ϕs(O) with sI((X,u), (Z,w)) = TZ(wi)(ρ) and
(i’) (X,u) = (Z,wi) or (ii’) u = ε and Ind(TZ(wi)) ∩ X 6= ∅. In Case (i’),
we immediately get ` = TX(u)(∃s.C) = TZ(wi)(∃s.C). In the latter case,
from the compatibility of TZ(wi) with the pre-completion we also get that
` = TX(u)(∃s.C) = TX(ε)(∃s.C) = HX(∃s.C) = TZ(wi)(∃s.C). Thus, in
both cases the Hintikka condition yields that TZ(w)(C) is defined and we
have ` = TZ(wi)(∃s.C) ≥ TZ(wi)(ρ)⊗TZ(w)(C). By induction, we obtain
TZ(w)(C) = CI(Z,w), which proves the claim.

Claim (1) can be shown for value restrictions using similar arguments.
We have thus defined an interpretation I that satisfies all concept definitions

in T . In the case that T is a general TBox, consider any GCI 〈C v D ≥ `〉 ∈ T
and (X,u) ∈ ∆I . By the compatibility ofTX(u) with T , we know thatTX(u)(C)
and TX(u)(D) are defined and TX(u)(C) ⇒ TX(u)(D) ≥ `. By Claim (1), we
thus have CI(X,u) ⇒ DI(X,u) ≥ `, which shows that I satisfies the GCI.
Finally, consider an assertion 〈a:C ./ `〉 ∈ A. By the compatibility of H[a]P with
A[a]P (see Definition 14), we know that H[a]P (C) is defined and H[a]P (C) ./ `.
By Claim (1), we conclude CI(aI) = CI([a]P , ε) = T[a]P (ε)(C) = H[a]P (C) ./ `;
that is, I satisfies the assertion.

Conversely, assume that there is a model I of O. We define a pre-completion
(P,HP ,RP) for O based on the partition P := {{b ∈ Ind | aI = bI} | a ∈ Ind}.
For every r ∈ Rol(O) and X,Y ∈ P, we set rP(X,Y ) := rI(aI , bI), where
(a, b) is an arbitrary element of X × Y . Similarly, we set HX(ρ) := 0 and
HX(C) := CI(aI) for every C ∈ sub(O) to define the family HP = (HX)X∈P .
Since I satisfies T , this obviously defines Hintikka functions that are compatible
with T , and we also have Ind(HX) = X for every X ∈ P. Furthermore, for every
〈a:C ./ `〉 ∈ A, we have CI(aI) ./ `, and thus H[a]P (C) ./ `, which shows that
what we have defined above is indeed a pre-completion for O.

For a given X ∈ P, we now define the Hintikka tree TX starting with HX by
inductively constructing a mapping gX : K∗ → ∆I that specifies which elements
of ∆I represent the nodes of TX and satisfies the following property:

For all u ∈ K∗, C ∈ sub(O), s ∈ Rol−(O), and i ∈ ϕs(O), we have
TX(u)(C) = CI(gX(u)) and TX(ui)(ρ) = sI(gX(u), gX(ui)).

(2)

This in particular ensures that all constructed Hintikka functions are compatible
with T and with the pre-completion.

We start the construction by setting TX(ε) := HX and gX(ε) := aI , where
a is an arbitrary element of X. Thus, TX starts with HX and Claim (2) is
satisfied at ε. Let now u ∈ K∗ be any node for which TX and gX have al-
ready been defined while satisfying Claim (2), and consider any existential re-
striction ∃s.C ∈ sub(O) and i := ϕ(∃s.C). Since I is witnessed, there must
be a y ∈ ∆I such that (∃s.C)I(gX(u)) = sI(gX(u), y) ⊗ CI(y). We now set
gX(ui) := y, TX(ui)(ρ) := sI(gX(u), y), and TX(ui)(C) := CI(y) for all
C ∈ sub(O) to satisfy Claim (2) at ui. Likewise, for any ∀s.C ∈ sub(O) there
must be a y ∈ ∆I with (∀s.C)I(gX(u)) = sI(gX(u), y)⇒ CI(y), and we proceed
as above to define TX and gX at ui for i := ϕ(∀s.C).



We now show that every tuple (TX(u),TX(u1), . . . ,TX(uk)) with u ∈ K∗
satisfies the Hintikka condition. The first point of Condition (i) from Defi-
nition 15 is obviously satisfied by the above construction. Consider now any
∃s.C ∈ sub(O) and i ∈ ϕs(O). By Claim (2) and the semantics of existential
restrictions, we obtain

TX(u)(∃s.C) = (∃s.C)I(gX(u))

≥ sI(gX(u), gX(ui))⊗ CI(gX(ui))

= TX(ui)(ρ)⊗TX(ui)(C).

Similarly, for all i ∈ ϕs(O), we have

TX(ui)(∃s.C) = (∃s.C)I(gX(ui))

≥ sI(gX(ui), gX(u))⊗ CI(gX(u))

= TX(ui)(ρ)⊗TX(u)(C).

Condition (ii) can be shown by analogous arguments. For Condition (iii), let
u ∈ K∗, s ∈ Rol−(O), i, j ∈ ϕs(O), a ∈ Ind(TX(ui)), and b ∈ Ind(TX(uj))
with [a]P = [b]P . Then Claim (2) yields gX(ui) = aI = bI = gX(uj), and thus
TX(ui)(ρ) = sI(gX(u), aI) = TX(uj)(ρ).

For Condition (iv) consider u ∈ K∗, a ∈ Ind(TX(u)), s ∈ Rol−(O), i ∈ ϕs(O),
and b ∈ Ind(TX(ui)). By Claim (2), we get gX(u) = aI , gX(ui) = bI , and
TX(ui)(ρ) = sI(gX(u), gX(ui)) = sI(aI , bI) = sP([a]P , [b]P). ut

From this lemma it follows that consistency in L-ALCOI can be reduced to
deciding the existence of suitable family of Hintikka trees. By building looping
automata whose runs correspond exactly to those Hintikka trees, we further
reduce it to the emptiness problem for this class of automata.

Definition 18 (Hintikka automaton). Let (P,HP ,RP) be a pre-completion
for O and X ∈ P. The Hintikka automaton for O and HX is the looping au-
tomaton AO,HX

= (QO, IO,HX
,∆O), where

– QO is the set of all Hintikka functions for O that are compatible with T and
the pre-completion,

– IO,HX
:= {HX}, and

– ∆O is the set of all elements of Qk+1
O that satisfy the Hintikka condition.

The runs of AO,HX
are exactly the Hintikka trees for O starting with HX . Thus,

O is consistent iff there is a pre-completion (P,HP ,RP) for O such that AO,HX

is not empty for all X ∈ P.
Note that the number of partitions of Ind(O) is bounded by 2|Ind(O)|2 , the

number of Hintikka functions forO is bounded by (|L|+1)|sub(O)|+1, and the num-
ber of fuzzy binary relations on a partition of Ind(O) is bounded by |L||Ind(O)|2 .
Thus, the number of pre-completions for O is bounded exponentially in the
size of O and polynomially in the size of L. However, each pre-completion is
only of size polynomial in the size of the input. We can thus enumerate all



pre-completions in exponential time and for each of them check emptiness of
polynomially many looping automata. Since the size of these automata is ex-
ponential in the size of O and emptiness of looping automata is decidable in
polynomial time in the size of the automaton [37], the overall runtime of this
algorithm is bounded exponentially in the size of O.

This gives a tight upper bound for the complexity of consistency in L-ALCOI
since this problem is already ExpTime-hard for classicalALCOI, even for empty
TBoxes [30,35].

Theorem 19. In all fuzzy DLs between L-ALC and L-ALCOI, deciding con-
sistency w.r.t. general TBoxes is ExpTime-complete.

When restricting to acyclic TBoxes, reasoning in classical ALCO is PSpace-
complete [3,31]. We show in the following section that this remains true under
finite lattice semantics. A similar approach was used in [17] to prove the same
for L-ALCI, even in the presence of a role hierarchy or (crisp) transitive roles.

5 Consistency w.r.t. Acyclic TBoxes

Consider now an ontology O = (A, T ) from L-ALCO, i.e. that does not use
inverse roles, where T is an acyclic TBox. Notice that we can guess a partition P
of Ind(O) and families (HX)X∈P and (rP)r∈Rol(O) and verify the conditions of
Definition 14 in (non-deterministic) polynomial space. Thus, if we can show that
emptiness of the polynomially many Hintikka automata AO,HX

can be decided
in polynomial space, then we would obtain a PSpace upper bound for deciding
consistency in this logic. The idea is to modify the construction of these automata
into a PSpace on-the-fly construction. It is easy to see that the automata AO,HX

already satisfy all but one of the conditions from Definition 5:

(i) the arity k of the automata is given by the number of existential and value
restrictions in sub(O);

(ii) every Hintikka function (i.e. every state of the automaton) has size bounded
by |L|(|sub(O)|+ 1) since it consists of |sub(O)|+ 1 lattice values;

(iii) building a state or a transition of the automaton requires only to guess
|sub(O)|+1 or k(|sub(O)|+1) lattice values, respectively, and then verifying
that this is indeed a valid state or transition of the automaton, which can
be done in time polynomial in the size of L and O.

However, it is possible to build runs of AO,HX
where blocking occurs only after

exponentially many transitions, violating the first condition of PSpace on-the-
fly constructions. We will use a faithful family of functions to obtain reduced
automata that guarantee blocking after at most polynomially many transitions,
thus obtaining the PSpace upper bound.

For our construction to work, we need to make a small change to the definition
of compatibility of a Hintikka function H with the pre-completion (P,HP ,RP)
that we have guessed: for every a ∈ Ind(H), we only require the following weaker



condition: For all C ∈ sub(O) for which H(C) is defined, H[a]P (C) is also defined
and we have H(C) = H[a]P (C).

It can be seen that this condition would yield an incorrect construction in the
presence of inverse roles. However, if inverse roles are disallowed, then all results
obtained so far remain true under this modification. More precisely, the only
changes in the proof of Lemma 17 are in two places that refer to the compatibility
with the pre-completion (without using inverse roles). These are part of the proof
of Claim (1) for existential and value restrictions. In both places, it is enough to
be able to infer from the fact that a Hintikka function H is compatible with the
pre-completion, a ∈ Ind(H), and C ∈ supp(H) that we have C ∈ supp(H[a]P )
and H[a]P (C) = H(C). This is precisely the new condition that we are now
considering.

We now describe a faithful family of functions for AO,HX
that allows us to

obtain a PSpace-on-the-fly construction. The idea is that it suffices to consider
transitions that reduce the maximal role depth (w.r.t. T ) in the support of the
states. The role depth w.r.t. T (rdT ) of concepts is recursively defined as follows:

– rdT (A) := rdT (>) := rdT ({a}) := 0 for every primitive concept name A and
every a ∈ NI;

– rdT (A) := rdT (C) for every definition 〈A .
= C ≥ `〉 ∈ T ;

– rdT (¬C) := rdT (C);
– rdT (C uD) := rdT (C → D) := max{rdT (C), rdT (D)}; and
– rdT (∃r.C) := rdT (∀r.C) := rdT (C) + 1.

This is well-defined since T is an acyclic TBox.
Given a Hintikka function H for O, we define rdT (H) as the maximal role

depth rdT (C) of a concept C ∈ supp(H). For n ≥ 0, we further denote by
sub≤n(O) the set of all concepts C ∈ sub(O) with rdT (C) ≤ n.

Definition 20 (functions fH). Let H and H ′ be two states of AO,HX
and

n := rdT (H). We define the function fH(H ′) as follows for every C ∈ sub(O):

fH(H ′)(C) :=

{
H ′(C) if C ∈ sub≤n−1(O),
undefined otherwise,

fH(H ′)(ρ) :=

{
0 if supp(H) = ∅,
H ′(ρ) otherwise.

Since T is acyclic, the function fH(H ′) defined above is still a Hintikka function
for O compatible with all axioms of T . It also remains compatible with the
pre-completion (according to the modified definition of this notion) since it only
discards some values from H ′. Thus, it is again an element of QO.

Lemma 21. In L-ALCO, the family of functions fH is faithful w.r.t. AO,HX
.

Proof. ConsiderH,H0, H1, . . . ,Hk ∈ QO and let n := rdT (H) andH ′i := fH(Hi)
for all i, 0 ≤ i ≤ k. We first verify that if (H,H1, . . . ,Hk) satisfies the Hintikka
condition, then (H,H ′1, . . . ,H

′
k) also satisfies it.



If ∃s.C ∈ supp(H), then C ∈ supp(Hi) and H(∃s.C) = Hi(ρ) ⊗ Hi(C),
where i := ϕ(∃s.C). Since we have rdT (C) < rdT (∃s.G) ≤ rdT (H) = n, this
implies that C ∈ supp(H ′i) and H ′i(C) = Hi(C). Moreover, we know that
supp(H) 6= ∅, and thus H ′i(ρ) = Hi(ρ). This shows that the required equality
H(∃s.C) = Hi(ρ)⊗Hi(C) = H ′i(ρ)⊗H ′i(C) remains satisfied.

Let now ∃s.C ∈ supp(H) and i ∈ ϕs(O). By the same arguments as above,
H ′i(C) and H ′i(ρ) are defined and equal to Hi(C) and Hi(ρ), respectively. Thus,
the required inequality is still satisfied after applying fH . Since in L-ALCO there
are no inverse roles, the rest of Condition (i) of Definition 15 is trivially satisfied.
Condition (ii) follows by similar arguments.

For Condition (iii), consider any role name r ∈ Rol(O) and i, j ∈ ϕs(O). If
there are a ∈ Ind(H ′i) and b ∈ Ind(H ′j) with [a]P = [b]P , then this must already
have been the case for Hi and Hj . Since then supp(H) cannot be empty, we
still have H ′i(ρ) = Hi(ρ) = Hj(ρ) = H ′j(ρ). A similar argument shows that
Condition (iv) remains satisfied.

For the second condition of Definition 3, we assume that (H0, H1, . . . ,Hk)
satisfies the Hintikka condition and verify it for (H ′0, H

′
1, . . . ,H

′
k).

Consider any ∃s.C ∈ supp(H ′0) and i := ϕ(∃s.C). By the definition of fH , we
get H0(∃s.C) = H ′0(∃s.C) and rdT (C) < rdT (∃s.C) < rdT (H). Thus, Hi(C)
is defined and equal to H ′i(C). Moreover, supp(H) 6= ∅, which implies that
H ′i(ρ) = Hi(ρ). Thus, H ′0(∃s.C) = H0(∃s.C) = Hi(ρ)⊗Hi(C) = H ′i(ρ)⊗H ′i(C).

Again, the remaining part of Condition (i) can be shown by similar argu-
ments, replacing ϕ(∃s.C) by an element of ϕs(O) and the equality condition by
an inequality. The remaining conditions are similarly easy to verify. ut

By Lemma 4, AO,HX
is empty iff the induced subautomaton AS

O,HX
is empty. It

remains to show that the latter problem can be decided in PSpace.

Theorem 22. The construction of AS
O,HX

from L, O, and HX is a PSpace
on-the-fly construction.

Proof. We show that the automata AS
O,HX

are m-blocking for

m := max{rdT (C) | C ∈ sub(O)}+ 3.

The other conditions of Definition 5 have already been shown above.
By the definition of AS

O,HX
, every transition decreases the maximal role depth

of the support of the state. Hence, after at most max{rdT (C) | C ∈ sub(O)}+ 1
transitions, we must reach a state H that is undefined for all C ∈ sub(O), and
hence supp(H) = ∅. From the next transition on, all states additionally assign 0
to ρ. Hence, after at most m transitions, we find two states that are equal. Since
m is bounded by a polynomial in the size of O, the automata AS

O,HX
satisfy

Definition 5. ut

Theorem 6 yields the desired PSpace upper bound for consistency in L-ALCO.
PSpace-hardness follows from PSpace-hardness of consistency w.r.t. the empty
TBox in classical ALC [31].



Theorem 23. In L-ALCO, the problem of deciding consistency w.r.t. acyclic
TBoxes is PSpace-complete.

Using a different faithful family of functions, it was shown in [11] that consis-
tency of L-ALCI ontologies with acyclic TBoxes is also PSpace-complete. As
for ALCO, this matches the complexity of reasoning in classical DLs.

Notice that the notions of Hintikka functions and Hintikka trees are indepen-
dent of the operators used. One could use the residual negation 	` := `⇒ 0 to
interpret the constructor ¬, or the Kleene-Dienes implication `1 ⇒ `2 := ∼`1∨`2
instead of the residuum. The only restrictions are that the semantics must be
truth functional, i.e. the value of a formula must depend only on the values of its
direct subformulae, and the underlying operators must be computable in polyno-
mial time from the lattice values. We could also use a slightly different semantics
for concept definitions in which ⊗ is replaced by the simple meet t-norm ∧.

The algorithm can be modified for reasoning w.r.t. n-witnessed models for
n > 1. One needs only extend the arity of the Hintikka trees to account for n
witnesses for each quantified concept in sub(O); the arity of AO,HX

then grows
polynomially in n. This does not affect the obtained complexity upper bounds,
and hence Theorems 19 and 23 still hold.

6 Conclusions

We have shown that reasoning in L-ALCOI is not harder than in the underlying
crisp DL ALCOI, if L is a finite De Morgan lattice. More precisely, all the
standard reasoning problems in this logic are ExpTime-complete, even if the
TBox is assumed to be empty. If we disallow either nominals or inverse roles,
obtaining the logics L-ALCI and L-ALCO, respectively, then reasoning w.r.t.
acyclic TBoxes is PSpace-complete.

These complexity bounds extend previously known results for lattice-based
fuzzy DLs [11,13,14,18] and complements the work in [17], in which L-ALCI is
extended to allow transitivity and role inclusion axioms. Thus, tight complexity
bounds are also obtained for logics up to L-SHI, under some restrictions in the
interpretation of roles. Our methods demonstrate, once again, that automata
can show PSpace results for (fuzzy) DLs [2].

It is reasonable to expect that the construction from [17] for L-SHI can
be combined with the ideas from this paper for handling nominals, to obtain
an automata-based algorithm for reasoning in L-SHOI. A missing step is to
further generalize these methods, or develop new ones, to prove tight complex-
ity bounds for fuzzy variants of the current standard ontology languages, like
SROIQ(D). We also need to understand the effect of removing the restrictions
on roles from [17] to the complexity of reasoning.

Although their run-time behavior is optimal w.r.t. the complexity of the
problem, automata-based methods are typically not used in practice since their
best-case behavior is as bad as in the worst-case. It would thus be desirable to
produce reasoning algorithms that preserve the properties of the algorithms used



by current classical reasoners [6,28,32]. First steps in this direction have been
made in [12,15], where tableau-based algorithms with better run-time behavior
are proposed. Those algorithms, however, require a high-level of non-determinism
and are thus inappropriate for efficient implementation. Ideas for improvements
will be studied.
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