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Abstract. Knowledge and Action Bases (KABs) have been recently proposed
as a formal framework to capture the dynamics of systems which manipulate
Description Logic (DL) Knowledge Bases (KBs) through action execution. In
this work, we enrich the KAB setting with contextual information, making use
of different context dimensions. On the one hand, context is determined by the
environment using context-changing actions that make use of the current state
of the KB and the current context. On the other hand, it affects the set of TBox
assertions that are relevant at each time point, and that have to be considered when
processing queries posed over the KAB. Here we extend to our enriched setting
the results on verification of rich temporal properties expressed in µ-calculus,
which had been established for standard KABs. Specifically, we show that under
a run-boundedness condition, verification stays decidable and does not incur in
any additional cost in terms of worst-case complexity. We also show how to adapt
syntactic conditions ensuring run-boundedness so as to account for contextual
information, taking into account context-dependent activation of TBox assertions.

1 Introduction

Recent work in the areas of knowledge representation, databases, and business processes
[15, 26, 4, 10, 19] has identified the need for integrating static and dynamic aspects in
the design and maintenance of complex information systems. The static aspects are
characterized on the one hand by the data manipulated by the system, and on the other
hand by possibly complex domain knowledge that may vary during the evolution of
the system. Instead, dynamic aspects are affected by the processes that operate over the
system, by executing actions that manipulate the state of the system. In such a setting,
in which new data may be imported into the system from the outside environment, the
system becomes infinite-state in general, and the verification of temporal properties
becomes more challenging: indeed, neither finite-state model checking [14] nor most of
the current techniques for infinite-state model checking apply to this case.

Knowledge and action bases (KABs) [4] have been introduced recently as a mech-
anism for capturing systems in which knowledge, data, and processes are combined
and treated as first-class citizens. In particular, KABs provide a mechanism to represent
semantically rich information in terms of a description logic (DL) [1] knowledge base
(KB) and a set of actions that manipulate such a KB over time. Additionally, actions
allow one to import into the system fresh values from the outside, via service calls. In this
setting, the problem of verification of rich temporal properties expressed over KABs in a



first-order variant of the µ-calculus has been studied. Decidability has been established
under the assumptions that in the properties first-order quantification across states is
restricted, and that the system satisfies a so-called run-boundedness condition. Intuitively,
these ensure that along each run the system cannot encounter (and hence manipulate) an
unbounded number of distinct objects. In KABs, the intensional knowledge about the
domain, expressed in terms of a DL TBox, is assumed to be fixed along the evolution of
the system, i.e., independent of the actual state. However, this assumption is in general
too restrictive, since specific knowledge might hold or be applicable only in specific,
context-dependent circumstances. Ideally, one should be able to form statements that are
known to be true in certain cases, but not necessarily in all.

Work on representing and formally reasoning over contexts dates back to work
on generality in AI see [20]. Since then, there has been some effort in knowledge
representation and in DLs to devise context-sensitive formalisms, ranging from multi-
context systems [5] to many-dimensional logics [18]. An important aspect in modeling
context is related to the choice of which kind of information is considered to be fixed
and which context dependent. Specifically, for DLs, one can define the assertions in
the TBox [2, 13], the concepts [5], or both [24, 18] as context-dependent. Each choice
addresses different needs, and results in differences in the complexity of reasoning.

We follow here the approach of [2, 13], and introduce contextualized TBoxes, in
which each inclusion assertion is adorned with context information that determines under
which circumstances the inclusion assertion is considered to hold. The relation among
contexts is described by means of a lattice in [2] and by means of a directed acyclic graph
in [13]. In our case, we represent context using a finite set of context dimensions, each
characterized by a finite set of domain values that are organized in a tree structure. If for
a context dimension d, a value v2 is placed below v1 in the tree (i.e., v2 is a descendant
of v1), then the context associated to v1 is considered to be more general than the one
for v2, and hence whenever context dimension d is in value v2, it is also in value v1.

Starting from this representation of contexts, we enrich KABs towards context-

sensitive KABs (CKABs), by representing the intensional information about the domain
using a contextualized TBox, in place of an ordinary one. Moreover, the action compo-
nent of KABs, which specifies how the states of the system evolve, is extended in CKABs
with context changing actions. Such actions determine values for context dimensions
in the new state, based on the data and the context in the current state. In addition, also
regular state-changing actions can query, besides the state, also the context, and hence
be enabled or disabled according to the context. Notably, we show that verification of a
very rich temporal logic, which can be used to query the system evolution, contexts, and
data, is decidable for run-bounded CKABs. We also discuss how to recast the syntactic
condition of weak acyclicity [4], which ensures run-boundedness, to the case of CKABs.

2 Preliminaries

2.1 DL-LiteA
For expressing knowledge bases, we use the lightweight Description Logic (DL) [1]
DL-LiteA [9, 7]. The syntax for concept and role expressions in DL-LiteA is as follows:

B ::= N | 9R R ::= P | P

�



where N denotes a concept name, B a basic concept, P a role name, P� an inverse role,
and R a basic role. A DL-LiteA knowledge base (KB) is a tuple O = hT,Ai, where:

– T is a TBox, containing a finite set of assertion of the form:

B1 v B2 R1 v R2 B1 v ¬B2 R1 v ¬R2 (funct R)

From left to right, assertions of the first two columns respectively denote posi-

tive inclusions between basic concepts and basic roles; assertions of the third and
fourth columns denote negative inclusions between basic concepts and basic roles;
assertions of the last column denote functionality on roles.

– A is an Abox, i.e., a finite set of ABox membership assertions of the form N(c1) or
P (c1, c2), where c1, c2 denote individuals (constants).

We use the standard semantics of DLs based on FOL interpretations I = (�I
, ·I)

such that cI 2 �

I , NI ✓ �

I , and P

I ✓ �

I ⇥�

I . The semantics of the DL-LiteA
constructs and of TBox and ABox assertions, and the notions of satisfaction and of
model are as usual (see, e.g., [9]). We also say that A is T -consistent if O = hT,Ai is
satisfiable, i.e., admits at least one model.
Queries. We are interested to query the KB, i.e., retrieving relevant constants in the
ABox based on the query. We denote with ADOM(A) the set of constants appearing in

A. A union of conjunctive queries (UCQ) q over a KB O = hT,Ai is a FOL formula
of the form

W
1in

9~y
i

.conj
i

(~x, ~y
i

) with free variables ~x and existentially quantified
variables ~y1, . . . , ~yn. Each conj

i

(~x, ~y
i

) in q is a conjunction of atoms of the form N(z),
P (z, z0), where N and P respectively denote a concept and a role name occurring in T ,
and z, z0 are constants in ADOM(A) or variables in ~x or ~y

i

, for some 1  i  n.
The (certain) answers of q over O = hT,Ai are defined as the set ans (q, T,A) of

substitutions � which substitute the free variables of q with constants from ADOM(A)
such that q� evaluates to true in every model of O = hT,Ai. If q has no free variables,
then it is called boolean and its certain answers are either true or false.

We also consider an extension of UCQs, namely EQL-Lite(UCQ) [8] (briefly, ECQs),
that is, the FOL query language whose atoms are UCQs evaluated according to the
certain answer semantics above. Formally, an ECQ over a TBox T is a possibly open
formula of the form:

Q ::= [q] | ¬Q | Q1 ^Q2 | 9x.Q

where q is a UCQ over T . The certain answers ANS(Q,T,A) of an ECQ Q over

O = hT,Ai are obtained by first computing the certain answers over O = hT,Ai of
each UCQs embedded in Q, then evaluating them through the first-order part of Q,
and interpreting existential variables as ranging over ADOM(A). As stated in [8], the
reformulation algorithm for answering query q over DL-LiteA KB O = hT,Ai which
allows us to “compile away” the TBox (i.e., ans (q, T,A) = ans (rew(q), ;, A), where
rew(q) is a UCQ computed by the algorithm in [7]) can be extended to ECQs.

2.2 Knowledge and Action Bases

In the following, we make use of a countably infinite set � of constants, and a finite set
F of functions representing service calls, which can be used to introduce fresh values
from � into the system.



A knowledge and action base (KAB) is a tuple K = hT,A0,�,⇧i where: (i) T is a
DL-LiteA TBox capturing the domain of interest, (ii) A0 is the initial DL-LiteA ABox,
which intuitively represents the initial data of the system, (iii) � is a finite set of actions
that characterize the evolution of the system, (iv) ⇧ is a finite set of condition-action
rules forming a process that intuitively specifies when and how an action can be executed.
T and A0 together form the knowledge base while � and ⇧ form the action base.

An action ↵ 2 � represents the progression mechanism that changes the ABox in
the current state and hence generates a new ABox for the successor state. Formally, an
action ↵ 2 � is represented as ↵(p1, . . . , pn) : {e1, . . . , em} where (i) ↵ is the action

name, (ii) p1, . . . , pn are the input parameters, and (iii) {e1, . . . , em} is the set of effects.
Each effect e

i

is of the form [q+
i

] ^Q

�
i

 A

i

, where: (a) q+
i

is an UCQ, and Q

�
i

is an
arbitrary ECQ whose free variables occur all among the free variables of q+

i

. (b) A
i

is a
set of facts (over the alphabet of T ) which includes as terms: constants in ADOM(A0),
input parameters, free variables of q+

i

, and Skolem terms representing service calls
formed by applying a function f 2 F to one of the previous kinds of terms. Intuitively,
q

+
i

, together with Q

�
i

acting as a filter, selects the values that instantiate the facts listed
in A

i

. Collectively, the instantiated facts produced from all the effects of ↵ constitute the
newly generated ABox, once the ground service calls are substituted with corresponding
results. The process ⇧ is formally defined as a finite set of condition-action rules of
the form Q(~x) 7! ↵(~x), where: (i) ↵ 2 � is an action, and (ii) Q(~x) is an ECQ over T ,
which has the parameters of ↵ as free variables ~x, and quantified variables or values in
ADOM(A0) as additional terms.

Notice that KABs are a pristine action specification framework, aimed at understand-
ing the interaction between the static and dynamic components of systems evolving
over time, towards general decidability results for verification. On top of KABs, several
abstractions typical of reasoning about actions in AI can be built, see, e.g., [22].

KABs Execution Semantics. The execution semantics of a KAB is defined in terms of
a possibly infinite-state transition system. Formally, given a KAB K = hT,A0,�,⇧i,
we define its semantics by the transition system ⌥K = h�, T,⌃, s0, abox ,)i, where:
(i) T is a DL-LiteA TBox; (ii) ⌃ is a (possibly infinite) set of states; (iii) s0 2 ⌃ is the
initial state; (iv) abox is a function that, given a state s 2 ⌃, returns an ABox associated
to s; (v) ) ✓ ⌃ ⇥ ⌃ is a transition relation between pairs of states. Intuitively, the
transitions system ⌥K of KAB K captures all possible evolutions of the system by the
actions in accordance with the process rules.

During the execution, an action can issue service calls. In this paper, we assume
that the semantics of service calls is deterministic, i.e., along a run of the system,
whenever a service is called with the same input parameters, it will return the same
value. To enforce this semantics, the transition system remembers the results of previous
service calls in a so-called service call map that is part of the system state. Formally,
a service call map is defined as a partial function m : SC ! �, where SC is the set
{f(v1, . . . , vn) | f/n 2 F and {v1, . . . , vn} ✓ �} of (skolem terms representing)
service calls. Each state s 2 ⌃ of the transition system ⌥K is a tuple hA,mi, where A is
an ABox and m is a service call map.

The semantics of an action execution is as follows: Given a state s = hA,mi, let
↵ 2 � be an action of the form ↵(p1, . . . , pn) : {e1, . . . , em} with e

i

= [q+
i

] ^Q

�
i

 



A

i

, and let � be a parameter substitution for p1, . . . , pn with values taken from �.
We say that ↵ is executable in state s with parameter substitution �, if there exists
a condition-action rule Q(~x) 7! ↵(~x) 2 ⇧ s.t. ANS(Q�, T, A) is true. The result of
the application of ↵ to an ABox A using a parameter substitution � is captured by the
following function:

DO(T,A,↵�) =
[

[q+i ]^Q

�
i  Ai in ↵

[

⇢2ANS(([q+i ]^Q

�
i )�,T,A)

A

i

�⇢

Intuitively, the result of the evaluation of ↵ is obtained by combining the contribution of
each effect of ↵, which in turn is obtained by grounding the facts A

i

in the head of the
effect with all the certain answers of the query [q+

i

] ^Q

�
i

over hT,Ai.
The result of DO(T,A,↵�) is in general not a proper ABox, because it could contain

(ground) Skolem terms, attesting that in order to produce the ABox, some service
calls have to be issued. We denote by CALLS(DO(T,A,↵�)) the set of such ground
service calls, and by EVALS(T,A,↵�) the set of substitutions that replace such calls
with concrete values taken from �. Specifically, EVALS(T,A,↵�) is defined as

EVALS(T,A,↵�) = {✓ | ✓ : CALLS(DO(T,A,↵�)) ! � is a total function}.
With all these notions in place, we can now recall the execution semantics of a

KAB K = hT,A0,�,⇧i. To do so, we first introduce a transition relation EXECK that
connects pairs of ABoxes and service call maps due to action execution. In particular,
hhA,mi,↵�, hA0

,m

0ii 2 EXECK if the following holds: (i) ↵ is executable in state
s = hA,mi with parameter substitution �; (ii) there exists ✓ 2 EVALS(T,A,↵�)
s.t. ✓ and m “agree” on the common values in their domains (in order to realize the
deterministic service call semantics); (iii) A

0 = DO(T,A,↵�)✓; (iv) m

0 = m [ ✓ (i.e.,
updating the history of issued service calls).

The transition system ⌥K of K is then defined as h�, T,⌃, s0, abox ,)i where
s0 = hA0, ;i, and ⌃ and ) are defined by simultaneous induction as the smallest
sets satisfying the following properties: (i) s0 2 ⌃; (ii) if hA,mi 2 ⌃, then for all
actions ↵ 2 � , for all substitutions � for the parameters of ↵ and for all hA0

,m

0i
s.t. hhA,mi,↵�, hA0

,m

0ii 2 EXECK and A

0 is T -consistent, we have hA0
,m

0i 2 ⌃,
hA,mi ) hA0

,m

0i. A run of ⌥K is a (possibly infinite) sequence s0s1 · · · of states of
⌥K such that s

i

) s

i+1, for all i � 0.

3 Contextualizing Knowledge Bases

Following [21], we formalize context as a mathematical object. Basically, we follow
the approach in [24] of contextualizing knowledge bases by adopting the metaphor
of considering context as a box [6, 17]. Specifically, this means that the knowledge
represented by the TBox (together with the ABox) in a certain context is affected by the
values of parameters used to characterize the context itself.

Formally, to define the context, we fix a set of variables C
dim

= {d1, . . . , dn} called
context dimensions. Each context dimension d

i

2 C
dim

comes with its own tree-shaped
finite value domain hDom(d

i

),�
dii, where Dom(d

i

) represents the finite set of domain



values, and �
di represents the predecessor relation forming the tree. We denote the

domain value in the root of the tree with >
di . Intuitively, >

di is the most general value in
the tree-shaped value hierarchy of Dom(d

i

). We denote the fact that a context dimension
d is in value v by [d ; v], and call this a context dimension assignment.

A context C over a set C
dim

of context dimensions is defined as a set {[d1 ;

v1], . . . , [dn ; v

n

]} of context dimension assignments such that for each context
dimension d 2 C

dim

, there exists exactly one assignment [d ; v] 2 C.
To predicate over contexts, we introduce a context expression language L

cx

over
C

dim

, which corresponds to propositional logic where the propositional letters are
context dimension assignments over C

dim

. The syntax of L
cx

is as follows:

'

C

::= [d ; v] | '

C

^ '

0
C

| ¬'
C

where d 2 C
dim

, and v 2 Dom(d). We adopt the standard propositional logic semantics
and the usual abbreviations. The notion of satisfiability and model are as usual. We call a
formula expressed in L

cx

a context expression.
Observe that a context C = {[d1 ; v1], . . . , [dn ; v

n

]}, being a set of (atomic)
formulas in L

cx

, can be considered as a propositional theory. The semantics of value
domains in C

dim

can also be characterized by a L
cx

theory. Specifically, we define
the theory �Cdim as the smallest set of context expressions satisfying the following
conditions. For every context dimension d 2 C

dim

, we have:
– For all values v1, v2 2 Dom(d) s.t. v1 �

d

v2, we have that �Cdim contains the
expression [d ; v1] ! [d ; v2]. Intuitively, this states that the value v2 is more
general than v1, and hence, whenever we have [d ; v1] we can infer that [d ; v2].

– For all values v1, v2, v 2 Dom(d) s.t. v1 �
d

v and v2 �
d

v, we have that �Cdim

contains the expression [d ; v1] ! ¬[d ; v2]. Intuitively, this expresses that
sibling values v1 and v2 are disjoint.

Example 1. Consider an online retail enterprise (e.g., amazon.com) with many warehouses. A
simple order processing scenario is as follows: (i) The customer submits the order. (ii) The central
processing office receives the order. (iii) The assembler collects the ordered product. For each
product that is not available in the central warehouse, the assembler makes a request to one of
the warehouses having that product. (iv) The wrapper wraps the ordered product. (v) The quality

controller (QC) checks the prepared order. (vi) The delivery team delivers the order to the delivery
service. In this scenario we consider Cdim = {PP,S}, where PP stands for processing plan, and
S stands for season. Dom(PP) = {WE, ME, RE, N, AP} (WE stands for worker efficiency, ME
stands for material efficiency, RE stands for resource efficiency, N stands for normal processing

plan, and AP stands for any processing plan. ), where (i) WE �PP RE, (ii) ME �PP RE,
(iii) RE �PP AP, (iv) N �PP AP, For example, WE �PP RE means that worker efficiency is a
form of resource efficiency. Dom(S) = {WH, PS, LS, NS, AS} (WH stands for winter holiday,
PS stands for peak season, LS stands for low season, NS stands for normal season, and AS stands
for any season. ), where (i) WH �S PS, (ii) PS �S AS, (iii) NS �S AS, (iv) LS �S AS.

Context-Sensitive Knowledge Bases. We define a context-sensitive knowledge base

(CKB) O
cx

over C
dim

as a standard DL knowledge base in which the TBox assertions
are contextualized. Formally, a contextualized TBox T

cx

over C
dim

is a finite set of
assertions of the form ht : 'i, where t is a TBox assertion and ' is a context expression
over C

dim

. Intuitively, ht : 'i expresses that the TBox assertion t holds in all those



contexts satisfying ', taking into account the theory �Cdim . Given a contextualized
TBox T

cx

, we denote with VOC(T
cx

) the set of all concept and role names appearing in
T

cx

, independently from the context.
Given a CKB O

cx

= hT
cx

, Ai and a context C, both over C
dim

, we define the
KB O

cx

in context C as the KB OC

cx

= hTC

cx

, Ai, where T

C

cx

= {t | ht : 'i 2
T

cx

and C [ �Cdim |= '}.

Example 2. Continuing our example, in a normal situation, to guarantee a suitable service quality,
wrapper and assembler must not be the QC. However, in the situation (context) where we have
either peak season ([S ; PS]) or the company wants to promote worker efficiency ([PP ; WE]),
the wrapper and the assembler act also as QC. This situation can be encoded as follows:

hAssembler v ¬QC : [PP ; N] ^ [S ; NS]i hAssembler v QC : [PP ; WE] _ [S ; PS]i
hWrapper v ¬QC : [PP ; N] ^ [S ; NS]i hWrapper v QC : [PP ; WE] _ [S ; PS]i

4 Context-Sensitive Knowledge and Action Bases

We now enhance KABs with context-related information, introducing in particular
context-sensitive knowledge and action bases (CKABs), which consist of: (i) a context-
sensitive knowledge base (CKB), which maintains the information of interest, (ii) an
action base, which characterizes the system evolution, and (iii) context information that
evolves over time, capturing changing circumstances. Differently from KABs, where the
TBox is fixed a-priori and remains rigid during the evolution of the system, in CKABs
the TBox changes depending on the current context. Alongside the evolution mechanism
for data borrowed from KABs, CKABs include also a progression mechanism for the
context itself, giving raise to a system in which data and context evolve simultaneously.

4.1 Formalization of CKABs

As for standard KABs, in addition to � and F , we fix the set C
dim

= {d1, . . . , dn} of
context dimensions. A CKAB is a tuple K

cx

= hT
cx

, A0,�,⇧, C0,⇧C

i where:
– T

cx

is a DL-LiteA contextualized TBox capturing the domain of interest.
– A0 and � are as in a KAB.
– ⇧ is a finite set of condition-action rules that extend those of KABs by including, in

the precondition, a context expression. Such context expression implicitly selects
those contexts in which the corresponding action can be executed. Specifically, each
condition-action rule has the form hQ(~x),'

C

i 7! ↵(~x), where (i) ↵ 2 � is an
action, (ii) Q(~x) is an ECQ over T

cx

whose free variables ~x correspond exactly to
the parameters of ↵, and (iii) '

C

is a context expression over C
dim

.
– C0 is the initial context over C

dim

.
– ⇧

C

is a finite set of context-evolution rules, each of which determines the con-
figuration of the new context depending on the current context and data. Each
context-evolution rule has the form hQ,'

C

i 7! C

new

, where: (i) Q is a boolean
ECQ over T

cx

, (ii) '

C

is a context expression, and (iii) C

new

is a finite set of context
dimension assignments such that for each context dimension d 2 C

dim

, there exists
at most one context dimension assignment [d ; v] 2 C. If a context variable is not
assigned by C

new

, it maintains the assignment of the previous state.



Example 3. In our running example, suppose the company has warehouses in a remote area
(remote warehouses), each of which is expected to guarantee a certain time to delivery (TTD) for
products. During the low season, the company is free to set the TTD for all its remote warehouses,
which we model as a chgTTD() action. The execution of this action is controlled by the condition-
action rule h9w.RemWH(w), [S ; LS]i 7! chgTTD(). Assuming that the company maintains
the TTD for a remote warehouse in the relation hasTTD, the chgTTD() action can be specified
as follows:

chgTTD() : { RemWH(x) ^ hasTTD(x, y) {RemWH(x), hasTTD(x, newTTD(x, y))}}

Intuitively, the unique effect in hasTTD updates the TTD of a remote warehouse x, by issuing a
service call newTTD(x, y), which also takes into account the current TTD y of x.

Example 4. An example of context-evolution rule is htrue, [S ; PS]i 7! [S ; NS]. It models
the transition from peak season to normal season, independently from the data.

4.2 CKAB Execution Semantics

We are interested in verifying temporal properties over the evolution of CKABs, in
particular “robust” properties that the system is required to guarantee independently
from context changes. Towards this goal, we define the execution semantics of CKABs
in terms of a possibly infinite-state transition system that simultaneously captures all
possible evolutions of the system as well as all possible context changes.

Each state in the execution of a CKAB is a tuple hid, A,m,Ci, where id is a state
identifier, A is an ABox maintaining the current data, m is a service call map accounting
for the service call results obtained so far, and C is the current context. The context
univocally selects which are the axioms of the contextual TBox that currently hold, in
turn determining the current KB.

Formally, given a CKAB K
cx

= hT
cx

, A0,�,⇧, C0,⇧C

i, we define its semantics
in terms of a context-sensitive transition system ⌥K

cx

= h�, T

cx

,⌃, s0, abox , ctx ,)i,
where: (i) T

cx

is a contextualized TBox; (ii) ⌃ is a set of states; (iii) s0 2 ⌃ is the initial
state; (iv) abox is a function that, given a state s 2 ⌃, returns the ABox associated to
s; (v) ctx is a function that, given a state s 2 ⌃, returns the context associated to s;
(vi) ) ✓ ⌃ ⇥⌃ is a transition relation between pairs of states.

Starting from the initial state s0, ⌥K
cx

accounts for all the possible (simultaneous)
data and context transitions. To single out the dynamics of the system as opposed to those
of the context, the transition system is built by repeatedly alternating between system
and context transitions. Technically, we revise the notion of executability for KABs by
taking into account context expressions, as well as the context evolution. Given an action
↵ 2 � , we say that ↵ is executable in state s with parameter substitution � if there exists
a condition-action rule hQ(~x),'

C

i 7! ↵(~x) in ⇧ s.t. ~x� 2 ANS(Q,T

ctx(s)
cx

, abox (s))
and ctx (s) [ �Cdim |= '

C

.
We then introduce an action transition relation EXECK

cx

, where
hhA,m,Ci,↵�, hA0

,m

0
, C

0ii 2 EXECK
cx

if the following holds:
– Action ↵ is executable in state hA,m,Ci with parameter substitution �.
– There exists ✓ 2 EVALS(TC

cx

, A,↵�) s.t. ✓ and m “agree” on the common values in
their domains;



– A

0 = DO(TC

cx

, A,↵�)✓;
– m

0 = m [ ✓;
– C

0 = C, i.e., the context does not change.
Alongside the action transition relation, we also define a context transition relation

CEXECK
cx

, where hhA,m,Ci, hA0
,m

0
, C

0ii 2 CEXECK
cx

if the following holds:
– A

0 = A, i.e., the ABox does not change;
– m

0 = m, i.e., the service call map does not change;
– there exists a context rule hQ,'

C

i 7! C

new

in ⇧

C

s.t.: (i) ANS(Q,T

C

cx

, A) is true;
(ii) C [ �Cdim |= '

C

; (iii) for every context dimension d 2 C
dim

s.t. [d ; v] 2
C

new

, we have [d ; v] 2 C

0; (iv) for every context dimension d 2 C
dim

s.t.
[d ; v] 2 C, and there does not exist any v2 s.t. [d ; v2] 2 C

new

, we have
[d ; v] 2 C

0.
Given these, we can now define how ⌥K

cx

is constructed, by suitably alternating the
action and context transitions. In order to single out the states obtained by applying
just an action transition and for which the context transition has not taken place yet,
we introduce a special marker State(inter), which is an ABox assertion with a fresh
concept name State and a fresh constant inter. When State(inter) is present, it means
that the state has been produced by an action execution, and that the next transition will
represent a context change. Such states can be considered as intermediate, in the sense
that the overall change both of the ABox facts and of the context has not taken place yet.

Formally, given a CKAB K
cx

= hT
cx

, A0,�,⇧, C0,⇧C

i, the context-sensitive
transition system ⌥K

cx

= h�, T

cx

,⌃, s0, abox , ctx ,)i is defined as follows:
– s0 = hid0, A0, ;, C0i;
– ⌃ and ) are defined by simultaneous induction as the smallest sets satisfying the

following properties: (i) s0 2 ⌃; (ii) if hid, A,m,Ci 2 ⌃ and State(inter) /2 A,
then for all actions ↵ 2 � , for all substitutions � for the parameters of ↵, and for all
A

0, m0 s.t. hhA,m,Ci,↵�, hA0
,m

0
, Cii 2 EXECK

cx

, let

S = {hid00, A0
,m

0
, C

0i | id00 is a fresh identifier, and there is hA0
,m

0
, Ci

such that hhA0
,m

0
, Ci, hA0

,m

0
, C

0ii 2 CEXECK
cx

}.

If for some hid00, A0
,m

0
, C

0i 2 S, we have that A0 is TC

0

cx

-consistent, then s

0 2 ⌃

and hid, A,m,Ci ) s

0, where s

0 = hid0, A0 [ {State(inter)},m0
, Ci and id

0 is a
fresh identifier. Moreover, in this case, for each s

00 = hid00, A0
,m

0
, C

0i 2 S such
that A0 is TC

0

cx

-consistent, we have that s00 2 ⌃ and s

0 ) s

00.
Notice that, if at some point in the above inductive construction, for no
hid00, A0

,m

0
, C

0i 2 S we have that A0 is TC

0

cx

-consistent, then neither the state s

0 nor
any state in S becomes part of ⌃.

5 Verifying Temporal Properties over CKAB

Given a CKAB K
cx

, we are interested in verifying whether the evolution of K
cx

, which
is represented by ⌥K

cx

, complies with some given temporal property. The challenge is
that in general the transition system is infinite due to the presence of services calls, which
can introduce arbitrary fresh values into the system.



5.1 Verification Formalism: Context-Sensitive FO-variant of µ-Calculus

In order to specify temporal properties over CKABs, we use a first-order variant of
µ-calculus [25, 23], one of the most powerful temporal logics, which subsumes LTL,
PSL, and CTL* [14]. In particular, we introduce the language µLCTX of context-sensitive

temporal properties, which is based on µLEQL
A

defined in [4]. Basically, we exploit
ECQs to query the states, and support a first-order quantification across states, where
the quantification ranges over the constants in the current active domain. Additionally,
we augment ECQs with context expressions, which allows us to check also context
information while querying states. Formally, µLCTX is defined as follows:

� := Q | '

C

| ¬� | �1 ^ �2 | 9x.� | h�i[�]� | [�][�]� | Z | µZ.�

where Q is a possibly open EQL query that can make use of the distinguished constants
in ADOM(A0), 'C

is a context expression over L
cx

, and Z is a second order predicate
variable (of arity 0). We adopt the usual abbreviations of FOL, and also [�]� = ¬h�i¬�
and ⌫Z.� = ¬µZ.¬�[Z/¬Z]. Hence h�ih�i� = ¬[�][�]¬� and [�]h�i� = ¬h�i[�]¬�.

Notice that h�i[�]� and [�][�]� are used in µLCTX to quantify over the successor states
of the current state, obtained after a state-changing transition followed by a context-
changing one. This allows one to separately control how the property quantifies over state
and context changes. Furthermore, due to the fact that the diamond and box operators can
be only used in pairs, the local queries that inspect the data and the context maintained
by the states are never issued over intermediate states, but only over those resulting from
the combination of an action and context transition.

The semantics of µLCTX is defined over a transition system
⌥ = h�, T

cx

,⌃, s0, abox , ctx ,)i. Since µLCTX contains formulae with both in-
dividual and predicate free variables, given a transition system ⌥, we introduce an
individual variable valuation v, i.e., a mapping from individual variables x to �, and a
predicate variable valuation V , i.e., a mapping from predicate variables Z to subsets of
⌃. The semantics of µLCTX follows the standard µ-calculus semantics, except for the
semantics of queries and of quantification. We assign meaning to µLCTX formulas by
associating to ⌥ and V an extension function (·)⌥

v,V

, which maps µLCTX formulas to
subsets of ⌃. The extension function (·)⌥

v,V

is defined inductively as follows:

(Q)⌥
v,V

= {s 2 ⌃ | ANS(Qv, T

C

cx

, abox (s)) = true}
('

C

)⌥
v,V

= {s 2 ⌃ | ctx (s) [ �Cdim |= '

C

}
(9x.�)⌥

v,V

= {s 2 ⌃ | 9d.d 2 ADOM(abox (s)) and s 2 (�)⌥
v[x/d],V }

(Z)⌥
v,V

= V (Z) ✓ ⌃

(¬�)⌥
v,V

= ⌃ � (�)⌥
v,V

(�1 _ �2)
⌥

v,V

= (�1)
⌥

v,V

[ (�2)
⌥

v,V

(h�i�)⌥
v,V

= {s 2 ⌃ | 9s0. s ) s

0 and s

0 2 (�)⌥
v,V

}
(µZ.�)⌥

v,V

=
T{E ✓ ⌃ | (�)⌥

v,V [Z/E] ✓ E}

where Qv is the query obtained from Q by substituting its free variables according to v.
For a closed formula � (for which (�)⌥

v,V

does not depend on v or V ), we denote with
(�)⌥ the extension of � in ⌥, and we say that � holds in a state s 2 ⌃ if s 2 (�)⌥ .



Model checking is the problem of checking whether s0 2 (�)⌥ , denoted by ⌥ |= �.
We are interested in verification of µLCTX properties over CKABs, i.e., given a CKAB
K

cx

, and a µLCTX property �, check whether ⌥K
cx

|= �.

Example 5. In our running example, the property ⌫Z.(8x.CustOrder(x) ^ [S ; PS] !
µY.(Delivered(x) _ [�][�]Y )) ^ [�][�]Z checks that every customer order placed during peak
season will be eventually delivered, independently on how the context and the state evolve.

5.2 Decidability of Verification

In general, verification of temporal properties over CKABs is undecidable, even for
properties as simple as reachability, which can be expressed in much weaker languages
than µLCTX. This follows immediately from the fact that CKABs generalize KABs [4].

In order to establish decidability of verification, we need to pose restrictions on
the form of CKABs. We adopt the semantic restriction of run-boundedness identified
in [4], which intuitively imposes that along every run the number of distinct values
cumulatively appearing in the ABoxes of the states in the run is bounded. Formally,
given a CKAB K

cx

, a run ⌧ = s0s1 · · · of ⌥K
cx

is bounded if there exists a finite bound
b s.t.

��S
s state of ⌧ ADOM(abox (s))

��
< b. We say that K

cx

is run-bounded if there exists
a bound b s.t. every run ⌧ in ⌥K

cx

is bounded by b. The following result shows that the
decidability of verification for run-bounded KABs can be lifted to CKABs as well.

Theorem 1. Verification of µLCTX properties over run-bounded CKABs is decidable,

and can be reduced to finite-state model checking.

Proof (sketch). For a run-bounded CKAB K
cx

, we construct a faithful finite-state ab-
straction for ⌥K

cx

, that is, a finite-state transition system ✓K
cx

s.t., for every µLCTX

property �, we have that ✓K
cx

|= � if and only if ⌥K
cx

|= �.
We observe that, thanks to run-boundedness, the number of distinct states appearing

along each run of ⌥K
cx

is finite. Hence, the only source of infinity present in ⌥K
cx

is due
to infinite branching. A distinctive feature of CKABs is that distinct states may differ
not only in the ABox, but also in the TBox. However, the possible TBoxes that can be
encountered during the system evolution depend only on the contexts, and not on the
data contained in the ABoxes. Since contexts are propositional, only a finite number
of distinct TBoxes will appear in ⌥K

cx

. This, in turn, shows that infinite branching is
only caused by the possibly infinite number of distinct values returned by the service
calls. Hence, the source of infinity in CKABs is analogous to that of KABs, and we can
adopt the same pruning strategy as for KABs [12]: we have shown that two successor
states whose ABoxes are isomorphic w.r.t. values not present in ADOM(A0) cannot be
distinguished by µL

A

formulas, and therefore it is sufficient to keep only one of them in
the faithful abstraction. The claim follows since µLCTX is a fragment of µL

A

.

We close by observing that, due to the “alternating” nature between action and
context transitions in ⌥K

cx

, we can interpret ⌥K
cx

as a game structure in which the
system is the “good” player and the context is the “bad” player. In this light, µLCTX

formulas that are in negation-normal form and only make use of temporal operators h�i[�]
and [�][�] can express properties that the system is required to guarantee independently



on how the context evolves. Thanks to Theorem 1, and by observing that CKABs meet
the so-called genericity property in the sense of [11], we can not only verify whether
there exists a system strategy to enforce a property of this kind, but also effectively
extract such strategy, following the metaphor of synthesis via model checking.

6 Weakly Acyclic CKABs

Even though run-boundedness guarantees decidability of µLCTX verification over CKABs,
it is a semantic property, which is undecidable to check [3]. To mitigate this problem,
[3] provides a sufficient condition for run-boundedness. Such condition leverages on
the notion of weak-acyclicity in data exchange [16], and is syntactically checked over a
dependency graph that over-approximates the transfer of values from relation components
to other relation components, according to the specification of the system actions.

Intuitively, weak-acyclicity checks for the presence of service calls that can feed
themselves, either directly or indirectly, through a chain of other service calls. This cyclic
dependency gives raise to runs in which infinitely many distinct service calls are issued,
and possibly return infinitely many distinct values, thus making those runs unbounded.

In [4], the notion of weak-acyclicity has been suitably recast in the context of KABs,
taking advantage from first-order rewritability of EQL queries over DL-Lite ontologies,
and from the fact that KABs have a TBox that is fixed, i.e., independent of the state. The
idea is to construct the dependency graph approximating the behavior of the KAB action
component, by considering the contribution of the TBox.

The main difficulty in lifting weak-acyclicity to our setting, is that due to the presence
of the context, the TBox changes over time. To tackle this issue, we observe that the
current TBox is determined by the current context, and that each action ↵ in a CKAB
can be executed only in those contexts that match with the context expressions contained
in the pre-conditions of condition-action rules having ↵ in their head. Therefore, when
analyzing the contribution of ↵ to the dependency graph, we consider all the possible
finitely many contexts in which ↵ can be applied, and consider the application of ↵ with
all corresponding TBoxes.

Formally, given a CKAB K
cx

= hT
cx

, A0,�,⇧, C0,⇧C

i, we define its dependency

graph G = hV,Ei as follows.
The set V of nodes is created from the concepts and roles in VOC(T

cx

), as the
smallest set satisfying the following conditions: (a) for each concept N in VOC(T

cx

), V
contains one node hN, 1i; (b) for each role R in VOC(T

cx

), V contains two nodes hR, 1i
and hR, 2i, respectively reflecting the first and second component of R.

The set E of edges is created based on the condition-action rules in ⇧ and the actions
in � . Each edge represents a possible data transfer from one node (i.e., concept/role
component) to another node, due to some action effect. In particular, a normal edge
represents a value transfer, whereas a special edge represents that the source node is part
of the input for a service call whose result is stored in the target node. Specifically, E
is the smallest set satisfying the following conditions (we consider the contribution of
concepts, the case of role components is analogous):
1. E contains an ordinary edge hN1, 1i ! hN2, 1i if there exist (i) an action ↵ 2 � ,

(ii) an effect [q+] ^ Q

�  A

0 in ↵, (iii) a condition-action rule hQ(~x),'
C

i 7!



↵(~x), and (iv) a variable x, s.t. N1(x) appears in rew(q+, TC↵
cx

) (i.e., in the perfect
rewriting of q+ w.r.t. TC↵

cx

), and N2(x) appears in A

0.
2. E contains a special edge hN1, 1i ⇤�! hN2, 1i if there exist (i) an action ↵ 2 � ,

(ii) an effect [q+]^Q

�  A

0 in ↵, (iii) a condition-action rule hQ(~x),'
C

i 7! ↵(~x),
and (iv) a variable x, s.t. N1(x) appears in rew(q+, TC↵

cx

), and N2(f(. . . , x, . . .))
appears in A

0.
A CKAB K

cx

is weakly acyclic if its dependency graph has no cycle going through
a special edge. Such a cycle witnesses that the same service call (in)directly feeds
itself. The following result shows that such “context-aware” dependency graph can be
effectively used as a sufficient condition for checking whether a CKAB is run-bounded.

Theorem 2. Given a weakly acyclic CKAB K
cx

, we have that ⌥K
cx

is run-bounded.

Proof (sketch). The proof is obtained by observing that the dependency graph construc-
tion for CKABs corresponds to that of standard KABs, imagining that the context is
“compiled away”, and that each (contextualized) action ↵ of the CKAB under study is
translated into a set of actions ↵1, . . . ,↵n

, each corresponding to the execution of ↵ in
one of the possible contexts in which ↵ can be applied. Observe that n is finite and, in
the worst case, it corresponds to the overall number of contexts that can be encountered
in the system. In standard KABs, the contribution of each action to the dependency graph
is obtained by compiling away the TBox and by considering the rewritten queries in
the action effects. Hence, there is no difference between a normal KAB and a CKAB
in which each of the aforementioned ↵

i

is rewritten using the TBox obtained from the
context to which ↵

i

corresponds. This is exactly what the dependency graph construction
provided above does. We can therefore recast Theorem 6.1 in [12] to obtain the claim.

From Theorems 1 and 2, we finally obtain:

Corollary 1. Verification of µLCTX properties over weakly acyclic CKABs is decidable,

and can be reduced to finite-state model checking.

7 Conclusion

We have introduced context-sensitive KABs, which extend KABs with contextual infor-
mation. In this enriched setting, we make use of context-sensitive temporal properties
based on a FOL variant of µ-calculus, and establish decidability of verification for such
logic over CKABs in which the data values encountered along each run are bounded.

In this work, we adopt a simplistic approach to deal with inconsistency, based on
simply rejecting inconsistent states. This approach is particularly critical in the presence
of contextual information, which could lead to an inconsistent state simply due to a
context change. In this light, it is particularly interesting to merge the approach presented
in this paper with the one in [12], where inconsistency is treated in a more sophisticated
way, based on the notion of repairs.
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13. Ceylan, İ.İ., Peñaloza, R.: The Bayesian description logic BEL. In: Proc. of the 7th Int. Joint
Conf. on Automated Reasoning (IJCAR). LNCS, vol. 8562, pp. 480–494. Springer (2014)

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge, MA,
USA (1999)

15. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of the 12th Int. Conf. on Database Theory (ICDT). pp. 252–267 (2009)

16. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering.
Theoretical Computer Science 336(1), 89–124 (2005)

17. Giunchiglia, F., Bouquet, P.: Introduction to contextual reasoning. an artificial intelligence
perspective. In: Perspectives on Cognitive Science, pp. 138–159. NBU Press (1997)

18. Klarman, S., Gutiérrez-Basulto, V.: ALCalc: A context description logic. In: Proc. of the 12th
Eur. Conference on Logics in Artificial Intelligence (JELIA). LNCS, vol. 6341, pp. 208–220.
Springer (2010)



19. Limonad, L., De Leenheer, P., Linehan, M., Hull, R., Vaculin, R.: Ontology of dynamic
entities. In: Proc. of the 31st Int. Conf. on Conceptual Modeling (ER) (2012)

20. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987)
21. McCarthy, J.: Notes on formalizing context. In: Proc. of the 13th Int. Joint Conf. on Artificial

Intelligence (IJCAI). pp. 555–560 (1993)
22. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based

multiagent systems. In: Proc. of the 13th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2014). pp. 157–164 (2014)

23. Park, D.M.R.: Finiteness is Mu-ineffable. Theoretical Computer Science 3(2), 173–181 (1976)
24. Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. J. of

Web Semantics 12, 64–87 (2012)
25. Stirling, C.: Modal and Temporal Properties of Processes. Springer (2001)
26. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proc. of the

12th Int. Conf. on Database Theory (ICDT). pp. 1–13 (2009)


