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Abstract. We introduce the probabilistic Description Logic BEL. In
BEL, axioms are required to hold only in an associated context. The
probabilistic component of the logic is given by a Bayesian network that
describes the joint probability distribution of the contexts. We study
the main reasoning problems in this logic; in particular, we (i) prove
that deciding positive and almost-sure entailments is not harder for BEL
than for the BN, and (ii) show how to compute the probability, and the
most likely context for a consequence.

1 Introduction

Description Logics (DLs) [2] are a family of knowledge representation formalisms
originally designed for representing the terminological knowledge of a domain in
a precise and well-understood manner. They have been successfully employed
for creating large knowledge bases, representing real application domains. For
instance, they are the logical formalism underlying prominent bio-medical on-
tologies such as Snomed CT, Galen, or the Gene Ontology.

Description logic ontologies are usually composed of axioms that restrict the
class of possible interpretations. As these are hard restrictions, DL ontologies
can only encode absolute, immutable knowledge. For some application domains,
however, knowledge depends on the situation (or context) in which it is consid-
ered. For example, the notion of a luxury hotel in a small rural center will be
different from the one in a large cosmopolitan city. When building an ontology
for hotels, it makes sense to contextualize the axioms according to location, and
possibly other factors like season, type of weather, etc. Since these contexts refer
to notions that are external to the domain of interest, it is not always desirable,
or even possible, to encode them directly into the classical DL axioms.

We follow a different approach for handling contextual knowledge. We label
every axiom with the context in which it is valid. For example, we could have
statements like 〈LuxuryHotel v ∃hasFeature.MeetingRoom : city〉 stating that in
the context of a city, every luxury hotel has a meeting room. This axiom im-
poses no restriction in case the context is not a city: it might still hold, or not,
depending on other factors.
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Labeling the axioms in an ontology allows us to give a more detailed descrip-
tion of the knowledge domain. Reasoning in these cases can be used to infer
knowledge that is guaranteed to hold in any given context. While the knowledge
within this context is precise, there might be a level of uncertainty regarding
the current context. To model this uncertainty, we attach a probability to each
of the possible contexts. Since we cannot assume that the contexts are (proba-
bilistically) independent, we need to describe the joint probability distribution
over the space of all contexts. Thus, we consider knowledge bases that are com-
posed of an ontology labeled with contextual information, together with a joint
probability distribution over the space of contexts.

To represent the probabilistic component of the knowledge base, we use
Bayesian networks (BNs) [14], a well-known probabilistic graphical model that
allows for a compact representation of the probability distribution, with the help
of conditional independence assumptions. For the logical component, we focus
on EL [1], a light-weight DL that allows for polynomial-time reasoning. These
formalisms together yield the Bayesian DL BEL.

We study classical and probabilistic reasoning problems in BEL. Not sur-
prisingly, reasoning in this logic is intractable in general, as is reasoning in BNs
already. However, we show that hardness arises exclusively from the probabilistic
component: the parameterized complexity of reasoning is polynomial, if the size
of the BN is considered as a parameter.

The choice of EL as underlying logical formalism is meant as a simple pro-
totypical case. It allows us to understand the subtleties of combining BNs with
DLs, as a first step towards more expressive formalisms. For a preliminary dis-
cussion on more expressive Bayesian DLs, and additional details and examples
for BEL, see [9].

2 The Description Logic BEL

The DL BEL is a probabilistic extension of the light-weight DL EL, where prob-
abilities are encoded using a Bayesian network [14]. Formally, a Bayesian net-
work (BN) is a pair B = (G,Φ), where G = (V,E) is a finite directed acyclic
graph (DAG) whose nodes represent Boolean random variables,3 and Φ contains,
for every node x ∈ V , a conditional probability distribution PB(x | π(x)) of x
given its parents π(x). If V is the set of nodes in G, we say that B is a BN over
V .

The idea behind BNs is that G = (V,E) encodes a series of conditional
independence assumptions between the random variables. More precisely, every
variable x ∈ V is conditionally independent of its non-descendants given its
parents. Thus, every BN B defines a unique joint probability distribution (JPD)
over V given by

PB(V ) =
∏
x∈V

PB(x | π(x)).

3 In their general form, BNs allow for arbitrary discrete random variables. We restrict
w.l.o.g. to Boolean variables for ease of presentation.
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Fig. 1: The BN B0 over V0 = {x, y, z}

A very simple BN is shown in Figure 1. From this network we can derive e.g.
P (x,¬y, z) = P (z | x,¬y) · P (¬y | x) · P (x) = 0.1 · 0 · 0.7 = 0.

As with classical DLs, the main building blocks in BEL are concepts, which
are syntactically built as EL concepts. Given two disjoint sets NC and NR of
concept names and role names, respectively, BEL concepts are defined through
the syntactic rule

C ::= A | > | C u C | ∃r.C

where A ∈ NC and r ∈ NR. In DLs, the domain knowledge is typically encoded as
a finite set of general concept inclusions (GCIs), called a TBox. BEL generalizes
classical TBoxes by annotating the GCIs with a context, defined by a set of
literals belonging to a BN.

Definition 1 (KB). Let V be a finite set of Boolean variables. A V -literal is
an expression of the form x or ¬x, where x ∈ V ; a V -context is a consistent set
of V -literals.

A V -restricted general concept inclusion (V -GCI) is an expression of the
form 〈C v D : κ〉 where C and D are BEL concepts and κ is a V -context. A
V -TBox is a finite set of V -GCIs.

A BEL knowledge base (KB) over V is a pair K = (B, T ) where B is a BN
over V and T is a V -TBox.

Intuitively, a V -GCI is an axiom that is only guaranteed to hold when its context
is enforced. The semantics of this logic is defined with the help of interpretations
that map concept and role names to unary and binary predicates, respectively;
additionally, these interpretations evaluate the random variables from the BN.

Definition 2 (interpretation). Given a finite set of Boolean variables V , a
V -interpretation is a tuple I = (∆I , ·I ,VI) where ∆I is a non-empty set called
the domain, VI : V → {0, 1} is a valuation of the variables in V , and ·I is an
interpretation function that maps every concept name A to a set AI ⊆ ∆I and
every role name r to a binary relation rI ⊆ ∆I ×∆I .

When there is no danger of ambiguity, we will usually ignore the parameter V
and speak simply of e.g. a TBox, a KB, or an interpretation.

The interpretation function ·I is extended to arbitrary BEL concepts by the
following rules.



− >I := ∆I

− (C uD)I := CI ∩DI
− (∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rIand e ∈ CI}

The valuation VI is extended to contexts by defining, for every x ∈ V ,
VI(¬x) = 1− VI(x), and for every context κ,

VI(κ) = min
`∈κ
VI(`),

where min`∈∅ VI(`) := 1. Intuitively, a context κ can be thought as a conjunct
of literals, which is evaluated to 1 iff each conjunct is so and 0 otherwise. We
say that the V -interpretation I is a model of the GCI 〈C v D : κ〉, denoted
as I |= 〈C v D : κ〉, iff (i) VI(κ) = 0, or (ii) CI ⊆ DI . It is a model of the
TBox T iff it is a model of all the GCIs in T . The idea is that the restriction
C v D is only required to hold whenever the context κ is satisfied. Thus, any
interpretation that violates the context trivially satisfies the whole axiom.

Example 3. Let V0 = {x, y, z}, and consider the V0-TBox

T0 := { 〈A v C : {x, y}〉 , 〈A v B : {¬x}〉 , 〈B v C : {¬x}〉}.

The interpretation I0 = ({d}, ·I0 ,V0) where V0({x,¬y, z}) = 1, AI0 = {d}, and
BI0 = CI0 = ∅ is a model of T0, but is not a model of the GCI 〈A v B : {x}〉.

The classical DL EL can be seen as a special case of BEL in which all GCIs are
associated with an empty context; that is, are of the form 〈C v D : ∅〉. Notice
that every valuation satisfies the empty context ∅. Thus, a V -interpretation I
satisfies the GCI 〈C v D : ∅〉 iff CI ⊆ DI . We say that T entails 〈C v D : ∅〉,
denoted by T |= C v D, if every model of T is also a model of 〈C v D : ∅〉. For
a valuation W of the variables in V , we can define a TBox containing all axioms
that must be satisfied in any V -interpretation I = (∆I , ·I ,VI) with VI =W.

Definition 4 (restriction). Let K = (B, T ) be a KB. The restriction of T to
a valuation W of the variables in V is the TBox

TW := {〈C v D : ∅〉 | 〈C v D : κ〉 ∈ T ,W(κ) = 1}.

So far, our semantics have focused on the evaluation of the Boolean variables and
the interpretation of concepts, ignoring the probabilistic information provided
by the BN. To handle these probabilities, we introduce multiple-world semantics
next. Intuitively, a V -interpretation describes a possible world; by assigning a
probabilistic distribution over these interpretations, we describe the required
probabilities, which should be consistent with the BN.

Definition 5 (probabilistic model). A probabilistic interpretation is a pair
P = (I, PI), where I is a set of V -interpretations and PI is a probability distri-
bution over I such that PI(I) > 0 only for finitely many interpretations I ∈ I.



This probabilistic interpretation is a model of the TBox T if every I ∈ I is
a model of T . P is consistent with the BN B if for every possible valuation W
of the variables in V it holds that∑

I∈I,VI=W

PI(I) = PB(W).

The probabilistic interpretation P is a model of the KB (B, T ) iff it is a (prob-
abilistic) model of T and consistent with B.

One simple consequence of this semantics is that probabilistic models preserve
the probability distribution of B for subsets of literals; i.e., contexts. The proof
follows from the fact that a context corresponds to a partial valuation. Hence,
the probability of a context κ is the sum of the probabilities of all valuations
that extend κ.

Theorem 6. Let K = (B, T ) be a KB, and κ a context. For every model P of
K it holds that ∑

I∈I,VI(κ)=1

PI(I) = PB(VI(κ)).

For the following sections it will be useful for proving our results to consider a
special kind of interpretations, which we call pithy. These interpretations contain
at most one V -interpretation for each valuation of the variables in V . Each
of these V -interpretations provides the essential information associated to the
corresponding valuation.

Definition 7 (pithy). The probabilistic interpretation P = (I, PI) is called
pithy if for every valuation W of the variables in V there exists at most one
V -interpretation I = (∆I , ·I ,VI) ∈ I such that VI =W.

We now study classical and probabilistic reasoning problems in BEL, and analyse
their complexity.

3 Reasoning in BEL

In the previous section we have described how probabilistic knowledge can be
represented using a BEL KB. We now focus our attention to reasoning with this
knowledge. The most basic decision problem in any DL is whether an ontology
is consistent. It turns out that, as for classical EL, this problem is trivial in BEL.

Theorem 8. Every BEL KB is consistent.

Proof (Sketch). Let K = (B, T ) be a BEL KB. Let ∆I = {a} and ·I be such that
AI = {a} and rI = {(a, a)} for all A ∈ NC and r ∈ NR. For every valuation W,
define the V -interpretation IW = (∆I , ·I ,W). Then, the probabilistic interpre-
tation P = (I, PI) where I = {IW | W is a valuation} and PI(IW) = PB(W) is
a model of K.



A more interesting reasoning problem is subsumption: decide whether a concept
is interpreted as a subclass of another one. We generalize this problem to consider
also the contexts and probabilities provided by the BN.

Definition 9 (subsumption). Let C,D be two BEL concepts, κ a context,
and K a KB. C is contextually subsumed by D in κ w.r.t. K, denoted as
〈C vK D : κ〉, if every probabilistic model of K is also a model of the TBox
{〈C v D : κ〉}. For a probabilistic interpretation P = (I, PI), we define the
probability of a consequence P (〈C vP D : κ〉) :=

∑
I∈I,I|=〈CvD:κ〉 PI(I). The

probability of 〈C v D : κ〉 w.r.t. K is defined as

P (〈C vK D : κ〉) := inf
P|=K

P (〈C vP D : κ〉).

We say that C is positively subsumed by D in κ if P (〈C vK D : κ〉) > 0, and C
is p-subsumed by D in κ, for p ∈ (0, 1] if P (〈C vK D : κ〉) ≥ p. We sometimes
refer to 1-subsumption as almost-sure subsumption.

Clearly, if C is subsumed by D in κ w.r.t. a KB K, then P (〈C vK D : κ〉) = 1.
The converse, however, may not hold since the subsumption relation might be
violated in V -interpretations of probability zero.

Example 10. Consider the KB K0 = (B0, T0), where B0 is the BN depicted in
Figure 1 and T0 the TBox from Example 3. It follows that P (〈A vK0 C : ∅〉) = 1
and P (〈C vK0 B : {x, y}〉) = 0. Moreover, for any two concepts E,F , it holds
that P (〈E vK0

F : {x,¬y}〉) = 1 since 〈E vK0
F : {x,¬y}〉 can only be violated

in V -interpretations that have probability 0. However, in general the consequence
〈E vK0

F : {x,¬y}〉 does not hold.

3.1 Probabilistic Subsumption

We consider first the problem of computing the probability of a subsumption,
or deciding positive, p-subsumption, and almost-sure subsumption. As an inter-
mediate step, we show that it is possible w.l.o.g. to restrict reasoning to pithy
models.

Lemma 11. Let K be a KB. If P is a probabilistic model of K, then a pithy
model Q of K can be computed such that for every two concepts C,D and context
κ it holds that P (〈C vQ D : κ〉) ≤ P (〈C vP D : κ〉).

Proof (Sketch). Let W be a valuation and I, I ′ ∈ I two V -interpretations such
that VI = VI′ = W. Construct a new interpretation J as the disjoint union of
I and I ′. The probabilistic interpretation (H, PH) with H = (I ∪ {J }) \ {I, I ′}
and

PH(H) :=

{
PI(H) H 6= J
PI(I) + PI(I ′) H = J

is a model of K. Moreover, J |= 〈C v D : κ〉 iff both I |= 〈C v D : κ〉 and
I ′ |= 〈C v D : κ〉. ut



As we show next, the probability of a consequence can be computed by reasoning
over the restrictions TW of T .

Theorem 12. Let K = (B, T ) be a KB, C,D two concepts and κ a context.

P (〈C vK D : κ〉) = 1− PB(κ) +
∑

TW |=CvD
W(κ)=1

PB(W).

Proof. For every valuation W construct the V -interpretation IW as follows. If
TW |= C v D, then IW is any model (∆IW , ·IW ,W) of TW ; otherwise, IW
is any model (∆IW , ·IW ,W) of TW that does not satisfy 〈C v D : κ〉, which
must exist by definition. The probabilistic interpretation PK = (I, PI) such that
I = {IW | W a valuation of V } and PI(IW) = PB(W) for all W is a model of
K and

P (〈C vPK D : κ〉) =
∑

IW |=〈CvD:κ〉

PI(IW)

=
∑
W(κ)=0

PI(IW) +
∑

W(κ)=1,
IW |=〈CvD:κ〉

PI(IW)

= 1− PB(κ) +
∑

TW |=CvD
W(κ)=1

PB(W).

Thus, P (〈C vK D : κ〉) ≤ 1− PB(κ) +
∑
TW |=CvD,W(κ)=1 PB(W). Suppose now

that the inequality is strict, then there exists a probabilistic model P = (J, PJ)
of K such that P (〈C vP D : κ〉) < P (〈C vPK D : κ〉). By Lemma 11, we can
assume w.l.o.g. that P is pithy, and hence for every valuationW with PB(W) > 0
there exists exactly one JW ∈ J with VJW =W. We thus have∑

JW |=〈CvD:κ〉,W(κ)=1

PJ(JW) <
∑

IW |=〈CvD:κ〉,W(κ)=1

PI(IW).

Since PI(IW) = PJ(JW) for allW, then there must exist a valuation V such that
IV |= 〈C v D : κ〉 but JV 6|= 〈C v D : κ〉. Since JV is a model of TV it follows
that TV 6|= C v D. By construction, then we have that IV 6|= 〈C v D : κ〉, which
is a contradiction. ut

Based on this theorem, we can compute the probability of a subsumption as
described in Algorithm 1. The algorithm simply verifies for all possible valuations
W, whether TW entails the desired axiom. Clearly, the for loop is executed 2|V |

times; that is, once for each possible valuation of the variables in V . Each of
these executions needs to compute the probability PB(W) and, possibly, decide
whether TW |= C v D. The former can be done in polynomial time on the size
of B, using the standard chain rule [14], while deciding entailment from an EL
TBox is polynomial on T [8]. Overall, Algorithm 1 runs in time exponential on



Algorithm 1 Probability of Subsumption

Input: KB K = (B, T ), GCI 〈C v D : κ〉
Output: P (〈C vK D : κ〉)
1: P ← 0, Q← 0
2: for all valuations W do
3: if W(κ) = 0 then
4: Q← Q+ PB(W)
5: else if TW |= C v D then
6: P ← P + PB(W)

7: return 1−Q+ P

B but polynomial on T . Moreover, the algorithm requires only polynomial space
since the different valuations can be enumerated using only |V | bits. Thus, we
obtain the following result.

Theorem 13. The problem of deciding p-subsumption is in PSpace and fixed-
parameter tractable where |V | is the parameter.4

As a lower bound, unsurprisingly, p-subsumption is at least as hard as deciding
probabilities from the BN. Since this latter problem is hard for the class PP [19],
we get the following result.

Theorem 14. Deciding p-subsumption is PP-hard.

If we are interested only in deciding positive or almost-sure subsumption, then
we can further improve these upper bounds to NP and coNP, respectively.

Theorem 15. Deciding positive subsumption is NP-complete. Deciding almost-
sure subsumption is coNP-complete.

Proof. To decide positive subsumption, we can simply guess a valuation W and
check in polynomial time that (i) PB(W) > 0 and (ii) either W(κ) = 0 or
TW |= C v D. The correctness of this algorithm is given by Theorem 12. Thus
the problem is in NP.

To show hardness, we recall that deciding, given a BN B and a variable
x ∈ V , whether PB(x) > 0 is NP-hard [11]. Consider the KB K = (B, ∅) and
A,B two arbitrary concept names. It follows from Theorem 12 that PB(x) > 0
iff P (〈A vK B : {¬x}〉) > 0. Thus positive subsumption is NP-hard. The coNP-
completeness of almost-sure subsumption can be shown analogously. ut

Notice once again that the non-determinism needed to solve these problems is
limited to the number of random variables in B. More precisely, exactly |V | bits
need to be non-deterministically guessed, and the rest of the computation runs
in polynomial time. In practical terms this means that subsumption is tractable

4 Recall that a problem is fixed-parameter tractable if it can be solved in polynomial
time, assuming that the parameter is fixed [15].



as long as the DAG remains small. On the other hand, Algorithm 1 shows that
the probabilistic and the logical components of the KB can be decoupled while
reasoning. This is an encouraging result as it means that one can apply the
optimized methods developed for BN inference and for DL reasoning directly in
BEL without major modifications.

3.2 Contextual Subsumption

We now turn our attention to deciding whether a contextual subsumption re-
lation follows from all models of the KB in a classical sense; that is, whether
〈C vK D : κ〉 holds. Contrary to classical EL, subsumption in BEL is already
intractable, even if we consider only the empty context.

Theorem 16. Let K be a KB and C,D two concepts. Deciding 〈C vK D : ∅〉 is
coNP-hard.

Proof. We present a reduction from validity of DNF formulas, which is known
to be coNP-hard [10]. Let φ = σ1 ∨ . . . ∨ σn be a DNF formula where each σi
is a conjunctive clause and let V be the set of all variables appearing in φ. For
each variable x ∈ V , we introduce the concept names Bx and B¬x and define the
TBox Tx := {〈A v Bx : {x}〉 , 〈A v B¬x : {¬x}〉}. For every conjunctive clause
σ = `1 ∧ . . . ∧ `m define the TBox Tσ := {〈B`1 u . . . uB`m v C : ∅〉}. Let now
K = (B, T ) where B is an arbitrary BN over V and T =

⋃
x∈V Tx ∪

⋃
1≤i≤n Tσi

.
It is easy to see that φ is valid iff 〈A vK C : ∅〉. ut

The main reason for this hardness is that the interaction of contexts might pro-
duce consequences that are not obvious at first sight. For instance, a consequence
might follow in context κ not because the axioms from κ entail the consequence,
but rather because any valuation satisfying κ will yield it. That is the main idea
in the proof of Theorem 16; the axioms that follow directly from the empty con-
text never entail the subsumption A v C, but if φ is valid, then this subsumption
follows from all valuations. We obtain the following result.

Lemma 17. Let K = (B, T ) be a KB. Then 〈C vK D : κ〉 iff for every valuation
W with W(κ) = 1, it holds that TW |= C v D.

It thus suffices to identify all valuations that define TBoxes entailing the conse-
quence. To do this, we will take advantage of techniques developed in the area
of axiom-pinpointing [6], access control [3], and context-based reasoning [4]. It
is worth noticing that subsumption relations depend only on the TBox and not
on the BN. For that reason, for the rest of this section we focus only on the
terminological part of the KB.

We can think of every context κ as the conjunctive clause χκ :=
∧
`∈κ `. In

this view, the V -TBox T is a labeled TBox over the (distributive) lattice B of
all Boolean formulas over the variables V , modulo equivalence. Each formula φ
in this lattice defines a sub-TBox Tφ which contains all axioms 〈C v D : κ〉 ∈ T
such that χκ |= φ.



Using the terminology from [4], we are interested in finding a boundary for
a consequence. Given a TBox T labeled over the lattice B and concepts C,D, a
boundary for C v D w.r.t. T is an element φ ∈ B such that for every join-prime
element ψ ∈ B it holds that ψ |= φ iff Tψ |= C v D (see [4] for further details).
Notice that the join-prime elements of B are exactly the valuations of variables
in V . Using Lemma 17 we obtain the following result.

Theorem 18. Let φ be a boundary for C v D w.r.t. T in B. Then, for any
context κ we have that 〈C vK D : κ〉 iff χκ |= φ.

While several methods have been developed for computing the boundary of a
consequence, they are based on a black-box approach that makes several calls to
an external reasoner. We present a glass-box approach that computes a compact
representation of the boundary directly. This method, based on the standard
completion algorithm for EL [8], can in fact compute the boundaries for all
subsumption relations between concept names that follow from the KB.

For our completion algorithm we assume that the TBox is in normal form; i.e.,
all GCIs are of the form 〈A1 uA2 v B : κ〉, 〈A v ∃r.B : κ〉, or 〈∃r.A v B : κ〉,
where A,A1, A2, B ∈ NC ∪ {>}. It is easy to see that every V -TBox can be
transformed into an equivalent one in normal form in linear time.

Given a TBox in normal form, the completion algorithm uses rules to label
a set of assertions until no new information can be added. Assertions are tuples
of the form (A,B) or (A, r,B) where A,B ∈ NC ∪ {>} and r ∈ NR are names
appearing in the TBox. The function lab maps every assertion to a Boolean
formula φ over the variables in V . Intuitively, lab(A,B) = φ expresses that
TW |= A v B in all valuations W that satisfy φ; and lab(A, r,B) = φ expresses
that TW |= A v ∃r.B in all valuations W that satisfy φ. The algorithm is
initialized with the labeling of assertions

lab(α) :=

{
t α is of the form (A,>) or (A,A) for A ∈ NC ∪ {>}
f otherwise,

where t is a tautology and f a contradiction in B. This function is modified by
applying the rules from Table 1 where for brevity, we denote lab(α) = φ by
αφ. Every rule application changes the label of one assertion for a more general
formula. The number of assertions is polynomial on T and the depth of the
lattice B is exponential on |V |. Thus, in the worst case, the number of rule
applications is bounded exponentially on |V |, but polynomially on T .

Clearly, all the rules are sound; that is, at every step of the algorithm it holds
that TW |= A v B for all concept names A,B and all valuations W that satisfy
lab(A,B), and analogously for (A, r,B). It can be shown using techniques from
axiom-pinpointing (see e.g. [7, 4]) that after termination the converse also holds;
i.e., for every valuation W, if TW |= A v B, then W |= lab(A,B). Thus, we
obtain the following result.

Theorem 19. Let lab be the labelling function obtained through the completion
algorithm. For every two concept names A,B appearing in T , lab(A,B) is a
boundary for A v B w.r.t. T .



Table 1: Completion rules for subsumption in BEL

If

{ 〈A1 uA2 v B : κ〉 ∈ T , }
then lab(X,B) := (χκ ∧ φ1 ∧ φ2) ∨ ψ(X,A1)φ1 , (X,A2)φ2 , (X,B)ψ

χκ ∧ φ1 ∧ φ2 6|= ψ

If

{ 〈A v ∃r.B : κ〉 ∈ T }
then lab(X, r,B) := (χκ ∧ φ) ∨ ψ(X,A)φ, (X, r,B)ψ

χκ ∧ φ 6|= ψ

If

{ 〈∃r.A v B : κ〉 ∈ T }
then lab(X,B) := (χκ ∧ φ1 ∧ φ2) ∨ ψ(X, r, Y )φ1 , (Y,A)φ2 , (X,B)ψ

χκ ∧ φ1 ∧ φ2 6|= ψ

Once we know a boundary φ for A v B w.r.t. T , we can decide whether
〈A vK B : κ〉: we need only to verify whether χκ |= φ. This decision is in NP on
|V |. Although the algorithm is described exclusively for concept names A,B, it
can be used to compute a boundary for C v D, for arbitrary BEL concepts C,D,
simply by adding the axioms 〈A0 v C : ∅〉 and 〈D v B0 : ∅〉, where A0, B0 are
new concept names, to the TBox, and then computing a boundary for A0 v B0

w.r.t. the extended TBox. This yields the following result.

Corollary 20. Subsumption in BEL can be decided in exponential time, and is
fixed-parameter tractable where |V | is the parameter.

Clearly, the boundary for C v D provides more information than necessary
for deciding whether the subsumption holds in a given context κ. It encodes
all contexts that entail the desired subsumption. We can use this knowledge to
deduce the most likely context.

3.3 Most Likely Context

The problem of finding the most likely context for a consequence can be seen
as the dual of computing the probability of this consequence. Intuitively, we are
interested in finding the most likely explanation for an event; assuming that a
consequence holds, we are interested in finding an explanation for it, in the form
of a context, that has the maximal probability of occurring.

Definition 21 (most likely context). Given a KB K = (B, T ) and con-
cepts C,D, the context κ is called a most likely context for C v D w.r.t. K
if (i) 〈C vK D : κ〉, and (ii) for every context κ′, if 〈C vK D : κ′〉 holds, then
PB(κ′) ≤ PB(κ).

Notice that we are not interested in maximizing P (〈C vK D : κ〉) but rather
PB(κ). Indeed, these two problems can be seen as dual, since P (〈C vK D : κ〉)
depends inversely, but not exclusively, on PB(κ) (see Theorem 12).

Algorithm 2 computes the set of all most likely contexts for C v D w.r.t.
K, together with their probability. It maintains a value p of the highest known



Algorithm 2 Compute all most likely contexts

Input: KB K = (B, T ), concepts C,D
Output: The set Λ of most likely contexts for C v D w.r.t. K and probability p ∈ [0, 1]
1: Λ← ∅, p← 0
2: φ← boundary(C v D, T ) . compute a boundary for C v D w.r.t. T
3: for all contexts κ do
4: if χκ |= φ then
5: if PB(κ) > p then
6: Λ← {κ}
7: p← PB(κ)
8: else if PB(κ) = p then
9: Λ← Λ ∪ {κ}

10: return Λ, p

x1 x2 · · · xn
x1

1

x2

1

xn

1

Fig. 2: The BN Bn over {x1, . . . , xn}

probability for a context, and a set Λ with all the contexts that have probability
p. The algorithm first computes a boundary for the consequence, which is used to
test, for every context κ whether 〈C vK D : κ〉 holds. In that case, it compares
PB(κ) with p. If the former is larger, then the highest probability is updated to
this value, and the set Λ is restarted to contain only κ. If they are the same,
then κ is added to the set of most likely contexts.

Computing a boundary requires exponential time on T . Likewise, the number
of contexts is exponential on B, and for each of them we have to test propositional
entailment, which is also exponential on B. Overall, we have the following.

Theorem 22. Algorithm 2 computes all most likely contexts for C v D w.r.t.
K in exponential time.

In general, it is not possible to lower this exponential upper bound, since a
simple consequence may have exponentially many most likely contexts. For ex-
ample, given a natural number n ≥ 1, let Bn = (Gn, Φn) be the BN where
G = ({x1, . . . , xn}, ∅), i.e., G contains n nodes and no edges connecting them,
and for each i, 1 ≤ i ≤ n Φn contains the distribution with PB(xi) = 1 (see
Figure 2). For every context κ ⊆ {x1, . . . , xn}, we have that PB(κ) = 1 which
means that there are 2n most likely contexts for A v A w.r.t. the KB (Bn, ∅).

Algorithm 2 can be adapted to compute one most likely context in a more
efficient way. The main idea is to order the calls in the for loop by decreasing
probability. Once one context κ with χκ |= φ has been found, it is guaranteed to
be a most likely context and the algorithm may stop. This approach would still
require exponential time in the worst case. However, recall that simply verifying
whether κ is a context for C v D is already coNP-hard (Theorem 16), and hence



deciding whether it is a most likely context is arguably hard for the second level
of the polynomial hierarchy. On the other hand, this exponential bound depends
exclusively on |V |. Hence, as before, we have that deciding whether a context is
a most likely context for a consequence is fixed-parameter tractable over |V |.

4 Related Work

The amount of work on handling uncertain knowledge with description logics
is too vast to cover in detail here. Many probabilistic description logics have
been defined, which differ not only in their syntax but also in their use of the
probabilities and their application. These logics were recently surveyed in [17].
We discuss here only those logics most closely related to ours.

One of the first attempts for combining BNs and DLs was P-Classic [16],
which extended Classic through probability distributions over the interpreta-
tion domain. The more recent PR-OWL [12] uses multi-entity BNs to describe
the probability distributions of some domain elements. In both cases, the prob-
abilistic component is interpreted providing individuals with a probability dis-
tribution; this differs greatly from our multiple-world semantics, in which we
consider a probability distribution over a set of classical DL interpretations.

Perhaps the closest to our approach are the Bayesian extension of DL-Lite [13]
and DISPONTE [18]. The latter allows for so-called epistemic probabilities that
express the uncertainty associated to a given axiom. Their semantics are based,
as ours, on a probabilistic distribution over a set of interpretations. The main
difference with our approach is that in [18], the authors assume that all probabil-
ities are independent, while we provide a joint probability distribution through
the BN. Another minor difference is that in DISPONTE it is impossible to obtain
classical consequences, as we do.

Abstracting from the different logical constructors used, the logic in [13] looks
almost identical to ours. There is, however, a subtle but important difference. In
our approach, an interpretation I satisfies an axiom 〈C v D : κ〉 if VI(κ) = 1
implies CI ⊆ DI . In [13], the authors employ a closed-world assumption over the
contexts, where this implication is substituted for an equivalence; i.e., VI(κ) = 0
also implies CI 6⊆ DI . The use of such semantics can easily produce inconsistent
KBs, which is impossible in BEL.

5 Conclusions

We have introduced the probabilistic DL BEL, which extends the classical EL
to express uncertainty. Our basic assumption is that we have certain knowledge,
which depends on an uncertain situation, or context. In practical terms, this
means that every axiom is associated to a context with the intended meaning
that, if the context holds, then the axiom must be true. Uncertainty is repre-
sented through a BN that encodes the probability distribution of the contexts.
The advantage of using Bayesian networks relies in their capacity of describing
conditional independence assumptions in a compact manner.



We have studied the complexity of reasoning in this probabilistic logic. Con-
trary to classical EL, reasoning in BEL is in general intractable. More precisely,
we have shown that positive subsumption is NP-complete, and almost-sure sub-
sumption is coNP-complete. For the other reasoning problems we have not found
tight complexity bounds, but we proved that p-subsumption is NP-hard and in
PSpace, while contextual subsumption and deciding most likely contexts are
between coNP and ExpTime.

In contrast to these negative complexity results, we have shown that the
complexity can be decoupled between the probabilistic and the logical compo-
nents of the KB. Indeed, all these problems are fixed-parameter tractable over
the parameter |V |. This means that, if we have a fixed number of contexts, then
all these problems can be solved in polynomial time. It is not unreasonable,
moreover, to assume that the number of contexts is quite small in comparison to
the size of the TBox. Finally notice that reasoning with the BN itself is already
intractable. What we have shown is that intractability is a consequence of the
contextual and probabilistic components of the KB, and not of the logical one.

There are several directions for future work. First, we would like to tighten
our complexity results. Notice that the main bottleneck in our algorithms for
deciding contextual subsumption and computing the most likely contexts is the
computation of the boundary, which requires exponential time. It has been ar-
gued that a compact representation of the pinpointing formula, which is a spe-
cial case of the boundary, can be computed in polynomial time for EL using
an automata-based approach [5]. If making logical inferences over this compact
encoding is not harder than for the formula itself, then we would automatically
obtain a ΣP

2 algorithm for deciding contextual subsumption. Likewise, a context
could be verified to be a most likely context for a consequence in PSpace.

A different direction will be to extend our semantics to more expressive logics.
In particular, we will include assertion and role axioms into our knowledge bases.
Since many of our algorithms depend only on the existence of a reasoner for the
logic, such extension should not be a problem. Our complexity results, on the
other hand, would be affected by these changes. From the probabilistic side,
we can also consider other probabilistic graphical models to encode the JPD
of the contexts. Finally, we would like to consider problems that tighten the
relationship between the probabilistic and the logical components. One of such
problems would be to update the BN according to evidence attached to the
TBox.
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