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Abstract. Recently, Bayesian extensions of Description Logics, and in
particular the logic BEL, were introduced as a means of representing
certain knowledge that depends on an uncertain context. In this paper
we introduce a novel structure, called proof structure, that encodes the
contextual information required to deduce subsumption relations from
a BEL knowledge base. Using this structure, we show that probabilis-
tic reasoning in BEL can be reduced in polynomial time to standard
Bayesian network inferences, thus obtaining tight complexity bounds for
reasoning in BEL.

1 Introduction

Description Logics (DLs) [2] are a family of knowledge representation formalisms
that are characterized by their clear syntax, and formal, unambiguous semantics.
DLs have been successfully employed for creating large knowledge bases, repre-
senting real application domains, prominently from the life sciences. Examples
of such knowledge bases are Snomed CT, Galen, or the Gene Ontology.

A prominent missing feature of classical DLs is the capacity of specifying a
context in which a portion of the knowledge holds. For instance, the behaviour
of a system may depend on factors that are extrogenous to the domain, such
as the weather conditions. For that reason, approaches for handling contexts in
DLs have been studied; see e.g. [13, 14]. Since the specific context in which the
ontology is being applied (e.g., the weather) may be uncertain, it is important to
adapt context-based reasoning to consider also a probabilistic distribution over
the contexts. Recently, BEL [7] and other probabilistic extensions of DLs [8]
were introduced to describe certain knowledge that depends on an uncertain
context, which is described by a Bayesian network (BN). Using these logics, one
can represent knowledge that holds e.g., when it rains. Interestingly, reasoning
in BEL can be decoupled between the logical part, and BN inferences. However,
despite the logical component of this logic being decidable in polynomial time,
the best known algorithm for probabilistic reasoning in BEL runs in exponential
time.
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We use a novel structure, called the proof structure, to reduce probabilistic
reasoning for a BEL knowledge base to probabilistic inferences in a BN. Briefly,
a proof structure describes all contexts that entail the wanted consequence. The
BN can then be used to compute the probability of these contexts, which yields
the probability of the entailment. Since this reduction can be done in polynomial
time, it provides tight upper bounds for the complexity of reasoning in BEL.

2 EL and Proof Structures

EL is a light-weight DL that allows for polynomial-time reasoning. It is based on
concepts and roles, corresponding to unary and binary predicates from first-order
logic, respectively. EL concepts are built inductively from disjoint, countably
infinite sets NC and NR of concept names and role names, and applying the
syntax rule C ::= A | > | C u C | ∃r.C, where A ∈ NC and r ∈ NR.

The semantics of EL is given by interpretations I = (∆I , ·I) where ∆I is a
non-empty domain and ·I is an interpretation function that maps every A ∈ NC

to a set AI ⊆ ∆I and every role name r to a binary relation rI ⊆ ∆I × ∆I .
The interpretation function ·I is extended to EL concepts by defining >I := ∆I ,
(C uD)I := CI ∩DI , and (∃r.C)I := {d ∈ ∆I | ∃e : (d, e) ∈ rI ∧ e ∈ CI}. The
knowledge of a domain is represented through a set of axioms restricting the
interpretation of the concepts.

Definition 1 (TBox). A general concept inclusion (GCI) is an expression of
the form C v D, where C, D are concepts. A TBox T is a finite set of GCIs.
The signature of T (sig(T )) is the set of concept and role names appearing in
T . An interpretation I satisfies the GCI C v D iff CI ⊆ DI ; I is a model of
the TBox T iff it satisfies all the GCIs in T .

The main reasoning service in EL is deciding the subsumption relations between
concepts based on their semantic definitions. A concept C is subsumed by D
w.r.t. the TBox T (T |= C v D) iff CI ⊆ DI for all models I of T .

It has been shown that subsumption can be decided in EL by a comple-
tion algorithm in polynomial time [1]. This algorithm requires the TBox to be
in normal form; i.e., where all axioms in the TBox are of one of the forms
A v B | A uB v C | A v ∃r.B | ∃r.B v A. It is well known that every TBox
can be transformed into an equivalent one in normal form of linear size [1, 5]; for
the rest of this paper, we assume that T is a TBox in normal form.

We are interested in deriving the subsumption relations in normal form that
follow from T ; we call the set of all these subsumption relations the normalised
logical closure of T . This closure can be computed by an exhaustive application
of the deduction rules from Table 1. Each rule maps a set of premises S to its
consequence α; such a rule is applicable to a TBox T if S ⊆ T but α /∈ T . In
that case, its application adds α to T . It is easy to see that these rules produce
the normalised logical closure of the input TBox. Moreover, the deduction rules
introduce only GCIs in normal form, and do not change the signature. Hence, if
n = |sig(T )|, the logical closure of T is found after at most n3 rule applications.



Table 1: Deduction rules for EL.
7→ Premises (S) Result (α) 7→ Premises (S) Result (α)

1 〈A v B〉, 〈B v C〉 〈A v C〉 7 〈A v ∃r.B〉, 〈∃r.B v C〉 〈A v C〉
2 〈A v ∃r.B〉, 〈B v C〉 〈A v ∃r.C〉 8 〈A uB v C〉, 〈C v X〉 〈A uB v X〉
3 〈A v ∃r.B〉, 〈C v A〉 〈C v ∃r.B〉 9 〈A uB v C〉, 〈X v A〉 〈X uB v C〉
4 〈∃r.A v B〉, 〈B v C〉 〈∃r.A v C〉 10 〈A uB v C〉, 〈X v B〉 〈A uX v C〉
5 〈∃r.A v B〉, 〈C v A〉 〈∃r.C v B〉 11 〈X uX v C〉 〈X v C〉
6 〈∃r.A v B〉, 〈B v ∃r.C〉 〈A v C〉

We will later associate a probability to the GCIs in the TBox T , and will be
interested in computing the probability of a subsumption. It will then be useful
to be able not only to derive the GCI, but also all the sub-TBoxes of T from
which it follows. Therefore, we store the traces of the deduction rules using a
directed hypergraph. A directed hypergraph is a tuple H = (V,E) where V is
a non-empty set of vertices and E is a set of directed hyper-edges of the form
e = (S, v) where S ⊆ V and v ∈ V . Given S ⊆ V and v ∈ V , a path from S
to v in H of length n is a sequence of hyper-edges (S1, v1), (S2, v2), . . . , (Sn, vn)
where vn = v and Si ⊆ S ∪ {vj | 0 < j < i} for all i, 1 ≤ i ≤ n.

Given a TBox T in normal form, we build the hypergraph HT = (VT , ET ),
where VT is the set of all GCIs in normal form that follow from T over the same
signature and ET = {(S, α) | S 7→ α, S ⊆ VT }, with 7→ the deduction relation
defined in Table 1. We call this hypergraph the proof structure of T . From the
soundness and completeness of the deduction rules, we get the following lemma.

Lemma 2. Let T be a TBox in normal form, HT = (VT , ET ) its proof struc-
ture, O ⊆ T , and C v D ∈ VT . There is a path from O to C v D in HT iff
O |= C v D.

HT is a compact representation of all the possible derivations of a GCI from
the GCIs in T [3, 4]. Traversing this hypergraph backwards from a GCI α being
entailed by T , one constructs all proofs for α; hence the name “proof structure.”
Since |VT | ≤ |sig(T )|3, it suffices to consider paths of length at most |sig(T )|3.

Clearly, the proof structure HT can be cyclic. To simplify the process of
finding the causes of a GCI being entailed, we build an unfolded version of this
hypergraph by making different copies of each node. In this case, nodes are pairs
of axioms and labels, where the latter indicates to which level the nodes belong in
the hypergraph. Given a set of axioms S, and i ≥ 0, Si := {(α, i) | α ∈ S} denotes
the i-labeled set of GCIs in S. Let n := |sig(T )|3, we define the sets Wi, 0 ≤ i ≤ n
inductively by setting W0 := {(α, 0) | α ∈ T } and for all i, 0 ≤ i < n

Wi+1 := {(α, i+ 1) | Si ⊆ Wi, S 7→ α} ∪ {(α, i+ 1) | (α, i) ∈ Wi}.

For each i, 0 ≤ i ≤ n, Wi contains all the GCIs that can be derived by at most i
applications of the deduction rules from Table 1. The unfolded proof structure of
T is the hypergraphHu

T = (WT , FT ), whereWT :=
⋃n

i=0 Wi and FT :=
⋃n

i=1 Fi,

Fi+1 := {(Si, (α, i+ 1)) | Si ⊆ Wi, S 7→ α} ∪ {({(α, i)}, (α, i+ 1)) | (α, i)∈Wi}.



Algorithm 1 Construction of the pruned proof structure

Input: TBox T
Output: H = (W,F ) pruned proof structure for T
1: V0 ← T , E0 ← ∅, i← 0
2: do
3: i← i+ 1
4: Vi := Vi−1 ∪ {α | S 7→ α, S ⊆ Vi−1}
5: Ei = {(S, α) | S 7→ α, S ⊆ Vi−1}
6: while Vi 6= Vi−1 or Ei 6= Ei−1

7: W := {(α, k) | α ∈ Vk, 0 ≤ k ≤ i}
8: E := {(S, (α, k)) | (S, α) ∈ Ek, 0 ≤ k ≤ i}∪{({(α, k)}, (α, k+1)) | α ∈ Vk, 0≤k < i}
9: return (W,E)

The following is a simple consequence of our constructions and Lemma 2.

Theorem 3. Let T be a TBox, and HT = (VT , ET ) and Hu
T = (WT , FT ) the

proof structure and unfolded proof structure of T , respectively. Then,

1. for all C v D ∈ VT and all O ⊆ T , O |= C v D iff there is a path from
{(α, 0) | α ∈ O} to (C v D,n) in Hu

T , and
2. (S, α) ∈ ET iff (Sn−1, (α, n)) ∈ FT .

The unfolded proof structure of a TBox T is thus guaranteed to contain the
information of all possible causes for a GCI to follow from T . Moreover, this
hypergraph is acyclic, and has polynomially many nodes, on the size of T , by
construction. Yet, this hypergraph may contain many redundant nodes. Indeed,
it can be the case that all the simple paths in HT starting from a subset of T
are of length k < n. In that case, Wi = Wi+1 and Fi = Fi+1 hold for all i ≥ k,
modulo the second component. It thus suffices to consider the sub-hypergraph
of Hu

T that contains only the nodes
⋃k

i=0 Wi. Algorithm 1 describes a method
for computing this pruned hypergraph. In the worst case, this algorithm will
produce the whole unfolded proof structure of T , but will stop the unfolding
procedure earlier if possible. The do-while loop is executed at most |sig(T )|3
times, and each of these loops requires at most |sig(T )|3 steps.

Lemma 4. Algorithm 1 terminates in time polynomial on the size of T .

We briefly illustrate the execution of Algorithm 1 on a simple TBox.

Example 5. Consider the EL TBox T = {A v B,B v C,B v D,C v D}. The
first levels of the unfolded proof structure of T are shown in Figure 1.3 The
first level V0 of this hypergraph contains a representative for each axiom in T .
To construct the second level, we first copy all the GCIs in V0 to V1, and add a
hyperedge joining the equivalent GCIs (represented by dashed lines in Figure 1).
Then, we apply all possible deduction rules to the elements of V0, and add a

3 For the illustrations we drop the second component of the nodes, but visually make
the level information explicit.
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Fig. 1: The first levels of an unfolded proof structure and the paths to 〈A v D〉

hyperedge from the premises at level V0 to the conclusion at level V1 (continuous
lines). This procedure is repeated at each subsequent level. Notice that the set of
GCIs at each level is monotonically increasing. Additionally, for each GCI, the
in-degree of each representative monotonically increases throughout the levels.

In the next section, we recall BEL, a probabilistic extension of EL based on
Bayesian networks [7], and use the construction of the (unfolded) proof structure
to provide tight complexity bounds for reasoning in this logic.

3 The Bayesian Description Logic BEL

The probabilistic Description Logic BEL extends EL by associating every GCI
in a TBox with a probabilistic context. The joint probability distribution of the
contexts is encoded in a Bayesian network [12]. A Bayesian network (BN) is
a pair B = (G,Φ), where G = (V,E) is a finite directed acyclic graph (DAG)
whose nodes represent Boolean random variables,4 and Φ contains, for every
node x ∈ V , a conditional probability distribution PB(x | π(x)) of x given its
parents π(x). If V is the set of nodes in G, we say that B is a BN over V .

Intuitively, G = (V,E) encodes a series of conditional independence assump-
tions between the random variables: every variable x ∈ V is conditionally inde-
pendent of its non-descendants given its parents. Thus, every BN B defines a
unique joint probability distribution over V where PB(V ) =

∏
x∈V PB(x | π(x)).

As with classical DLs, the main building blocks in BEL are concepts, which are
syntactically built as EL concepts. The domain knowledge is encoded by a gen-
eralization of TBoxes, where axioms are annotated with a context, defined by a
set of literals belonging to a BN.

Definition 6 (KB). Let V be a finite set of Boolean variables. A V -literal is
an expression of the form x or ¬x, where x ∈ V ; a V -context is a consistent set
of V -literals.

A V -restricted general concept inclusion (V -GCI) is of the form 〈C v D : κ〉
where C and D are BEL concepts and κ is a V -context. A V -TBox is a finite

4 In their general form, BNs allow for arbitrary discrete random variables. We restrict
w.l.o.g. to Boolean variables for ease of presentation.



set of V -GCIs. A BEL knowledge base (KB) over V is a pair K = (B, T ) where
B is a BN over V and T is a V -TBox.5

The semantics of BEL extends the semantics of EL by additionally evaluating
the random variables from the BN. Given a finite set of Boolean variables V , a
V -interpretation is a tuple I = (∆I , ·I ,VI) where ∆I is a non-empty set called
the domain, VI : V → {0, 1} is a valuation of the variables in V , and ·I is an
interpretation function that maps every concept name A to a set AI ⊆ ∆I and
every role name r to a binary relation rI ⊆ ∆I ×∆I .

The interpretation function ·I is extended to arbitrary BEL concepts as in
EL and the valuation VI is extended to contexts by defining, for every x ∈ V ,
VI(¬x) = 1 − VI(x), and for every context κ, VI(κ) = min`∈κ VI(`), where
VI(∅) := 1. Intuitively, a context κ can be thought as a conjunction of literals,
which is evaluated to 1 iff each literal is evaluated to 1.

The V -interpretation I is a model of the V -GCI 〈C v D : κ〉, denoted as
I |= 〈C v D : κ〉, iff (i) VI(κ) = 0, or (ii) CI ⊆ DI . It is a model of the V -TBox
T iff it is a model of all the V -GCIs in T . The idea is that the restriction
C v D is only required to hold whenever the context κ is satisfied. Thus, any
interpretation that violates the context trivially satisfies the whole V -GCI.

Example 7. Let V0 = {x, y, z}, and consider the V0-TBox

T0 := {〈A v C : {x, y}〉 , 〈A v B : {¬x}〉 , 〈B v C : {¬x}〉}.

The V0-interpretation I0 = ({d}, ·I0 ,V0) with V0({x,¬y, z}) = 1, AI0 = {d}, and
BI0 = CI0 = ∅ is a model of T0, but is not a model of the V0-GCI 〈A v B : {x}〉,
since V0({x}) = 1 but AI0 6⊆ BI0 .

A V -TBox T is in normal form if for each V -GCI 〈α : κ〉 ∈ T , α is an EL GCI
in normal form. A BEL KB K = (T ,B) is in normal form if T is in normal form.
As for EL, every BEL KB can be transformed into an equivalent one in normal
form in polynomial time [6]. Thus, we consider only BEL KBs in normal form
in the following. The DL EL is a special case of BEL in which all V -GCIs are
of the form 〈C v D : ∅〉. Notice that every valuation satisfies the empty context
∅; thus, a V -interpretation I satisfies the V -GCI 〈C v D : ∅〉 iff CI ⊆ DI . We
say that T entails 〈C v D : ∅〉 (T |= C v D), if every model of T is also
a model of 〈C v D : ∅〉. For a valuation W of the variables in V , we define
the TBox containing all axioms that must be satisfied in any V -interpretation
I = (∆I , ·I ,VI) with VI = W.

Definition 8 (restriction). Let K = (B, T ) be a BEL KB. The restriction of
T to a valuation W of the variables in V is the V -TBox

TW := {〈C v D : ∅〉 | 〈C v D : κ〉 ∈ T ,W(κ) = 1}.

To handle the probabilistic knowledge provided by the BN, we extend the seman-
tics of BEL through multiple-world interpretations. A V -interpretation describes

5 Unless stated otherwise, we assume that K is over V in the rest of the paper.



a possible world; by assigning a probabilistic distribution over these interpreta-
tions, we describe the required probabilities, which should be consistent with the
BN provided in the knowledge base.

Definition 9 (probabilistic model). A probabilistic interpretation is a pair
P = (I, PI), where I is a set of V -interpretations and PI is a probability distri-
bution over I such that PI(I) > 0 only for finitely many interpretations I ∈ I.
P is a model of the TBox T if every I ∈ I is a model of T . P is consistent with
the BN B if for every possible valuation W of the variables in V it holds that∑

I∈I, VI=W

PI(I) = PB(W).

P is a model of the KB (B, T ) iff it is a model of T and consistent with B.

One simple consequence of this semantics is that probabilistic models preserve
the probability distribution of B for contexts; the probability of a context κ is
the sum of the probabilities of all valuations that extend κ.

3.1 Contextual Subsumption

Just as in classical DLs, we want to extract the information that is implicitly
encoded in a BEL KB. In particular, we are interested in solving different rea-
soning tasks for this logic. One of the fundamental reasoning problems in EL
is subsumption: is a concept C always interpreted as a subconcept of D? This
problem is extended to also consider the contexts in BEL.
Definition 10 (contextual subsumption). Let K = (T ,B) be a BEL KB,
C,D be two BEL concepts, and κ a V -context. C is contextually subsumed by
D in κ w.r.t. K, denoted 〈C vK D : κ〉, if every probabilistic model of K is also
a model of {〈C v D : κ〉}.
Contextual subsumption depends only on the contexts, and not on their associ-
ated probabilities. It was shown in [7] that contextual subsumption is coNP-hard,
even if considering only the empty context. To show that the problem is in fact
coNP-complete, we use the following lemma also shown in [7].

Lemma 11. Let K = (B, T ) be a KB. Then 〈C vK D : κ〉 iff for every valuation
W with W(κ) = 1, it holds that TW |= C v D.

Using this lemma, it is easy to see that contextual subsumption is in coNP: to
decide that the subsumption does not hold, we simply guess a valuation W and
verify in polynomial time that W(κ) = 1 and TW 6|= C v D.

Corollary 12. Contextual subsumption is coNP-complete.

In BEL one might be interested in finding the probability with which such a
consequence holds, or given a subsumption relation, computing the most prob-
able context in which it holds. For the rest of this section, we formally define
these reasoning tasks, and provide a method for solving them based on Bayesian
networks inferences.
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Fig. 2: A simple BN

3.2 Probabilistic Subsumption

We generalize subsumption between concepts to consider also the probabilities
provided by the BN.

Definition 13 (p-subsumption). Let K = (T ,B) be a BEL KB, C,D two
BEL concepts, and κ a V -context. For a probabilistic interpretation P = (I, PI),
we define P (〈C vP D : κ〉) :=

∑
I∈I,I|=〈CvD:κ〉 PI(I). The probability of the

V -GCI 〈C v D : κ〉 w.r.t. K is defined as

P (〈C vK D : κ〉) := inf
P|=K

P (〈C vP D : κ〉).

We say that C is p-subsumed by D in κ, for p ∈ (0, 1] if P (〈C vK D : κ〉) ≥ p.

Proposition 14 ([7]). Let K = (B, T ) be a KB. Then

P (〈C vK D : κ〉) = 1− PB(κ) +
∑

TW |=CvD
W(κ)=1

PB(W).

Example 15. Consider the KB K0 = (B0, T0), where B0 is the BN from Figure 2
and T0 the V0-TBox from Example 7. It follows that P (〈A vK0

C : {x, y}〉) = 1
from the first V -GCI in T and P (〈A vK0

C : {¬x}〉) = 1 from the others since
any model of K0 needs to satisfy the V -GCIs asserted in T by definition. Notice
that A v C does not hold in context {x,¬y}, but P (〈A vK0 C : {x,¬y}〉) = 1.
Since this describes all contexts, we conclude P (〈A vK0 C : ∅〉) = 1.

Deciding p-subsumption We show that deciding p-subsumption can be re-
duced to deciding the D-PR problem over a Bayesian network. Given a BN
B = (G,Φ) over V and a V -context κ, the D-PR problem consists on deciding
whether PB(κ) > p. This problem is known to be PP-complete [9, 22].

Let K = (T ,B) be an arbitrary but fixed BEL KB. From the labelled V -TBox
T , we construct the EL TBox T ′ := {α | 〈α : κ〉 ∈ T }. T ′ contains the same
axioms as T , but ignores the contextual information encoded in their labels. Let
now Hu

T be the (pruned) unraveled proof structure for T ′. By construction, Hu
T

is a directed acyclic hypergraph. Our goal is to transform this hypergraph into
a DAG and construct a BN, from which all the p-subsumption relations can be
read through standard BN inferences. We explain this construction in two steps.



Algorithm 2 Construction of a DAG from a hypergraph

Input: H = (V,E) directed acyclic hypergraph
Output: G = (V ′, E′) directed acyclic graph
1: V ′ ← V , i, j ← 0
2: for each v ∈ V do
3: S← {S | (S, v) ∈ E}, j ← i
4: for each S ∈ S do
5: V ′ ← V ′ ∪ {∧i}, E′ ← E′ ∪ {(u,∧i) | u ∈ S}
6: if i > j then
7: V ′ ← V ′ ∪ {∨i}, E′ ← E′ ∪ {(∧i,∨i)}
8: i← i+ 1

9: if i = j + 1 then . If the GCI has only one explanation
10: E′ ← E′ ∪ {(∧j , v)}
11: else
12: E′ ← E′ ∪ {(∨k,∨k+1) | j < k < i− 1} ∪ {(∨i−1, v), (∧j ,∨j+1)}
13: return G = (V ′, E′)

From Hypergraph to DAG Hypergraphs generalize graphs by allowing edges to
connect many vertices. These hyperedges can be seen as an encoding of a formula
in disjunctive normal form. An edge (S, v) expresses that if all the elements
in S can be reached, then v is also reachable; we see this as an implication:∧

w∈S w ⇒ v. Several edges sharing the same head (S1, v), (S2, v), . . . , (Sk, v) in

the hypergraph can be described through the implication
∨k

i=1(
∧

w∈Si
w) ⇒ v.

We can thus rewrite any directed acyclic hypergraph into a DAG by introducing
auxiliary conjunctive and disjunctive nodes (see Figure 3); the proper semantics
of these nodes will be guaranteed by the conditional probability distribution
defined later. Since the space needed for describing the conditional probability
tables in a BN is exponential on the number of parents of the node, we ensure
that all the nodes in this DAG have at most two parent nodes.

Algorithm 2 constructs such a DAG from a directed hypergraph. The algo-
rithm adds a new node ∧i for each hyperedge (S, v) in the input hypergraph H,
and connects it with all the nodes in S. If there are k hyperedges that lead to a
single node v, it creates k − 1 nodes ∨i. These are used to represent the binary
disjunctions among all the hyperedges leading to v. The algorithm runs in poly-
nomial time on the size of H, and if H is acyclic, the resulting graph G is acyclic
too. Moreover, all the nodes v ∈ V that existed in the input hypergraph have
at most one parent node after the translation; every ∨i node has exactly two
parents, and the number of parents of a node ∧i is given by the set S from the
hyperedge (S, v) ∈ E that generated it. In particular, if the input hypergraph is
the unraveled proof structure for a TBox T , then the size of the generated graph
G is polynomial on the size of T , and each node has at most two parent nodes.

From DAG to BN The next step is to build a BN that preserves the probabilistic
entailments of a BEL KB. Let K = (T ,B) be such a KB, with B = (G,Φ), and
let GT be the DAG obtained from the unraveled proof structure of T using



x

y

z

x

0.7

y

x 1
¬x 0.5

z

x y 0.3
x ¬y 0.1
¬x y 0
¬x ¬y 0.9

A v B

B v C

C v D

B v D

x

¬x ∧ y

z

y

∧i

∧i′

∧i′′

. . .

. . .

∨i′

(A v B) ∧ (B v D)

A v B

A v C

B v C

A v D

B v D

C v D

∧j

∧j′′

∧j′

. . .

∨j

(∧j) ∨ (∧j′′)

∨j′

A v D ∨j′

Fig. 3: A portion of the constructed BN

Algorithm 2. Recall that the nodes of GT are either (i) pairs of the form (α, i),
where α is a GCI in normal form built from the signature of T , or (ii) an
auxiliary disjunction (∨i) or conjunction (∧i) node introduced by Algorithm 2.
Moreover, (α, 0) is a node of GT iff there is a context κ with 〈α : κ〉 ∈ T . We
assume w.l.o.g. that for node (α, 0) there is exactly one such context. If there
were more than one, then we could extend the BN B with an additional variable
which describes the disjunctions of these contexts, similarly to the construction
of Algorithm 2. Similarly, we assume w.l.o.g. that each context κ appearing in T
contains at most two literals, which is a restriction that can be easily removed
by introducing auxiliary nodes as before. For a context κ, let var(κ) denote the
set of all variables appearing in κ. We construct a new BN BK as follows.

Let G = (V,E) and GT = (VT , ET ). Construct the graph GK = (VK, EK),
where VK := V ∪ VT and EK := E ∪ ET ∪ {(x, (α, 0)) | 〈α : κ〉 ∈ T , x ∈ var(κ)}.
Clearly, GK is a DAG. We now need only to define the conditional probability
tables for the nodes in VT given their parents in GK; notice that the structure
of the graph G remains unchanged for the construction of GK. For every node
(α, 0) ∈ VT , there is a κ such that 〈α : κ〉 ∈ T ; the parents of (α, 0) in GK
are then var(κ) ⊆ V . The conditional probability of (α, 0) given its parents is
defined, for every valuation V of var(κ) as PB((α, 0) = true | V) = V(κ); that
is, the probability of (α, 0) being true given a valuation of its parents is 1 if the
valuation makes the context κ true; otherwise, it is 0. Each auxiliary node has
at most two parents. The conditional probability of a conjunction node ∧i being
true is 1 iff all parents are true, and the conditional probability of a disjunction
node ∨i being true is 1 iff at least one parent is true. Finally, every (α, i) with
i > 0 has exactly one parent node v; (α, i) is true with probability 1 iff v is true.

Example 16. Consider the BEL KB K = (T ,B0) over V = {x, y, z} where

T = {〈A v B : {x}〉 , 〈B v C : {¬x, y}〉 , 〈C v D : {z}〉 , 〈B v D : {y}〉}.

The BN obtained from this KB is depicted in Figure 3. The DAG obtained from
the unraveled proof structure of T appears on the right, while the left part shows
the original BN B0. The gray arrows depict the connection between these two



DAGs, which is given by the labels in the V -GCIs in T . The gray boxes denote
the conditional probability of the different nodes given their parents.

Suppose that we are interested in P (〈A vK D : ∅〉). From the unraveled proof
structure, we can see that A v D can be deduced either using the axioms A v B,
B v C, C v D, or through the two axioms A v B, B v D. The probability of
any of these combinations of axioms to appear is given by B0 and the contextual
connection to the axioms at the lower level of the proof structure. Thus, to
deduce P (〈A vK D : ∅〉) we need only to compute the probability of the node
(A v D,n), where n is the last level.

From the properties of proof structures and Theorem 3 we have that

PBK((α, n) | κ) =
∑

V(κ)=1

PBK((α, n) | V)PBK(V) =
∑

TW |=α
W(κ)=1

PBK(W).

which yields the following result.

Theorem 17. Let K = (T ,B) be a BEL KB, C,D two BEL concepts, κ a
V -context and n = |sig(T )|3. For a V -GCI 〈C v D : κ〉, the following holds:
P (〈C vK D : κ〉) = 1− PB(κ) + PBK((C v D,n) | κ).

This theorem states that we can reduce the problem of p-subsumption w.r.t. the
BEL KB K to a probabilistic inference in the BN BK. Notice that the size of
BK is polynomial on the size of K. This means that p-subsumption is at most
as hard as deciding D-PR problems over the BN BK which is in PP [22]. Since
p-subsumption is also PP-hard [7], we get the following.

Theorem 18. Deciding p-subsumption is PP-complete in the size of the KB.

3.3 Most Likely Context

Finding the most likely context for a consequence can be seen as the dual of
computing the probability of this consequence. Intuitively, we are interested in
finding the most likely explanation for an event; if a consequence holds, we want
to find the context for which this consequence is most likely to occur.

Definition 19 (most likely context). Let K = (B, T ) be a KB, C,D two
BEL concepts. A V -context κ is a most likely context (mlc) for C v D if
(i) 〈C vK D : κ〉 and (ii) for all contexts κ′ with 〈C vK D : κ′〉, PB(κ) ≥ PB(κ

′).

Computing all most likely contexts can be done in exponential time. Moreover,
it is not possible to lower this bound since a GCI may have exponentially many
mlcs. Here we are interested in finding one most likely context, or more precisely,
on its associated decision problem: given a context κ, decide whether κ is an mlc
for C v D w.r.t. K. This problem is clearly in coNPPP: to show that κ is not a
mlc, we can guess a V -context κ′, and check with a PP oracle that 〈C vK D : κ′〉
and PB(κ

′) > p hold, using the construction from Section 3.2.



To show that it is also coNPPP-hard, we provide a reduction from D-MAP,
which corresponds to finding a valuation that maximizes the probability of an
event. Formally, the D-MAP problem consists of deciding, given a BN B over V ,
a set Q ⊆ V a V -context κ, and p > 0, whether there exists a valuation λ of the
variables in Q such that PB(κ ∪ λ) > p.

Let B = ((V,E), Φ) be a BN, κ a V -context, Q = {x1, . . . , xk} ⊆ V , and
p > 0. Define V ′ = V ] {x+, x− | x ∈ Q} ] {z}, where ] denotes the disjoint
union, and E′ = E ∪ {(x, x+), (x, x−) | x ∈ Q}. We construct B′ = ((V ′, E′), Φ′)
where Φ′ contains PB′(v | π(v)) = PB(v | π(x)) for all v ∈ V , and PB′(z) = p,
PB′(x+ | x) = 1, PB′(x+ | ¬x) = 0, PB′(x− | x) = 0, and PB′(x− | ¬x) = 1 for all
x ∈ Q. Let now

T = {
〈
Ai−1 v Ai : x

+
i

〉
,
〈
Ai−1 v Ai : x

−
i

〉
| 1 ≤ i ≤ k} ∪

{〈Ak v B : κ〉 , 〈A0 v B : z〉},

and K = (B′, T ). It is easy to see that for any V ′-context κ′, if 〈A0 vK B : κ〉
and z /∈ κ′, then κ ⊆ κ′ and for every x ∈ Q, {x+, x−} ∩ κ′ 6= ∅. Moreover, by
construction PB(z) = p and PB(x

+, x−) = 0 for all x ∈ Q.

Theorem 20. Let B be a BN over V , κ a V -context, Q ⊆ V , p > 0 and K the
KB built as described above. There is a valuation λ of the variables in Q such
that PB(λ ∪ κ) > p iff {z} is not an mlc for A0 v B w.r.t. K.

From this theorem, and the upper bound described above, we obtain a tight
complexity bound for deciding a most likely context.

Corollary 21. Deciding whether κ is a most likely context is coNPPP-complete.

If the context κ is a complete valuation, then the complexity of this problem
reduces to NP-complete. This is an immediate result of applying the standard
chain rule for exact inference, which is in PTime, and reducing the most probable
explanation (D-MPE) problem in BNs, which is NP-complete [23].

4 Related Work

The amount of work combining DLs with probabilities is too vast to enumerate
here. We mention only the work that relates the closest to our approach, and
refer the interested reader to a thorough, although slightly outdated survey [17].

An early attempt for combining BNs and DLs was P-Classic [16], which ex-
tends Classic through probability distributions over the interpretation domain.
In the same line, in PR-OWL [10] the probabilistic component is interpreted by
providing individuals with a probability distribution. As many others in the
literature, these approaches differ from our multiple-world semantics, in which
we consider a probability distribution over a set of classical DL interpretations.
Other probabilistic extensions of EL are [18] and [19]. The former introduces
probabilities as a concept constructor, while in the latter the probabilities of



axioms, which are always assumed to be independent, are implicitly encoded
through a weighting function, which is interpreted with a log-linear model. Thus,
both formalisms differ greatly from our approach.

DISPONTE [21] considers a multiple-world semantics. The main difference
with our approach is that in DISPONTE, all probabilities are assumed to be
independent, while we provide a joint probability distribution through the BN.
Another minor difference is that BEL allows for classical consequences whereas
DISPONTE does not. Closest to our approach is perhaps the Bayesian extension
of DL-Lite called BDL-Lite [11]. Abstracting from the different logical compo-
nent, BDL-Lite looks almost identical to BEL. There is, however, a subtle but
important difference. In our approach, an interpretation I satisfies a V -GCI
〈C v D : κ〉 if VI(κ) = 1 implies CI ⊆ DI . In [11], the authors employ a closed-
world assumption over the contexts, where this implication is substituted for an
equivalence; i.e., VI(κ) = 0 also implies CI 6⊆ DI . The use of such semantics
can easily produce inconsistent KBs, which is impossible in BEL.

5 Conclusions

We studied the probabilistic DL BEL, which extends EL with uncertain contexts
based on a BN. Given BEL KB K, we construct in polynomial time a BN BK
that encodes all the probabilistic and logical knowledge of K w.r.t. the signature
of the KB. This construction is based on the proof structure, a hypergraph
representation of all the traces of any consequence derivation. As a result, we
obtain that (i) deciding p-subsumption in BEL can be reduced to exact inference
in BK and (ii) one most likely context can be found by computing a valuation
of a subset of the variables in BK that maximizes the probability of an event.
These provide tight complexity bounds for both of the reasoning problems.

While the construction is polynomial on the input KB, the obtained DAG
might not preserve all the desired properties of the original BN. For instance, it is
known that the efficiency of the BN inference engines depends on the treewidth of
the underlying DAG [20]; however, the proof structure used by our construction
may increase the treewidth of the graph. One direction of future research will
be to try to optimize the reduction by bounding the treewidth and reducing the
ammount of nodes added to the graph.

Finally, it should be clear that our construction does not depend on the cho-
sen DL EL, but rather on the fact that a simple polynomial-time consequence-
based method can be used to reason with it. It should thus be a simple task to
generalize the approach to other consequence-based methods, e.g. [24]. It would
also be interesting to generalize the probabilistic component to consider other
kinds of probabilistic graphical models [15].
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4. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Proc. 30th German Conference on Artificial Intelligence (KI2007). LNAI,
vol. 4667, pp. 52–67. Springer, Osnabrück, Germany (2007)

5. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: Proc. ECAI-2004. pp. 298–302. IOS
Press (2004)
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