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İsmail İlkan Ceylan∗
Theoretical Computer Science

TU Dresden, Germany
ceylan@tcs.inf.tu-dresden.de

Rafael Peñaloza†
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Abstract

We study the problem of reasoning in the probabilistic De-
scription Logic BEL. Using a novel structure, we show that
probabilistic reasoning in this logic can be reduced in poly-
nomial time to standard inferences over a Bayesian network.
This reduction provides tight complexity bounds for proba-
bilistic reasoning in BEL.

1 Introduction
Description Logics (DLs) (Baader et al. 2007) are a fam-
ily of knowledge representation formalisms tailored towards
the representation of terminological knowledge in a formal
manner. In their classical form, DLs are unable to handle
the inherent uncertainty of many application domains. To
overcome this issue, several probabilistic extensions of DLs
have been proposed. The choice of a specific probabilistic
DL over others depends on the intended application; these
logics differ in their logical expressivity, their semantics, and
their independence assumptions.

Recently, the DL BEL (Ceylan and Peñaloza 2014) was
introduced as a means of describing certain knowledge that
depends on an uncertain context, expressed by a Bayesian
network (BN). An interesting property of this logic is that
reasoning can be decoupled between the logical part and
the BN inferences. However, despite the logical component
of this logic being decidable in polynomial time, the best
known algorithm for probabilistic reasoning in BEL runs in
exponential time.

In this paper we use a novel structure, called the proof
structure, to reduce probabilistic reasoning for a BEL
knowledge base to probabilistic inferences in a BN. In a nut-
shell, a proof structure describes the class of contexts that
entail the wanted consequence. A BN can be constructed to
compute the probability of these contexts, which yields the
probability of the entailment. Since this reduction can be
done in polynomial time, it provides tight upper bounds for
the complexity of reasoning in BEL.
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2 Proof Structures in EL
EL is a light-weight DL that allows for polynomial-time rea-
soning. It is based on concepts and roles, corresponding to
unary and binary predicates from first-order logic, respec-
tively. Formally, let NC and NR be disjoint sets of concept
names and role names, respectively. EL concepts are defined
through the syntactic ruleC ::= A | > |CuC | ∃r.C,where
A ∈ NC and r ∈ NR.

The semantics of EL is given in terms of an interpre-
tation I = (∆I , ·I) where ∆I is a non-empty domain
and ·I is an interpretation function that maps every con-
cept name A to a set AI ⊆ ∆I and every role name
r to a set of binary relations rI ⊆ ∆I × ∆I . The
interpretation function ·I is extended to EL concepts by
defining >I := ∆I , (C u D)I := CI ∩ DI , and
(∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}.

The knowledge of a domain is represented through a set
of axioms restricting the interpretation of the concepts.

Definition 1 (TBox). A general concept inclusion (GCI) is
an expression of the form C v D, where C, D are con-
cepts. A TBox T is a finite set of GCIs. The signature of T
(sig(T )) is the set of concept and role names appearing in T .
An interpretation I satisfies the GCI C v D iff CI ⊆ DI ;
I is a model of the TBox T iff it satisfies all the GCIs in T .

The main reasoning service in EL is subsumption check-
ing, i.e., deciding the sub-concept relations between given
concepts based on their semantic definitions. A concept
C is subsumed by D w.r.t. the TBox T (T |= C v D)
iff CI ⊆ DI for all models I of T . It has been
shown that subsumption can be decided in EL in poly-
nomial time by a completion algorithm (Baader, Brandt,
and Lutz 2005). This algorithm requires the TBox to
be in normal form; i.e., where all GCIs are one of the
forms A v B | A uB v C | A v ∃r.B | ∃r.B v A. It
is well known that every TBox can be transformed into an
equivalent one in normal form of linear size (Brandt 2004;
Baader, Brandt, and Lutz 2005); for the rest of this paper, we
assume that T is a TBox in normal form and GCI denotes a
normalized subsumption relation.

In this paper, we are interested in deriving the GCIs in
normal form that follow from T ; i.e. the normalised logical
closure of T . We introduce the deduction rules shown in Ta-
ble 1 to produce the normalised logical closure of a TBox.



Table 1: Deduction rules for EL.

7→ Premises (S) Result (α)
1 〈A v B〉, 〈B v C〉 〈A v C〉
2 〈A v ∃r.B〉, 〈B v C〉 〈A v ∃r.C〉
3 〈A v ∃r.B〉, 〈C v A〉 〈C v ∃r.B〉
4 〈∃r.A v B〉, 〈B v C〉 〈∃r.A v C〉
5 〈∃r.A v B〉, 〈C v A〉 〈∃r.C v B〉
6 〈∃r.A v B〉, 〈B v ∃r.C〉 〈A v C〉
7 〈A v ∃r.B〉, 〈∃r.B v C〉 〈A v C〉
8 〈A uB v C〉, 〈C v X〉 〈A uB v X〉
9 〈A uB v C〉, 〈X v A〉 〈X uB v C〉
10 〈A uB v C〉, 〈X v B〉 〈A uX v C〉
11 〈X uX v C〉 〈X v C〉

Each rule maps a set of premises to a GCI that is implicitly
encoded in the premises. It is easy to see that the sets of
premises cover all pairwise combinations of GCIs in normal
form and that the deduction rules produce the normalised
logical closure of a TBox. Moreover, the given deduction
rules introduce axioms only in normal form, and do not cre-
ate any new concept or role name. Hence, if n = |sig(T )|,
the logical closure of T is computed after n3 rule applica-
tions, at most.

Later on we will associate a probability to the GCIs in the
TBox T , and will be interested in computing the probability
of a consequence. It will then be useful to be able not only
to deduce the GCI, but also all the sub-TBoxes of T from
which this GCI follows. Therefore, we store the traces of
the deduction rules using a directed hypergraph.
Definition 2. A directed hypergraph is a tuple H = (V,E)
where V is a non-empty set of vertices and E is a set of
directed hyper-edges of the form e = (S, v) where S ⊆ V
and v ∈ V . A path from S to v in H is a sequence of hyper-
edges (S1, v1), (S2, v2), . . . , (Sn, vn) such that vn = v and
Si ⊆ S ∪ {vj | 0 < j < i} for every i, 1 ≤ i ≤ n. In this
case, the path has length n.

Given a TBox T in normal form, we build the hypergraph
HT = (VT , ET ), where VT is the set of all GCIs that follow
from T and ET = {(S, α) | S 7→ α, S ⊆ VT } where 7→
is the deduction relation defined in Table 1. We call this
hypergraph the proof structure of T . The following lemma
follows from the correctness of the deduction rules.
Lemma 3. Let T be a TBox in normal form, its proof struc-
ture HT = (VT , ET ), O ⊆ T , and C v D ∈ VT . There is
a path from O to C v D in HT iff O |= C v D.

Intuitively, HT is a compact representation of all the pos-
sible ways in which a GCI can be derived from the GCIs
present in T . Traversing this hypergraph backwards, from
a GCI α being entailed by T , it is possible to construct all
proofs for α; hence the name “proof structure.” As men-
tioned before, |VT | ≤ |sig(T )|3; thus, it is enough to con-
sider paths of length at most |sig(T )|3.

Clearly, the proof structure HT can be cyclic. To sim-
plify the process of finding the causes of a GCI being en-
tailed, we construct an unfolded version of this hypergraph
by making different copies of each node in each level in or-

Algorithm 1 Construction of the pruned proof structure
Input: TBox T
Output: H = (W,F )

1: V0 ← T , E0 ← ∅, i← 0
2: do
3: i← i+ 1
4: Vi := Vi−1 ∪ {α | S 7→ α, S ⊆ Vi−1}
5: Ei = {(S, α) | S 7→ α, S ⊆ Vi−1}
6: while Vi 6= Vi−1 or Ei 6= Ei−1
7: W := {(α, k) | α ∈ Vk, 0 ≤ k ≤ i}
8: E := {(S, (α, k)) | (S, α) ∈ Ek, 0 ≤ k ≤ i} ∪
9: {({(α, k − 1)}, (α, k)) | α ∈ Vk−1, 0 ≤ k ≤ i}

10: return (W,E)

der to avoid cycles. In this case, nodes are pairs of GCIs and
labels, where the latter indicates to which level the nodes be-
long in the hypergraph. We write Si = {(α, i) | α ∈ S} to
denote the i-labeled set of GCIs in S. Let n := |sig(T )|3,
we start with the set W0 := {(α, 0) | α ∈ T } and define the
levels 0 ≤ i < n inductively by

Wi+1 :={(α, i+ 1) | Si ⊆Wi, S 7→ α} ∪
{(α, i+ 1) | (α, i) ∈Wi}.

For each i, 0 ≤ i ≤ n, Wi contains all the consequences
that can be derived by at most i applications of the deduction
rules from Table 1. The unfolded proof structure of T is the
hypergraph Hu

T = (WT , FT ), where WT :=
⋃n
i=0Wi and

FT :=
⋃n
i=1 Fi, with

Fi+1 := {(Si, (α, i+ 1)) | Si ⊆Wi, S 7→ α} ∪
{({(α, i)}, (α, i+ 1)) | (α, i) ∈Wi}

The following is a simple consequence of our constructions
and Lemma 3.
Theorem 4. Let T be a TBox, and HT = (VT , ET ) and
Hu
T = (WT , FT ) the proof structure and unfolded proof

structure of T , respectively. Then,
1. for all C v D ∈ VT and all O ⊆ T , O |= C v D iff

there is a path from {(α, 0) | α ∈ O} to (C v D,n) in
Hu
T , and

2. (S, α) ∈ ET iff (Sn−1, (α, n)) ∈ FT .
The unfolded proof structure of a TBox T is thus guar-

anteed to contain the information of all possible causes for a
GCI to follow from T . Moreover, this hypergraph is acyclic,
and has polynomially many nodes on the size of T . Yet, this
hypergraph may contain many redundant nodes. Indeed, it
can be the case that all the simple paths in HT starting from
a subset of T are of length k < n. In that case, Wi = Wi+1

and Fi = Fi+1 hold for all i ≥ k, modulo the second com-
ponent. It thus suffices to consider the sub-hypergraph of
Hu
T that contains only the nodes

⋃k
i=0Wi. Algorithm 1 de-

scribes a method for computing this pruned hypergraph. In
the worst case, this algorithm will produce the whole un-
folded proof structure of T , but will stop the unfolding pro-
cedure earlier if possible. The do-while loop is executed
at most |sig(T )|3 times, and each of these loops requires at
most |sig(T )|3 steps; hence we obtain the following.
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Figure 1: The first levels of an unfolded proof structure and
the paths to 〈A v D〉

Lemma 5. Algorithm 1 terminates in time polynomial on
the size of T .

We briefly illustrate the execution of Algorithm 1 on a
simple TBox.

Example 6. Consider the following EL TBox
T = {A v B,B v C,B v D,C v D}. The first lev-
els of the unfolded proof structure of T are shown in
Figure 1.1 The first level V0 of this hypergraph contains a
representative for each GCI in T . To construct the second
level, we first copy all the GCIs in V0 to V1, and add a
hyperedge joining the equivalent ones (represented by a
dashed line in Figure 1). Afterwards, we apply all possible
deduction rules to the elements of V0, and add a hyperedge
from the premises at level V0 to the conclusion at level V1
(continuous lines). The same procedure is repeated at each
subsequent level. Notice that the set of GCIs at each level is
monotonically increasing. Additionally, for each GCI, the
in-degree of each representative monotonically increases
throughout the levels.

In the next section, we briefly recall BEL, a probabilistic
extension of EL based on Bayesian networks (Ceylan and
Peñaloza 2014), and use the construction of the (unfolded)
proof structure to reduce reasoning in this logic, to standard
Bayesian network inferences.

3 The Bayesian Description Logic BEL
The probabilistic Description Logic BEL extends EL by as-
sociating every GCI in a TBox with a probability. To handle
the joint probability distribution of the GCIs, these probabil-
ities are encoded in a Bayesian network (Darwiche 2009).
Formally, a Bayesian network (BN) is a pair B = (G,Φ),
where G = (V,E) is a finite directed acyclic graph (DAG)
whose nodes represent Boolean random variables,2 and Φ
contains, for every node x ∈ V , a conditional probability
distribution PB(x | π(x)) of x given its parents π(x). If V
is the set of nodes in G, we say that B is a BN over V .

BNs encode a series of conditional independence assump-
tions between the random variables; more precisely, every

1For the illustrations we drop the second component of the
nodes, but visually make the level information explicit.

2In their general form, BNs allow for arbitrary discrete random
variables. We restrict w.l.o.g. to Boolean variables for ease of pre-
sentation.

variable x ∈ V is conditionally independent of its non-
descendants given its parents. Thus, every BN B defines a
unique joint probability distribution (JPD) over V given by

PB(V ) =
∏
x∈V

PB(x | π(x)).

As with classical DLs, the main building blocks in BEL
are concepts, which are syntactically built as EL concepts.
The domain knowledge is encoded by a generalization of
TBoxes, where GCIs are annotated with a context, defined
by a set of literals belonging to a BN.
Definition 7 (KB). Let V be a finite set of Boolean vari-
ables. A V -literal is an expression of the form x or ¬x,
where x ∈ V ; a V -context is a consistent set of V -literals.

A V -restricted general concept inclusion (V -GCI) is of
the form 〈C v D : κ〉 where C and D are BEL concepts
and κ is a V -context. A V -TBox is a finite set of V -GCIs.
A BEL knowledge base (KB) over V is a pair K = (B, T )
where B is a BN over V and T is a V -TBox.

The semantics of BEL extends the semantics of EL by
additionally evaluating the random variables from the BN.
Given a finite set of Boolean variables V , a V -interpretation
is a tuple I = (∆I , ·I ,VI) where ∆I is a non-empty set
called the domain, VI : V → {0, 1} is a valuation of the
variables in V , and ·I is an interpretation function that maps
every concept name A to a set AI ⊆ ∆I and every role
name r to a binary relation rI ⊆ ∆I ×∆I .3

The interpretation function ·I is extended to arbitrary
BEL concepts as in EL and the valuation VI is extended to
contexts by defining, for every x ∈ V , VI(¬x) = 1−VI(x),
and for every context κ, VI(κ) = min`∈κ VI(`), where
VI(∅) := 1. Intuitively, a context κ can be thought as a
conjunction of literals, which is evaluated to 1 iff each lit-
eral in the context is evaluated to 1.

The V -interpretation I is a model of the V -GCI
〈C v D : κ〉, denoted as I |= 〈C v D : κ〉, iff
(i) VI(κ) = 0, or (ii) CI ⊆ DI . It is a model of the
V -TBox T iff it is a model of all the V -GCIs in T . The
idea is that the restriction C v D is only required to hold
whenever the context κ is satisfied. Thus, any interpretation
that violates the context trivially satisfies the V -GCI.
Example 8. Let V0 = {x, y, z}, and consider the V0-TBox

T0 := { 〈A v C : {x, y}〉 , 〈A v B : {¬x}〉 ,
〈B v C : {¬x}〉}.

The interpretation I0 = ({d}, ·I0 ,V0) given by
V0({x,¬y, z}) = 1, AI0 = {d}, and BI0 = CI0 = ∅
is a model of T0, but is not a model of the V -GCI
〈A v B : {x}〉, since V0({x}) = 1 but AI0 6⊆ BI0 .

A V -TBox T is in normal form if for each V -GCI
〈α : κ〉 ∈ T , α is an EL GCI in normal form. A BEL KB
K = (T ,B) is in normal form if T is in normal form. As
for EL, every BELKB can be transformed into an equivalent
one in normal form in polynomial time (Ceylan 2013). Thus,
we consider only BEL KBs in normal form in the following.

3When there is no danger of ambiguity, we will usually drop the
prefix V and speak simply of e.g. a TBox, a KB or an interpretation.



The DL EL is a special case of BEL in which all V -GCIs
are of the form 〈C v D : ∅〉. Notice that every valuation
satisfies the empty context ∅; thus, a V -interpretation I sat-
isfies the V -GCI 〈C v D : ∅〉 iff CI ⊆ DI . We say that
T entails 〈C v D : ∅〉, denoted by T |= C v D, if every
model of T is also a model of 〈C v D : ∅〉. For a valuation
W of the variables in V , we can define a TBox contain-
ing all axioms that must be satisfied in any V -interpretation
I = (∆I , ·I ,VI) with VI =W .
Definition 9 (restriction). Let K = (B, T ) be a KB. The
restriction of T to a valuationW of the variables in V is
TW := {〈C v D : ∅〉 | 〈C v D : κ〉 ∈ T ,W(κ) = 1}.
To handle the probabilistic knowledge provided by the

BN, we extend the semantics of BEL through multiple-
world interpretations. Intuitively, a V -interpretation de-
scribes a possible world; by assigning a probabilistic dis-
tribution over these interpretations, we describe the required
probabilities, which should be consistent with the BN pro-
vided in the knowledge base.
Definition 10 (probabilistic model). A probabilistic inter-
pretation is a pair P = (I, PI), where I is a set of
V -interpretations and PI is a probability distribution over
I such that PI(I) > 0 only for finitely many interpretations
I ∈ I. This probabilistic interpretation is a model of the
TBox T if every I ∈ I is a model of T . P is consistent with
the BN B if for every possible valuationW of the variables
in V it holds that ∑

I∈I,VI=W

PI(I) = PB(W).

It is a model of the KB (B, T ) iff it is a (probabilistic) model
of T and consistent with B.

One simple consequence of this semantics is that proba-
bilistic models preserve the probability distribution of B for
contexts; the probability of a context κ is the sum of the
probabilities of all valuations that extend κ.

Just as in classical DLs, we want to extract the informa-
tion that is implicitly encoded in a BEL KB. In particular,
we are interested in solving different reasoning tasks for this
logic. One of the fundamental reasoning problems in EL is
subsumption: is a concept C always interpreted as a sub-
concept of D? In the case of BEL, we are also interested in
finding the probability with which such a subsumption rela-
tion holds. For the rest of this section, we formally define
this reasoning task, and provide a method for solving it, by
reducing it to a decision problem in Bayesian networks.

3.1 Probabilistic Subsumption
Subsumption is one of the most basic decision problems in
EL. In BEL, we generalize this problem to consider also the
contexts and probabilities provided by the BN.
Definition 11 (p-subsumption). Let C,D be two BEL
concepts, κ a context, and K a BEL KB. For a
probabilistic interpretation P = (I, PI), we define
P (〈C vP D : κ〉) :=

∑
I∈I,I|=〈CvD:κ〉 PI(I). The prob-

ability of 〈C v D : κ〉 w.r.t. K is defined as
P (〈C vK D : κ〉) := inf

P|=K
P (〈C vP D : κ〉).

x
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Figure 2: A simple BN

We say that C is p-subsumed by D in κ, for p ∈ (0, 1] if
P (〈C vK D : κ〉) ≥ p.

The following proposition was shown in (Ceylan and
Peñaloza 2014).

Proposition 12. Let K = (B, T ) be a KB. Then

P (〈C vK D : κ〉) = 1− PB(κ) +
∑

TW |=CvD
W(κ)=1

PB(W).

Example 13. Consider the KB K0 = (B0, T0), where B0
is the BN from Figure 2 and T0 the TBox from Example 8.
It follows that P (〈A vK0 C : {x, y}〉) = 1 from the first
GCI in T and P (〈A vK0

C : {¬x}〉) = 1 from the others
since any model of K0 needs to satisfy the GCIs asserted in
T by definition. Notice that A v C does not hold in con-
text {x,¬y}, but P (〈A vK0

C : {x,¬y}〉) = 1. Since this
describes all contexts, we conclude P (〈A vK0

C : ∅〉) = 1.

3.2 Deciding p-subsumption
We now show that deciding p-subsumption can be reduced
to exact inference in Bayesian networks. This latter problem
is known to be PP-complete (Roth 1996). Let K = (T ,B)
be an arbitrary but fixed BEL KB. From the V -TBox T , we
construct the classical EL TBox T ′ := {α | 〈α : κ〉 ∈ T };
that is, T ′ contains the same axioms as T , but ignores the
contextual information encoded in their labels. Let now
Hu
T be the (pruned) unraveled proof structure for this TBox
T ′. By construction, Hu

T is a directed acyclic hypergraph.
Our goal is to transform this hypergraph into a DAG. Us-
ing this DAG, we will construct a BN, from which all the
p-subsumption relations can be read through standard BN
inferences. We explain this construction in two steps.

From Hypergraph to DAG Hypergraphs generalize
graphs by allowing several vertices to be connected by a
single edge. Intuitively, the hyperedges in a hypergraph en-
code a formula in disjunctive normal form. Indeed, an edge
(S, v) expresses that if all the elements in S can be reached,
then v is also reachable; this can be seen as an implication:∧
w∈S w ⇒ v. Suppose that there exist several edges shar-

ing the same head (S1, v), (S2, v), . . . , (Sk, v) in the hyper-
graph. This situation can be described through the implica-
tion

∨k
i=1(

∧
w∈Si

w)⇒ v. We can thus rewrite any directed
acyclic hypergraph into a DAG by introducing auxiliary con-
junctive and disjunctive nodes (see the upper part of Fig-



Algorithm 2 Construction of a DAG from a hypergraph
Input: H = (V,E) directed acyclic hypergraph
Output: G = (V ′, E′) directed acyclic graph

1: V ′ ← V , i, j ← 0
2: for each v ∈ V do
3: S← {S | (S, v) ∈ E}, j ← i
4: for each S ∈ S do
5: V ′ ← V ′ ∪{∧i}, E′ ← E′ ∪{(u,∧i) | u ∈ S}
6: if i > j then
7: V ′ ← V ′ ∪ {∨i}, E′ ← E′ ∪ {(∧i,∨i)}
8: i← i+ 1
9: if i = j + 1 then

10: E′ ← E′ ∪ {(∧j , v)}
11: else
12: E′ ← E′ ∪ {(∨k,∨k+1) | j < k < i− 1} ∪
13: {(∨i−1, v), (∧j ,∨j+1)}
14: return G = (V ′, E′)

ure 3); the proper semantics of these nodes will be guaran-
teed by the conditional probability distribution defined later.
Since the space needed for describing the conditional proba-
bility tables in a BN is exponential on the number of parents
that a node has, we ensure that these auxiliary nodes, as well
as the elements in WT have at most two parent nodes.

Algorithm 2 describes the construction of such a DAG
from a directed hypergraph. Essentially, the algorithm adds
a new node ∧i for each hyperedge (S, v) in the input hy-
pergraph H , and connects it with all the nodes in S. Addi-
tionally, if there are k hyperedges that lead to a single node
v, it creates k−1 nodes ∨i. These are used to represent the
binary disjunctions among all the hyperedges leading to v.
Clearly, the algorithm runs in polynomial time on the size of
H , and if H is acyclic, then the resulting graph G is acyclic
too. Moreover, all the nodes v ∈ V that existed in the in-
put hypergraph will have at most one parent node after the
translation; every ∨i node has exactly two parents, and the
number of parents of a node ∧i is given by the set S from the
hyperedge (S, v) ∈ E that generated it. In particular, if the
input hypergraph is the unraveled proof structure for a TBox
T , then the size of the generated graph G is polynomial on
the size of T , and each node has at most two parent nodes.

From DAG to Bayesian Network The next step is to build
a BN that preserves the probabilistic entailments of a BEL
KB. Let K = (T ,B) be such a KB, with B = (G,Φ), and
letGT be the DAG obtained from the unraveled proof struc-
ture of T using Algorithm 2. Recall that the nodes of GT
are either (i) pairs of the form (α, i), where α is a GCI in
normal form built from the signature of T , or (ii) an aux-
iliary disjunction (∨i) or conjunction (∧i) node introduced
by Algorithm 2. Moreover, (α, 0) is a node of GT iff there
is a context κ with 〈α : κ〉 ∈ T . We assume w.l.o.g. that
for node (α, 0) there is exactly one such context. If there
were more than one, then we could extend the BN B with an
additional variable which describes the disjunctions of these
contexts, similarly to the construction of Algorithm 2. Sim-
ilarly, we assume that |κ| ≤ 2, to ensure that 0-level nodes

have at most two parent nodes. This restriction can be easily
removed by introducing conjunction nodes as before. For a
context κ, let var(κ) denote the set of all variables appearing
in κ. We construct a new BN BK as follows.

Let G = (V,E) and GT = (VT , ET ). The DAG GK is
given by GK = (VK, EK), where VK := V ∪ VT and

EK := E ∪ ET ∪ {(x, (α, 0)) | 〈α : κ〉 ∈ T , x ∈ var(κ)}.

Clearly, GK is a DAG. We now need only to define the con-
ditional probability tables for the nodes in VT given their
parents in GK; notice that the structure of the graph G re-
mains unchanged for the construction of GK. For every
node (α, 0) ∈ VT , there is a κ such that 〈α : κ〉 ∈ T ; the
parents of (α, 0) in GK are then var(κ) ⊆ V . The con-
ditional probability of (α, 0) given its parents is given by:
PB((α, 0) = true | V(var(κ))) = V(κ); that is, the prob-
ability of (α, 0) being true given a valuation of its parents
is 1 if the valuation makes the context κ true; otherwise, it
is 0. Each auxiliary node has at most two parents, and the
conditional probability of a conjunction node ∧i being true
is 1 iff all parents are true; and the conditional probability of
a disjunction node ∨i being true is 1 iff at least one parent is
true; Finally, every (α, i) with i > 0 has exactly one parent
node v; (α, i) is true with probability 1 iff v is true.

Example 14. Consider the BEL KB K = (T ,B0), where

T = { 〈A v B : {x}〉 , 〈B v C : {¬x, y}〉 ,
〈C v D : {z}〉 , 〈B v D : {y}〉}.

The BN obtained from this KB is depicted in Figure 3. The
upper part of the figure represents the DAG obtained from
the unraveled proof structure of T , while the lower part
shows the original BN B0. The gray arrows depict the con-
nection between these two DAGs, which is given by the la-
bels in the V -GCIs in T . The gray boxes denote the condi-
tional probability of the different nodes given their parents.

Suppose that we are interested in P (〈A vK D : ∅〉).
From the unraveled proof structure, we can see that A v D
can be deduced either using the GCIs A v B, B v C,
C v D, or through the two GCIs A v B, B v D. The
probability of any of these combinations of GCIs to appear
is given by B0 and the contextual connection to the axioms
at the lower level of the proof structure. Thus, to deduce
P (〈A vK D : ∅〉) we need only to compute the probability
of the node (A v D,n), where n is the last level.

From the properties of proof structures and Theorem 4 we
have that

PBK((α, n) | κ) =
∑
V(κ)=1

PBK((α, n) | V(κ))PBK(V(κ))

=
∑
TW |=α
W(κ)=1

PBK(W),

which yields the following result.

Theorem 15. Let K = (T ,B) be a BEL KB, where B is
over V , and n = |sig(T )|3. For a V -GCI 〈α : κ〉, it holds
that P (〈α : κ〉) = 1− PB(κ) + PBK((α, n) | κ).
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Figure 3: A portion of the constructed BN

This theorem states that we can reduce the problem of
p-subsumption w.r.t. the BEL KB K to a probabilistic infer-
ence in the BN BK. Notice that the size of BK is polyno-
mial on the size of K. This means that p-subsumption is
at most as hard as deciding the probability of query vari-
ables, given an evidence, which is known to be in PP (Roth
1996). Since p-subsumption is already PP-hard (Ceylan and
Peñaloza 2014), we obtain the following result.
Corollary 16. Deciding p-subsumption w.r.t. a BEL KB K
is PP-complete on the size of K.

4 Related Work
An early attempt for combining BNs and DLs was
P-CLASSIC (Koller, Levy, and Pfeffer 1997), which extends
CLASSIC through probability distributions over the interpre-
tation domain. In the same line, in PR-OWL (da Costa,
Laskey, and Laskey 2008) the probabilistic component is in-
terpreted by providing individuals with a probability distri-
bution. As many others in the literature (see (Lukasiewicz
and Straccia 2008) for a thorough survey on probabilistic
DLs) these approaches differ from our multiple-world se-
mantics, in which we consider a probability distribution over
a set of classical DL interpretations.

DISPONTE (Riguzzi et al. 2012) is one representative
of the approaches that consider a multiple-world seman-
tics. The main difference with our approach is that in
DISPONTE, the authors assume that all probabilities are in-
dependent, while we provide a joint probability distribution
through the BN. Another minor difference is that BEL al-

lows for classical consequences whereas DISPONTE does
not. Closest to our approach is perhaps the Bayesian ex-
tension of DL-Lite called BDL-Lite (d’Amato, Fanizzi, and
Lukasiewicz 2008). Abstracting from the different logical
component, BDL-Lite looks almost identical to ours. There
is, however, a subtle but important difference. In our ap-
proach, an interpretation I satisfies a V -GCI 〈C v D : κ〉
if VI(κ) = 1 implies CI ⊆ DI . In (d’Amato, Fanizzi,
and Lukasiewicz 2008), the authors employ a closed-world
assumption over the contexts, where this implication is sub-
stituted for an equivalence; i.e., VI(κ) = 0 also implies
CI 6⊆ DI . The use of such semantics can easily produce
inconsistent KBs, which is impossible in BEL.

Other probabilistic extensions of EL are (Lutz and
Schröder 2010) and (Niepert, Noessner, and Stuckenschmidt
2011). The former introduces probabilities as a concept
constructor, while in the latter the probabilities of axioms,
which are always assumed to be independent, are implic-
itly encoded through a weighting function, which is inter-
preted with a log-linear model. Thus, both formalisms differ
greatly from our approach.

5 Conclusions

We have described the probabilistic DL BEL, which extends
the light-weight DL EL with uncertain contexts. We have
shown that it is possible to construct, from a given BEL KB
K, a BN BK that encodes all the probabilistic and logical
knowledge of K w.r.t. to the signature of the KB. Moreover,
the size of BK is polynomial on the size ofK. We obtain that
probabilistic reasoning over K is at most as hard as deciding
inferences in BK, which yields a tight complexity bound for
deciding p-subsumption in this logic.

While the construction is polynomial on the input KB,
the obtained DAG might not preserve all the desired prop-
erties of the original BN. For instance, it is known that
the efficiency of the BN inference engines depends on the
treewidth of the underlying DAG (Pan, McMichael, and
Lendjel 1998); however, the proof structure used by our con-
struction may increase the treewidth of the graph. One direc-
tion of future research will be to try to optimize the reduc-
tion by bounding the treewidth and reducing the ammount
of nodes added to the graph.

Clearly, once we have constructed the associated BN BK
from a given BEL KB K, this can be used for additional in-
ferences, beyond deciding subsumption. We think that rea-
soning tasks such as contextual subsumption and finding the
most likely context, defined in (Ceylan and Peñaloza 2014)
can be solved analogously. Studying this and other reason-
ing problems is also a task of future work.

Finally, our construction does not depend on the chosen
DL EL, but rather on the fact that a simple polynomial-time
consequence-based method can be used to reason with it.
It should thus be a simple task to generalize the approach to
other consequence-based methods, e.g. (Simancik, Kazakov,
and Horrocks 2011). It would also be interesting to gener-
alize the probabilistic component to consider other kinds of
probabilistic graphical models (Koller and Friedman 2009).



References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2007. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2nd edition.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. IJCAI-05. Morgan-Kaufmann.
Brandt, S. 2004. Polynomial time reasoning in a description
logic with existential restrictions, GCI axioms, and—what
else? In Proc. ECAI-2004, 298–302. IOS Press.
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