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Abstract. A number of similarity measures for comparing descrip-
tion logic concepts have been proposed. Criteria have been developed
to evaluate a measure’s fitness for an application. These criteria in-
clude on the one hand those that ensure compatibility with the se-
mantics, such as equivalence soundness, and on the other hand the
properties of a metric, such as the triangle inequality. In this work
we present two classes of dissimilarity measures that are at the same
time equivalence sound and satisfy the triangle inequality: a simple
dissimilarity measure, based on description trees for the lightweight
description logic EL; and an instantiation of a general framework,
presented in our previous work, using dilation operators from mathe-
matical morphology, and which exploits the link between Hausdorff
distance and dilations using balls of the ground distance as structuring
elements.

1 INTRODUCTION

The need to quantify similarities or differences between logical ob-
jects arises in areas as diverse as information retrieval in ontologies,
ontology alignment, inductive logic programming and for some tasks
in non-monotonic reasoning such as model-based revision or aggre-
gation. In description logics (DL) one is most often interested in
measuring similarity between concepts, while measures for individ-
uals or ontologies also exist. When similarity measures were first
investigated within the DL community, researchers mainly focused
on adaptations of existing measures from other fields (cf. [8] for a
survey). Most of these are tailored to the specific needs of a particular
field, such as biomedicine [20], or geospatial reasoning [16]. The
quality of these measures was mainly evaluated in an empirical way,
showing that they perform well in a given setting, but providing little
transferable insight.

As the number of similarity measures grew, the need to formalize
criteria for selecting an appropriate measure for a given application
arose. Works such as [9] and [17] list on the one hand the properties
of a metric, in particular the triangle inequality, as well as proper-
ties ensuring compatibility with the semantics of the logic, such as
soundness with respect to equivalence and subsumption. Which of
these properties are relevant depends on the application. For example,
the triangle inequality is deemed irrelevant in [16], but it is crucial
in other applications such as metric-based conceptual clustering and
distance-based optimization methods [14].
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Unfortunately, none of the aforementioned measures satisfy both
the properties of a metric and the properties ensuring compatibility
with the semantics. Outside of description logics, however, several
works have proposed distance measures between logical objects that
do satisfy the triangle inequality. Works such as [19, 21] exploit the
fact that it is relatively easy to define a metric on ground expressions in
first order logic. They extend these ground distances to sets of atoms,
or Herbrand interpretations using constructions such as Hausdorff-
distances or Manhattan distances.

In some cases it is straightforward to define a distance between
two terms if one is a generalization of the other. To obtain a distance
between two arbitrary terms one can simply use the sum of the dis-
tances to their least general common generalization. In a general form
Birkhoff has presented this idea as the classical distance in graded
lattices [5]. It is used to define a distance between first order literals
in [15], which is generalized to a distance between clauses using the
Hausdorff metric. The idea can also be extended to cases where there
is no unique minimal generalization [10].

This work is based on previous work [12] which introduces a
framework for dissimilarity measures based on concept relaxation
operators. The resulting dissimilarity measures are at the same time
sound with respect to equivalence and subsumption and satisfy the
triangle inequality. Unfortunately, simple concept relaxation operators
often yield relatively coarse dissimilarity measures.

In this work we start from a tree edit distance in order to obtain more
fine grained measures. In the lightweight DL EL tree edit distances
can be applied directly to the concept descriptions as described in
Section 3. For more expressive logics this is no longer the case. If the
logic has the tree model property, then the tree edit distance can still be
used on the model level. In Sections 4 and 5 we show how a relaxation
operator can be obtained from a tree edit distance on models. Our
approach is inspired by the Hausdorff distance and its links with
morphological dilation. In a metric space the Hausdorff distance can
be used to leverage a metric between points to a metric between sets
of points. We apply this idea to leverage a metric between models to
a metric between concepts, by identifying concepts with their sets of
models. Unlike previous approaches our measure is computed in an
iterative way. It is defined for two concept descriptions in the absence
of a terminology (TBox). In the conclusion we will briefly discuss
how, under certain conditions, it can be extended to settings with a
background terminology.

2 PRELIMINARIES
2.1 Description Logics
We do not give a complete introduction to description logics, for more
information consider [1]. Description logics are a family of knowledge



representation formalisms. Every description logic L provides a set
of concept descriptions C(L). Concept descriptions are recursively
obtained from a set of concept names NC and a set of role names
NR using concept constructors. The pair Σ = (NC ,NR) is called
a signature. The semantics of concept descriptions is defined using
interpretations. An interpretation I is a pair I = (∆I , ·I) consisting
of an interpretation domain ∆I and an interpretation function ·I
which maps concepts to subsets of the domain ∆I and role names to
binary relations on the domain.

A concept description C is said to subsume a concept description
D (denoted by C v D) if CI ⊆ DI holds for every interpretation
I. C and D are equivalent (denoted by C ≡ D) if both C v D and
D v C hold.

A logic L is said to have the tree model property if C v D holds
for every pair of concept descriptions C,D ∈ C(L) that satisfies
CI ⊆ DI for all tree-shaped interpretations I.

We call a pair (I, x) where I is a DL interpretation and x ∈ ∆I is
a domain element a pointed interpretation. We denote the set of all
pointed interpretations for a given signature Σ by IntΣ, and the set
of all pointed tree-shaped interpretations by TIntΣ. We call (I, x)
a (pointed) model of C if x ∈ CI . For every concept description
C ∈ L we denote the set of all pointed models of C by Mod (C) and
the set of all pointed tree-shaped models of C by TMod (C).

2.2 Similarity and Dissimilarity on Concepts
In [9] for the first time qualitative criteria were developed, using the
work in [7] as a starting point. The following definition is slightly
adapted to dissimilarity between concepts.

Definition 1 (Dissimilarity [7]) Let L be a DL language. A function
d : C(L)×C(L)→ R is called a dissimilarity measure if it is positive,
i.e. d(C,D) ≥ 0, reflexive, i.e. d(C,C) = 0 and symmetric, i.e.
d(C,D) = d(D,C) for all C,D ∈ C(L).

These properties can be expected to hold for any dissimilarity
measure. In a description logics context it should also be compatible
with the semantics of the logic. To ensure this, the authors in [9] and
later [17] introduced additional criteria.4

Definition 2 A dissimilarity measure d : C(L)×C(L)→ R is called

• equivalence sound5 if D ≡ E =⇒ d(C,D) = d(C,E),
• equivalence closed if d(C,D) = 0 =⇒ C ≡ D,
• subsumption preserving if C v D v E =⇒ d(C,D) ≤
d(C,E),

• reverse subsumption preserving if C v D v E =⇒ d(D,E) ≤
d(C,E), and

• we say that d fulfills the triangle inequality if d(C,E) ≤ d(C,D)+
d(D,E)

for all C,D,E ∈ C(L).

A common intuition is that concepts with more common features
should be less dissimilar than concepts with fewer common features,
and that common subsumers are a way to extract commonalities from
concepts. For example the concepts

F := Male u ∃hasChild.>
HoJ := Male u ∃marriedTo.(Female u Judge)

(1)

4 The properties of soundness and dissimilarity incompatibility were also
mentioned in [9], however these were never formally defined.

5 Notice that in [17] equivalence soundness is referred to as equivalence
invariance.
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Figure 1. D needs to be relaxed twice before it subsumes C, i.e.
ddρ(C,D) = 2.

share the common feature Male. Therefore, their dissimilarity should
be smaller than the dissimilarity between F and Female. Two attempts
to formalize this intuition are monotonicity and structural dependence.
Their definitions can be found in [9] and [17], respectively.

A dissimilarity d is a metric if it satisfies the triangle inequality and
is additionally strict, i.e. d(x, y) = 0 implies x = y. The bottleneck
preventing most dissimilarity measures from being metrics is the
triangle inequality.

2.3 Dissimilarity Based on Relaxations
In [12] we provided a general framework for dissimilarities that have
all properties from Section 2.2, except monotonicity and structural
dependence. The framework is based on concept relaxation operators,
operators that allow a stepwise generalization of concepts (Figure 1).

Definition 3 (Relaxation) A (concept) relaxation is an operator
ρ : C(L) → C(L) that satisfies the following three properties for
all C,D ∈ L.

1. ρ is non-decreasing, i.e. C v D implies ρ(C) v ρ(D),
2. ρ is extensive, i.e. C v ρ(C), and
3. ρ is exhaustive, i.e. ∃k ∈ N : > v ρk(C),

where ρk denotes ρ applied k times, and ρ0 is the identity.

A trivial relaxation is the operator ρ> that maps every concept to >.

Definition 4 (Relaxation Dissimilarity) Let ρ be a relaxation on
C(L). For two concepts C and D the relaxation dissimilarity
dρ(C,D) is defined as dρ(C,D) = max{ddρ(C,D), ddρ(D,C)},
where ddρ(C,D) = min{k ∈ N | C v ρk(D)}.

Using relaxations to define dissimilarity measures can be seen as
the dual idea to the one in [13], where similarity measures are used to
define relaxations.

Theorem 1 ([12]) For every relaxation ρ the operator dρ is a dis-
similarity measure, that is equivalence sound, equivalence closed,
subsumption preserving and reverse subsumption preserving, and
satisfies the triangle inequality.

Theorem 1 shows that relaxation operators yield dissimilarity mea-
sures with good theoretical properties. However, as discussed in [12]
many simple relaxation operators yield rather coarse dissimilarities.
In this work, we instantiate the framework using a relaxation based on
a tree edit distance on models on the one hand, and on morphological
operators (namely dilations) on the other hand.
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Removing the label at v0 and adding
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3 EL AND DISTANCES ON TREES
3.1 From Concepts to Description Trees
EL denotes the simple description logic, that allows only for con-
junction u, existential restrictions ∃ and the top concept >. Despite
its limited expressivity, it is a very popular choice among ontology
engineers, as it is tractable [2] and forms the basis of the OWL 2
profile OWL 2 EL [18].
EL concept descriptions can appropriately be represented as la-

beled trees, often called EL description trees [3]. An EL description
tree is a tree whose nodes are labeled with sets of concept names and
whose edges are labeled with role names. An EL concept description

C ≡ P1 u · · · u Pn u ∃r1.C1 u · · · u ∃rm.Cm (2)

with Pi ∈ NC ∪ {>}, can be translated into a description tree by
labeling the root node v0 with {P1, . . . , Pn}, creating an rj successor,
and then proceeding inductively by expanding Cj for the rj-successor
node for all j ∈ {1, . . . ,m}. As an example the description tree of

Person u ∃c.Male u ∃c.∃c.Female. (3)

is depicted in Figure 2. Due to this tight link between EL-concepts and
trees it is natural to use distance measures defined on trees. Examples
for existing metrics defined on trees are tree edit distances and tree
alignment distances [4].

We assume that we are given a metric δ on the space of all EL-
concept descriptions and try to derive a dissimilarity measure between
EL-concepts. Simply defining dissimilarity between two concepts as
the distance between their description trees would violate equivalence
soundness, since a concept can have multiple equivalent representa-
tions and thus multiple description trees.

A frequently used workaround is restricting to the normal form,
introduced in [3]. An EL-concept is in normal form if it is of the
form (2) with the additional requirement that no subsumption relation
holds between two distinct conjuncts from (2) and that all Cj , j ∈
{1, . . . ,m}, are also in normal form. The normal form is unique up
to reordering of conjuncts, and since reordering of conjuncts does not
change the description tree, it yields a unique description tree for each
equivalence class of EL-concepts.

Definition 5 (Dissimilarity from Tree Metric) Let δ be a metric on
the space of all EL-description trees. We define a dissimilarity
measure dtree

δ (C,D) = δ(TC , TD) where TC and TD are the EL-
description trees of the normal form of C and D, respectively.

It follows immediately from the uniqueness of the EL-description
trees for normal forms that dtree

δ is equivalence sound. Since δ is a
metric, and thus positive, reflexive, symmetric, strict and satisfying

the triangle inequality, we obtain immediately that dtree
δ is positive,

reflexive, symmetric, equivalence closed, and satisfies the triangle
inequality. In general, dtree

δ lacks monotonicity, structural dependence
and (reverse) subsumption preservation.

3.2 Tree Edit Distances
Arguably the most widely used among the various approaches for
defining distances between labeled trees are tree edit distances, first
introduced in [25]. They have been successfully applied in fields as
diverse as computer vision, natural language processing, and compu-
tational biology (cf. [4] for a survey).

To define a tree edit distance, one first defines a set of edits, each
with its associated cost. The tree edit distance is then the minimal total
cost of transforming one tree into another. If each edit is reversible at
the same cost, then the tree edit distance will be a metric. The choice
of operations depends on the application.

In this paper we use a particularly simple tree edit distance δedit

allowing for two simple operations, addLabel and addNode, as well
as their inverses, delLabel and delNode:

• the operation addLabel adds a concept name to a node in the tree,
• delLabel removes a concept name from a node,
• for any role r an (unlabeled) r-successor can be added to a node

using addNode, and
• an unlabeled leaf node can be deleted using delNode.

We assign the same cost 1 to each edit. Therefore, the tree edit distance
δedit between two trees T1 and T2 is the minimal number of tree edit
operations that need to be performed to transform T1 into T2. Consider
Figures 2 and 3 for an example.

Using a characterization of subsumption between EL-concepts
from [3] it is straightforward to prove that the dissimilarity measure
dtree
δedit is subsumption preserving and reverse subsumption preserving,

in addition to the properties shared by all dissimilarity measures
obtained from Definition 5.

This shows that for the description logic EL, it is possible to define
dissimilarity measures with good theoretical qualities based on metrics
on labeled trees. Unlike EL, concepts written in more expressive
description logics lack a simple characterization as labeled trees. It is
therefore not possible to transfer the ideas from this section to more
expressive logics in a straightforward way. In Section 4 we will show
how, by working with models instead of concepts, we can still make
use of tree distances to define dissimilarity measures.

4 RELAXATION OPERATORS FROM
DILATIONS

4.1 Mathematical Morphology and the Hausdorff
distance

Mathematical Morphology is a theory of spatial transformation,
mainly developed in digital image processing [24]. Its determinis-
tic part relies on the algebraic framework of complete lattices [22],
thus extending its scope to many domains of information processing,
including logics [6]. At the heart of mathematical morphology are
two classes of operators: dilations and erosions. Given a metric space
(M, δ) and a real number λ ∈ R the dilation dilδ,λ and the erosion
eroδ,λ by a ball of δ of radius λ are defined as operators on the power
set of M , which we denote by P(M):

dilδ,λ(S) = {x ∈M | ∃y ∈ S : δ(x, y) ≤ λ} (4)

eroδ,λ(S) = {x ∈M | ∀y ∈M : δ(x, y) ≤ λ =⇒ y ∈ S}



for all S ⊆M . For erosions and dilations by a unit ball, i.e. for λ = 1,
we simply write dilδ and eroδ . Additionally to the commutativity
with the supremum for dilδ,λ, and with the infimum for eroδ,λ, these
operations have important properties that will be used in the following:
they are increasing with respect to S, dilδ,λ is increasing and eroδ,λ is
decreasing with respect to λ, dilδ,λ is extensive (i.e. S ⊆ dilδ,λ(S))
and eroδ,λ is anti-extensive (i.e. eroδ,λ(S) ⊆ S). Other properties
may hold depending on the ground distance δ.

There is an intuitive connection between dilations and relaxations,
e.g. both are extensive and monotone. In Section 4.2 we shall exploit
this connection for the purpose of defining relaxations based on dila-
tions. In that section we will mostly be interested in discrete metrics,
i.e. metrics that only take values from N. For these metrics, arbitrary
dilations can be characterized by successive dilations with a unit ball,
provided that the betweenness property holds.

Definition 6 (Betweenness Property) Let δ be a discrete metric on
M . We say that δ has the betweenness property if for all x, y ∈M and
all k ∈ {0, 1, . . . , δ(x, y)} there exists z ∈M such that δ(x, z) = k
and δ(z, y) = δ(x, y)− k.

Lemma 1 If δ is a discrete metric with betweenness property, then
for all sets X ⊆ M and all λ ∈ N it holds that dilδ,λ(X) =
(dilδ,1)λ(X).

A connection between dilations and the classical Hausdorff distance
is mentioned in [24]. Remember that for a metric space (M, δ) the
Hausdorff distance hδ is a metric between non-empty compact subsets
X,Y ⊆M . It is defined as

hδ(X,Y ) = max

{
sup
x∈X

δ(x, Y ), sup
y∈Y

δ(y,X)

}
, (5)

where δ(x, Y ) = inf{δ(x, y) | y ∈ Y }. The Hausdorff distance can
then be expressed in terms of dilations as follows.

Lemma 2 ([24]) For all non-empty compact sets X,Y ⊆M

hδ(X,Y ) = max(hd,δ(X,Y ), hd,δ(Y,X))

where hd,δ(X,Y ) = inf {λ | X ⊆ dilδ,λ(Y )}.

4.2 From Model Space to Concept Space
Just like Hausdorff distance generates a metric defined on sets of
points from a metric points, we want to lift a metric δ from pointed
models to concept descriptions. Let δ be a metric on the space of
pointed tree models TIntΣ. In a logic L with the tree model prop-
erty, no two concept descriptions C and D can have the same sets
of pointed tree models TMod (C) and TMod (D), unless they are
equivalent. In fact it even holds that

C v D ⇐⇒ TMod (C) ⊆ TMod (D) . (6)

In particular, the description logic ALC and all of its fragments
have the tree model property [23]. Therefore, one could naively use
the Hausdorff distance hδ(TMod (C) ,TMod (D)) between sets of
pointed tree models to define dissimilarity between the two concepts
C and D. In practice, the Hausdorff distance cannot be computed
directly from (5), since it is impossible to list all models in TMod (C)
and TMod (D). Instead we shall define a dissimilarity from a relax-
ation, which we obtain from a dilation. This is only possible if the
dilation is expressible in the following sense.

Definition 7 (Expressibility) Let ω : P(TIntΣ)→ P(TIntΣ) be a
unary operator. We say that ω is expressible in L if for every C ∈
C(L) there exists some DC ∈ C(L) such that

TMod (DC) = ω(TMod (C)).

If L has the tree model property, then DC is unique up to equivalence,
provided that it exists.

If ω is expressible in L then we can define an operator
ρω : C(L)→ C(L) that maps C to DC for every concept C ∈ C(L).

An example for a Hausdorff-based dilation that is expressible in a
description logic will be given in Section 5. The following result is
an immediate consequence of the tree model property, the definition
of subsumption, and the fact that dilations are non-decreasing and
extensive.

Lemma 3 Let L be a logic that has the tree-model property. Let
dil be a dilation on TIntΣ. If dil is expressible in L then ρdil is
non-decreasing and extensive.

For discrete metrics, we now have all the necessary definitions to
obtain a dissimilarity measure on concepts, according to Figure 4.
The following theorem shows that the dissimilarity measure obtained
in this way can be viewed as a Hausdorff distance, if we identify
concepts with their sets of models according to (6).

Theorem 2 Let δ be a discrete metric on TIntΣ and letC,D ∈ C(L)
be concept descriptions such that TMod (C), TMod (D) are com-
pact. Let dilδ , ρdilδ and dρdilδ be defined as in Equation (4), Defi-
nition 7 and Definition 4, respectively. If δ satisfies the betweenness
property, dilδ is expressible in L and ρdilδ is exhaustive, then ρdilδ is
a relaxation and

dρdilδ (C,D) = hδ(TMod (C) ,TMod (D)).

Proof: Lemma 2 states that hδ(TMod (C) ,TMod (D)) =
max(HCD, HDC) where

HCD = inf {λ | TMod (C) ⊆ dilδ,λ(TMod (D))} .

The betweenness property and expressibility of dilδ entail
dilδ,λ(TMod (D)) = (dilδ)

λ(TMod (D)) = TMod
(
ρλdilδ

(D)
)
.

Together with (6) this yields HCD = inf
{
λ | C v ρλdilδ

(D)
}
,

and finally HCD = ddρdilδ
(C,D) from Definition 4. Analo-

gously, one can show HDC = ddρdilδ
(D,C), and thus from

Definition 4 we obtain dρdilδ (C,D) = max(HCD, HDC) =
hδ(TMod (C) ,TMod (D)). �

Applicability of Haussdorf distances is restricted to concepts with
compact sets of models. In the following we present a relaxations
based approach that can compute dissimilarities between two con-
cepts regardless of compactness of their sets of models. Theorem 2
guarantees that in those cases where they are compact, our approach
yields the same result as a Hausdorff distance, i.e. our approach is
truly a generalization of a Hausdorff distance.

5 A RELAXATION FROM A TREE EDIT
DISTANCE

In Section 3 we have defined the tree edit distance δedit on trees with
labeled nodes and edges. We have used it on EL-description trees, but
since it only requires labeled nodes and edges, it can equally be used



Discrete Metric
δ : TIntΣ × IntΣ → N

Dilation
dilδ : P(TIntΣ)→ P(TIntΣ)

Relaxation
ρdilδ : C(L)→ C(L)

Dissimilarity
dρdilδ : C(L)× C(L)→ N(4) Def. 7 Def. 4

Figure 4. From discrete metrics on TIntΣ to dissimilarity measures.

as a metric on TIntΣ. In this section, we show how, based on δedit,
a dissimilarity measure can be defined according to the framework
depicted in Figure 4.

We consider the logic ELU , which allows for disjunction t in ad-
dition to the normal constructors of EL. The extension by disjunction
will later be needed to ensure expressibility of the dilation. Note that
disjunction commutes with existential restrictions, i.e. for all concepts
C, D and all role names r it holds that ∃r.(C tD) ≡ ∃r.C t ∃r.D.
In particular, this means that any complex ELU concept description
C can be written as a disjunction of pure EL concept descriptions
(Ci)1≤i≤k:

C ≡ C1 t C2 t · · ·Ck. (7)

In the later parts of this section, conjunctions over existential restric-
tions that share the same role name will require special attention.
Therefore, we group them when transforming a concept into normal
form.

Definition 8 We say that an EL-concept D is written in normal form
with grouping of existential restrictions if it is of the form

D =
l

A∈ND

A u
l

r∈NR

Dr, (8)

where ND ⊆ NC is a set of concept names and the concepts Dr are
of the form

Dr =
l

E∈CDr

∃r.E, (9)

where no subsumption relation holds between two distinct conjuncts
and CDr is a set of complex EL-concepts, that are themselves in
normal form with grouping of existential restrictions. The purpose
of Dr terms is simply to group existential restrictions that share the
same role name. For an ELU-concept C we say that C is in normal
form if it is of the form (7) and each of the Ci is an EL-concept in
normal form with grouping of existential restrictions.

Given the tree edit distance δedit we want to apply the framework
from Figure 4. Notice that in order to apply Definition 7 we first need
to show that the dilation dilδedit is expressible in ELU . Furthermore,
in order to apply Definition 4 it is necessary to show that ρdil

δedit is ex-
haustive (non-decreasingness and exhaustivity follow from Lemma 3).
Our expressibility proof requires the following technical lemma. We
omit the proof, which is a straightforward consequence of monotonic-
ity of the ELU-constructors.

Lemma 4 Let (I, x) be a pointed tree model of an ELU-concept
C and let (I′, x) be a model that has been obtained from (I, x) by
either addLabel or addNode. Then (I′, x) is also a model of C.

Conversely, if (I, x) is not a model of D and (I′′, x) is obtained
by either delLabel or delNode then (I′′, x) is not a model of D.

We show that dilδedit , defined as in (4), is expressible in ELU ,
by explicitly giving the operator ρdil

δedit . Given an ELU-concept

description C we define an operator ρ recursively as follows. For
C = A ∈ NC and for C = > we define ρ(A) = ρ(>) = >. For
C = Dr , where Dr is a group of existential restrictions as in (9), we
need to distinguish two cases:

• if Dr ≡ ∃r.> we define ρ(Dr) = >, and
• if Dr 6≡ ∃r.> then we define

ρ(Dr) =
⊔
S⊆CDr

(
l

E/∈S

∃r.E u ∃r.ρ
( l

F∈S

F

))
.

Notice that in the latter case > /∈ CDr since Dr is in normal form.
For C = D as in (8) we define

ρ(D) =
⊔

G∈CD

(
δ(G) u

l

H∈CD\G

H

)
,

where CD = ND∪{Dr | r ∈ NR}. Finally forC = C1tC2t· · ·Ck
we set

ρ(C) = ρ(C1) t ρ(C2) t · · · ρ(Ck).

Theorem 3 The operator ρ as defined above satisfies

TMod (ρ(C)) = dilδedit (TMod (C)).

for all concept descriptions C ∈ ELU . In particular, this means that
dilδedit is expressible in ELU and ρ = ρdil

δedit .

To prove Theorem 3, one needs to show that for all pointed models
(I, x) it holds that

(I, x) ∈ TMod (ρ(C)) ⇐⇒

∃(I′, x) ∈ TMod (C) : δedit((I, x), (I′, x)) ≤ 1, (10)

i.e. (I, x) is a model of ρ(C) iff one edit suffices to reach a model
(I′, x) of C. This can be shown using a straightforward but tedious
induction on the structure of C that follows the definition of ρ. A
complete proof can be found in [11].

In order for Theorem 2 to be applicable, it only remains to show
that ρ is exhaustive.

Lemma 5 The operator ρ is exhaustive.

Proof: From (6) it follows that ρk(C) ≡ > iff TMod
(
ρk(C)

)
=

TIntΣ. By Theorem 3 this is equivalent to (dilδedit )k(TMod (C)) =
TIntΣ. Thus in order to show that ρ is exhaustive, it suffices to
show that for every ELU-concept C there exists k ∈ N such that
all (I, x) ∈ TIntΣ satisfy δedit((I, x),TMod (C)) ≤ k. If C is a
concept in pure EL then we can simply take k = size(C) to be the
size of C, i.e. the number of labels and edges in the description tree of
C. Then, using k operations addLabel and addNode we can attach the
full description graph ofC to the root node x in the model (I, x). This
yields a model (I′, x) of C, and thus δedit((I, x),TMod (C)) ≤ k.
If C is not in pure EL, then it can be written as a disjunction of pure
EL concepts C1, . . . , Cn. In that case, δedit((I, x),TMod (C)) is
bounded by min1≤j≤n size(Cj). Hence, ρ is exhaustive. �

This finally allows us to apply Theorem 2.



Corollary 1 The operator ρdil
δedit is a relaxation, and the distance

dρdil
δedit

is a dissimilarity measure that corresponds to the Hausdorff
distance hδedit in the sense of Theorem 2.

Notice that by Lemma 1 the dissimilarity dρdil
δedit

is also equiv-
alence sound, equivalence closed, subsumption preserving, reverse
subsumption preserving, and satisfies the triangle inequality.

Example 1 For the relaxation ρdepth we observed that in certain cases
it contradicts the intuition that a greater number of common features
should yield smaller dissimilarities. If we apply dρdil

δedit
to the con-

cepts from (1)

dρdil
δedit

(F, ∃hasChild.>) = 1,

dρdil
δedit

(HoJ, ∃hasChild.>) = 4, and

dρdil
δedit

(HoJ,F) = 3.

as we would expect it by looking at the commonalities between the
concepts.

6 CONCLUSION
In this work, we have presented two classes of dissimilarity measures.
For the Description Logic EL we looked at the unique description
tree of a concept’s normal form. Then any tree metric can be used
to define a dissimilarity. In the general case, such a dissimilarity is
not subsumption preserving and reverse subsumption preserving. A
special case is the dissimilarity based on the tree edit distance dtree

δedit

satisfying these properties. This approach is specific to EL and cannot
easily be adapted to other logics.

For this reason, we have presented a second approach based on a
framework presented in [12]. We have instantiated this framework
by defining a morphological dilation on the concept space and then
expressing it as a relaxation at the concept level. An overview of the
properties of the similarity measures that we defined compared to
some earlier works can be found in Table 1.

Table 1. Properties of some (dis-)similarity measures.
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[17] X – X X X X –
[9] X X – X X – –
dtree
δ X – X – – – X

dtree
δedit X – X X X – X

dρ X – X X X – X

The similarity measures that we have presented here are defined
for concepts without a background terminology. In the presence of
an acyclic TBox, concepts can be unfolded with respect to the TBox.
In that case, it is possible to simply compute the dissimilarity with
respect to the unfolded concepts. In principle, it is possible to gen-
eralize relaxations with respect to general TBoxes, by replacing the
subsumption relation in their definition by subsumption with respect
to a TBox. How to instantiate relaxations with respect to TBoxes
is left for future work. Future work should also include a practical
evaluation of the measures we defined.
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