
Bridging the Application Knowledge Gap
Using Ontology-based Situation Recognition to Support Energy-Aware Resource Scheduling

Marcus Hähnel
Chair of Operating Systems

Institute of Systems Architecture
Technische Universität Dresden

mhaehnel@tudos.org

Julian Mendez, Veronika Thost,
Anni-Yasmin Turhan

Chair for Automata Theory
Institute for Theoretical Computer Science

Technische Universität Dresden
lastname@tcs.inf.tu-dresden.de

ABSTRACT
Regarding energy efficiency, resource management in com-
plex hard- and software systems that is based on the infor-
mation typically available to the OS alone does not yield best
results. Nevertheless, general-purpose resource management
should stay independent of application-specific information.
To resolve this dilemma, we propose a generic, ontology-
based approach to resource scheduling that is context-aware
and takes information of running applications into account.
The central task here is to recognize situations that might
necessitate an adaptation of resource scheduling. This task
is performed by logical reasoning over OWL ontologies. Our
initial study shows that current OWL 2 EL reasoner systems
can perform recognition of exemplary situations relevant to
resource management within 4 seconds.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; I.2.4
[Artificial Intelligence]: Knowledge Representation For-
malisms and Methods

General Terms
Management, Design

Keywords
resource management,middleware,reasoning,energy

1. INTRODUCTION
Today’s mobile, desktop and server systems become more

adaptive and heterogeneous in their resources. Further, en-
ergy consumption is a growing concern, not only in mobile
systems with limited power supply, but also in stationary
systems, due to increasing energy prices and limits to the
capability to provide energy to data-centers. This motivates
our study on a context-aware resource scheduler that adapts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM’14 December 9, 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-3232-3/14/12 ...$15.00.
http://dx.doi.org/10.1145/2677017.2677020

to a more energy-efficient configuration depending on the
current situation in the managed system.

1.1 Energy-Aware Resource Scheduling
To exploit the capabilities of heterogeneous architectures,

resources must be managed according to application de-
mand. In particular, a system’s resource manager must find
a configuration that provides the applications’ required re-
sources in the most energy-efficient way. However, the fore-
casting of the amount of resources an application can bene-
fit from is non-trivial and usually involves knowledge which
the application cannot easily communicate to lower-layer re-
source managers. In general, resource managers base their
scheduling decisions on the current resource utilization or its
recent history. However, a very high utilization of a resource
does not necessarily mean that applications can benefit from
more of it. In fact, it is often strongly application-dependent
whether there is an actual benefit from additional resources.
To cater to a changing demand for resources over time, the
resource manager should take application knowledge into
account. A similar problem arises with machine scheduling
where, based on load, machines are turned off or on to save
power. Turning on a new machine too late results in reduced
service quality. Yet, turning it on without actually needing
it wastes energy. In many cases, applications have informa-
tion on whether the load increases in the near future (e.g.,
based on information on user types classified by their past
behavior). This information should be used by the resource
scheduler.

While for short-term decisions—such as resource config-
uration changes that are performed quickly and that are
re-evaluated in short time intervals—the use of heuristics is
essential to provide a responsive system, this is not the case
for long-term decisions and configuration changes that may
provide long-term energy-savings. Gathering and perform-
ing sophisticated analysis on application knowledge are here
key to an energy-efficient system.

Since the resource manager should be as generic as pos-
sible and therefore not directly include application-specific
information, it is a challenge to enable the system to ex-
ploit application knowledge while keeping the separation of
concerns. To achieve this, an approach for bridging the gap
from the resource manager to the application knowledge is
needed that fulfills the following requirements:

• integration of information at different levels of detail
and from heterogeneous sources into a coherent view.

• support the representation and recognition of critical
situations under possibly incomplete and noisy infor-
mation.

We propose an ontology-based approach to bridge the gap
and that acts as a dedicated glue layer between the knowl-
edge from different kinds of applications and the resource
manager itself. That is, we employ logical reasoning over
an ontology that captures the status of the system to recog-
nize critical situations in which the resource manager might
want to adapt. More precisely, knowledge of running appli-
cations and information on the current system state is cap-
tured in an ontology, and the situations to be detected are
formulated as queries over this ontology. Then, an ontology
reasoner evaluates the queries over the ontology and notifies
the resource manager in case it recognizes critical situations.
The latter alert is issued via a simple, generic interface—for
example, in case the resource manager should power up an
additional server. This results in a generic approach for re-
flective resource scheduling and could thus be used for other
non-functional requirements such as robustness or security.

1.2 Situation Recognition by Standard
OWL 2 EL Reasoning

We model ontologies that capture our hard- and software
components in the ontology language OWL 2 EL, one of
the lightweight profiles [10] of the Web ontology language
OWL[14]. Ontologies offer a graceful way of integrating mul-
tiple information sources on different levels of abstraction.
Moreover, OWL has formal semantics, which are a prerequi-
site for well-defined reasoning services that allow to infer im-
plicitly captured facts from the given ones. In our case, the
answering of class queries or conjunctive queries are of inter-
est. However, these reasoning services are of high computa-
tional (worst case) complexities. For example, in OWL 2 EL,
which corresponds to the DL EL++, class query answering
is in P [3], i.e., it can always be done in polynomial time.
However, conjunctive query answering in the sublogic EL is
already P -complete w.r.t. the size of the ontology. This may
suggest that employing ontology-based reasoning for the re-
source scheduling problem at hand cannot be done within
a useful time interval. Thus, it is interesting to find out
whether the task of situation recognition can be supported
by today’s OWL reasoning systems. We apply class and
conjunctive query answering to query the ontology for the
situations to be recognized.

In OWL, in general, categories from the application do-
main can be described by classes and binary relations by
so-called properties. The class Server, e.g., can be charac-
terized as hardware with a part that is of class CPU and a
part that is of class memory by the expression:

Server ≡ HW u (∃hasPart.CPU) u (∃hasPart.Memory).

This definition assigns to the named class Server the complex
class expression on the right-hand side using the property
hasPart and the other named classes HW, CPU, and Memory.
Based on Server, we can define an OffServer as a server that
has power state ‘off’:

OffServer ≡ Server u ∃hasPowerState.Off

Definitions of classes are stored in the TBox, which is one
of the two parts of an ontology. The second part, called
ABox, stores concrete facts about the application—either as

class assertions that state class membership of an individual
or as property assertions that relate two individuals via a
property. For instance, in ABox A1, below, we state that
the individual S1 belongs to the class Server and that its
related power state is individual PS2 , which belongs to the
class Off, by writing the statements:

A1 = {Server(S1), hasPowerState(S1 ,PS2), Off(PS2)}.

For OWL, there are several reasoning services that can infer
from the explicitly given information in the ontology implic-
itly captured facts. Class queries compute, for a given class
(expression) Cq and an ontology, all the individuals in the
ABox that belong to the class Cq. For example, for the query
class OffServer, the above class definitions, and A1, the in-
stance S1 is derived. A more powerful way to query the
ABox are conjunctive queries. A conjunctive query is a con-
junction of assertions where variables can be used instead of
individuals. For example,

qex(x1, x2) = ∃y.Server(x1) ∧ Process(x2) ∧ uses(x2, y)

∧ hasPart(x1, y)

is a conjunctive query asking for all pairs of servers and
processes where the process uses some part of the server.

To apply OWL reasoning to support energy-efficient re-
source scheduling, we model the system’s basic categories
and relations such as the hardware and application-specific
knowledge in a TBox. The current state of the system is then
captured at runtime in an ABox, similarly to [2, 7, 8, 12].
To recognize critical situations for the resource manager, we
employ the answering of class and conjunctive queries. Once
such a situation is detected for a (tuple of) ABox individ-
ual(s), the resource manager is notified and can (decide to)
invoke appropriate adaptations.

In this paper, we take a video platform as a use case to
demonstrate the feasibility of our ontology-based approach
to support resource scheduling decisions. Our contributions
are as follows:

• Identification of situations characterized by application-
specific knowledge and whose recognition would im-
prove the system’s energy-efficiency.

• Modeling of an OWL 2 EL ontology OVP which inte-
grates knowledge about the OS and application-specific
knowledge.

• Evaluation of the performance of several state-of-the-
art OWL 2 EL reasoners w.r.t. the recognition of crit-
ical situations modeled as queries over OVP.

This paper complements the picture on how highly adap-
tive and complex hard- and software systems can be sup-
ported by situation recognition through OWL reasoning. In
the past, we studied situation recognition to achieve energy-
efficiency for different applications—by switching between
software variants [8] and for service management systems
[7]. While these studies were targeted more towards coarser
adaptations and therefore explored which OWL 2 profiles
to use, the study at hand investigates whether adaptations
on the OS level can be supported by systems implementing
logical reasoning at all. Given different levels of a complex
hard- and software system, each modeled by OWL 2 ontolo-
gies and performing situation recognition by logical reason-
ing, it is not hard to see that our approach can be extended

to implement cross-layer integration with the ontology as
central platform. Though, in such a setting, further issues
need to be addressed. A first idea for resolving conflicting
adaptations between the layers is, for example, to prioritize
the alerts raised when a situation is recognized.

The remainder of the paper is structured as follows: Sec-
tion 2 covers related work, and Section 3 describes the on-
tology for the video platform use case and the modeling of
the relevant situations. Section 4 then presents an empiri-
cal evaluation of how current OWL 2 EL reasoners perform
in our scenario, by considering class and conjunctive query
answering over our ontology.

2. RELATED WORK
There have been several attempts to incorporate reason-

ing approaches into resource management. In [6] Chan-
taraskul et al. have shown a system to use agents to recog-
nize previously observed traffic patterns in W-CDMA net-
works using case-based reasoning and configuring manage-
ment policies accordingly. Further Attard et al. [1] have
shown an ontology-based approach to recognize personal,
recurring situations of mobile device users and adapt their
behavior accordingly. Pandis et al. [11] work with ontology-
based methods to manage dynamic resource registration and
invocation. Wang et al. [16] have built a system the en-
ables efficient management of host and guest resources in
VM scenarios with the help of cross-layer in-vm application
knowledge. This knowledge is then used to feed an adaptive
learning component that can model the VMs resource us-
age characteristics. This resource usage is directly exported
to the resource manager. Neal [15] has proposed a method
for stakeholder-directed resource allocation where applica-
tion knowledge is used in the form of priorities and weights
to guide memory allocation schemes.

While all these approaches try to manage resources us-
ing application knowledge, none of them can cope with het-
erogeneous resources, picking the best fit based on user re-
quirements and application specific resource usage informa-
tion. To the best of our knowledge, we are the first to use
ontology-based reasoning to bridge the gap from generic re-
source management for highly adaptive, heterogeneous hard-
ware to application knowledge using an ontology-based ap-
proach that does not incur direct changes in the resource
manager. Resource Containers by Banga et al. provide fine-
grained resource management primitives letting the OS as-
sign resources to an application, separating resource princi-
pals from protection domains [4]. This allows the application
to manage resources on its own. Unlike more direct and sim-
ple approaches for resource scheduling, our approach offers
the opportunity to realize cross-layer integration as well.

In more general settings, the idea of employing logical rea-
soning and ontology-based approaches for situation recog-
nition is certainly not new. There are investigations on a
variety of domains from the last decade. However, when it
comes to studies on energy-efficient computing in complex
hard- and software systems, then our earlier studies [7, 8]
are the only ones we are aware of.

3. USE CASE:
MANAGING A VIDEO PLATFORM

To investigate whether resource management can be sup-
ported by OWL reasoning, we consider a video platform

focusing on feature films as our example scenario. The plat-
form uses several servers, which are connected by a hetero-
geneous network setup as suggested in [9]. The application
running on this platform is distributed over several servers
and can expand and shrink based on the required resources.
The video platform allows users to search for, upload, and
stream videos. It further uses transcoding to provide the
uploaded videos in various quality levels and applies a rank-
ing algorithm to determine popular videos. In this system,
the up- and downloading of videos is resource-intensive for
the network, while the transcoding is CPU- and memory-
intensive and possibly requires fast storage. Users of the
platform need to log in before being able to up- or download
a film. Furthermore, they may use the services for free, but
only get guaranteed service quality (i.e., w.r.t. transcoding
times, streaming bandwidth, etc.) if they pay a fee. This
guaranteed service quality is also known as a service level
agreement (SLA) between the provider of the service and
the user. If the agreed quality is not provided, this is a SLA
violation.

Next to providing the video services in the agreed quality,
the main goal of the system’s resource manager is to achieve
this in a cost-effective way. That is, energy consumption
should be kept low while SLA violations are being prevented.

3.1 The Application Knowledge Gap
We identified several cases where generic, energy-aware

resource scheduling can benefit from application knowledge
that is present on the video platform. For instance, up-
coming streaming jobs can be predicted early by taking
knowledge on login events (e.g., that a user wants to stream)
or about user context (e.g., that she uses a high-speed con-
nection, which is known from earlier requests) into account.
Hence, application knowledge can help to influence the de-
cision on when to proactively

• power-up servers without interruption or slowdown of
service.

• in- or decrease the available network bandwidth as,
e.g., required by the network energy management [9].

• identify processes to be throttled (i.e., lowered in prior-
ity) or paused temporarily—for example, if prioritized
users need computing power, but no other resources
are left.

In the first two cases, the usual approach, a näıve threshold-
based decision considering performance metrics such as net-
work or CPU utilization, may lead to increased energy con-
sumption or even to reduced service quality. In case three,
the decisions depending on priority require information on
the kind of processes and their importance for the applica-
tion. Moreover, decisions about priority cannot be made at
all without explicit information on the kind of processes and
their importance for the application. Due to space restric-
tions, we focus on the proactive power-up of servers, in the
following. The scheduling of additional servers is usually
performed when a certain threshold of required bandwidth
is crossed (e.g., a utilization of 90 %). Once the system de-
tects such a threshold crossing, it powers up an additional
server to guarantee service quality.

This is a very crude metric. Using this method we can
neither determine in advance whether the additional band-

PowerUpServerSituation ≡
∃hasRequests.(StreamingReqsNotProcessedYet u ∃mayRequestResources.NotProvidableResourceConfig)
u ∃hasServer.(StreamingServer u ∃hasPowerState.Off)

qPowerUpServerSituation(x1, x2) =

∃y1, y2, y3. VideoPlatform(y1) ∧ hasRequests(y1, x2) ∧ StreamingReqsNotProcessedYet(x2)
∧mayRequestResources(x2, y2) ∧ NotProvidableResourceConfig(y2)
∧ hasServer(y1, x1) ∧ StreamingServer(x1) ∧ hasPowerState(x1, y3) ∧ Off(y3)

Figure 1: The situation to ‘power up an additional server’ captured as a class query and conjunctive query.

width will actually be useful (considering the user’s band-
width capacity), nor assess if it will be required at all. This
is of importance since a threshold closer to 100 % would
enable more energy savings and less needless powering of
servers. However, it would also lead to the danger of late
server power-ups and thus to brief reductions in service qual-
ity.

The shortcomings of this näıve approach in the previ-
ous example can be traced back to insufficient situation-
awareness and especially to the lack of application knowl-
edge, an obstacle that we call the Application Knowledge
Gap. While existing approaches can take application specific
knowledge into account, they are mostly limited to a direct
interface between the resource manager and the application.
These interfaces must either use a unifying abstraction such
as a currency [17] or must use application specific mecha-
nisms that can cope with direct input from the application.
The resource managers, nevertheless, should not implement
such application-specific interfaces because this would result
in a loss of their generality and require an extension for each
new application. Other approaches such as using a currency
force application developers to use (seemingly arbitrary) val-
ues that have no meaning in their domain of expertise.

To bridge the Application Knowledge Gap, we create on-
tologies capturing information about the system, explicitly
describe situations where the (non-)application of adapta-
tion may be beneficial, apply an OWL 2 EL reasoner to
process the application-specific knowledge (of multiple ap-
plications), and that notify the OS once such a critical sit-
uation is recognized. This enables, for example, the early
power-up of an additional server if a user known to perform
heavy downloads is logging into the application when the
system is already nearly fully utilized.

3.2 Ontology-based Situation Recognition
At design time, the relevant situations to be recognized

are modeled as (query) classes or conjunctive queries. These
queries, in turn, use classes referring to domain knowledge
and need to be described in the TBox. In our case, gen-
eral domain knowledge about video platforms (e.g., char-
acteristics of a StreamingServer), and notions specific for re-
source management (e.g., conditions for a requested resource
configuration to be a ProvidableResourceConfiguration) are
described in the TBox. In particular, the TBox captures
application-specific classes relevant to resource scheduling,
for instance,

ThrottleableProcess ≡
∃exec.(Request u ∃issuedBy.NotPayingUser).

The ABox describes the architecture of the specific video

platform instance handled by the resource manager (e.g.,
available servers) and the current state of its components
(e.g., servers on power, network utilization, etc.) as well as
application knowledge (e.g., users logged onto the platform).
Most of the data in the ABox is dynamic and therefore needs
to be collected at runtime. Due to the highly dynamic na-
ture of the system, the ABox is refreshed several times a
minute (e.g., every second). Further, ABoxes are generated
from several sources such as sensor data delivered by the
OS or databases with application-specific knowledge. For
the task of converting numerical (sensor) data into a sym-
bolic representation (i.e., named classes), preprocessors are
applied to convert the numeric data into named classes (as
in [2, 13]). For example, if the power state of S1 in ABox A1

from Section 1.2 has changed to ‘on’ in the last interval, the
assertions: hasPowerState(S1 ,PS2) and On(PS2) are added
to the ABox that is created for the past interval.

Once the ABox is updated, the reasoner performs the an-
swering of the class queries or conjunctive queries to rec-
ognize the critical situations. Under the assumption that
bandwidth details are available for at least some requests,
a situation apt for powering up an additional server could
be the following: The yet unprocessed streaming requests
may demand for resources, say bandwidth, that cannot be
provided currently, and there is a server available, that is
off power and dedicated to streaming. The resulting class
query is displayed in the upper part of Figure 1 as class
PowerUpServerSituation and the corresponding conjunctive
query qPowerUpServerSituation(x1, x2), is given in the lower
part. Please note that, with a conjunctive query, we can
directly query for the available server and the request in
question. In principle, conjunctive queries allow to specify
arbitrary relational structures by the use of variables, while
concept queries in OWL 2 EL allow to specify only relational
structures of tree shape. Thus, conjunctive queries are more
expressive than concept queries, but also computationally
more expensive.

4. EXPERIMENTS
The goal of our experiments is to test whether current

OWL 2 EL reasoners can be applied for situation recognition
to support resource management. The reasoners have to be
able to detect situations while processing realistic amounts
of data within short time. To this end, we specified 6 rather
different situations as class and as conjunctive queries in
OWL 2 EL and let them be answered by current reasoner
systems over OVP.

4.1 Test Data and Reasoning Systems

4.1.1 Test ontologies
The TBox of OVP described in Section 3.2 contains about

200 class and 50 property definitions. Since our domain
is of hierarchical nature (i.e., when it comes to the part-of
property of the hardware), we can model it in OWL 2 EL—
despite the limited expressivity of this profile.

We consider three different ABoxes modeling three differ-
ent states of the system. Each ABox models a mid-sized
video platform running on 20 servers and providing the ser-
vices described in Section 3. For one system state, we mod-
eled, for instance, about 1,000 streaming, 40 uploading, and
200 transcoding jobs being currently processed. This leads
to test ABoxes each containing more than 1,000 individu-
als, more than 1,500 class, and more than 104,000 property
assertions.

4.1.2 Test Queries
We have modeled 5 situations as OWL 2 EL classes. In-

terestingly, one situation could not be represented as an
OWL 2 EL class, since it already referred to parts of the
adaptation the resource manager would need to perform.
For such adaptations the open world semantics of OWL is
not appropriate. Without the adaptation aspects this con-
cept query would have been trivial, and thus we did not
include it in our tests. In contrast, all 6 situations could
be described by conjunctive queries, because the query lan-
guages offer the necessary additional features. The average
size for both the class queries (counting class and prop-
erty names) and the conjunctive queries (counting num-
ber of conjuncts) is seven. The conjunctive queries are
formulated in the query languages SPARQL1 and nrql2.
The rather small size of the queries is due to the fact that
most raw data in the OS context is numerical and needs
to be preprocessed to obtain symbolic OWL classes. Such
named classes then capture rather much information (e.g.,
ProvidableResourceConfiguration). Since concept queries of-
fer less expressivity than conjunctive queries, we had to use
more advanced preprocessing to generate the ABoxes for the
corresponding tests.

4.1.3 Reasoner Systems
The tests were run for 7 reasoners that differ w.r.t. the

OWL profiles and the reasoning services supported (i.e., not
all of them support both types of queries). Note that, apart
from the reasoners ELK and jCel (both are specialized for
a sublanguage of OWL 2 EL), all reasoners support full
OWL 2 EL and are freely available.

4.2 Results
The tests were carried out on an Intel(R) Xeon(R) E5-

2640 2.50GHz machine with 96 GB RAM using Java 1.7.0 51
and running Linux 3.2.0-4-amd64. To access the reasoners in
a uniform way, we used the OWL API (v 3.5.0) if possible3.
Besides the runtimes, we checked whether the reasoners de-
livered the same results for the respective queries. This was
the case for all but TrOWL, which returned too many an-
swers for two queries.

4.2.1 Performance for Class Queries

1 http://www.w3.org/TR/sparql11-query/
2 http://racer.sts.tuhh.de/ 3 Note that not all of
the reasoners do support this interface, yet.

Reasoner Version Load. Reason. Avg/Q Total

ELK 4 v0.4.1 3.614 1.302 0.063 4.916
FaCT++ 5 v1.6.3 2.392 1.188 0.109 3.580
HermiT 6 v1.3.8 2.151 1.774 0.210 3.925
jCel 7 v0.20.0 3.656 10.475 1.304 14.131
Pellet 8 v2.3.1 1.229 32.515 5.328 33.743
RacerPro 9 v2.0.0 5.234 1.958 0.326 7.193
TrOWL 10 v1.4.0 1.554 0.247 0.025 1.800

Table 1: Runtimes for class queries in seconds.

Reasoner Load. Reason. Avg/Q Total Total’

Pellet 1.792 39.699 4.017 41.478 32.542
RacerPro 5.123 11.643 1.902 16.766 7.715
TrOWL 1.585 32.769 5.460 34.354 1.956

Table 2: Runtimes for conjunct. queries in seconds.

The runtimes measured for class-query answering are dis-
played in Table 1 (in seconds). The rows of the table show
the time spent on loading the ontology, answering all the
queries, the average runtime per query, and the total run-
time of the situation recognition. The last column shows the
total time situation recognition would take in our scenario.
Apart from RacerPro, all reasoners took less than 4 sec-
onds for loading OVP. There are however major differences
between the reasoners w.r.t. the reasoning times. Yet, the
fastest reasoners performed the situation recognition within
4 seconds.

4.2.2 Performance for Conjunctive Queries
The task of situation recognition was more difficult for the

conjunctive queries, since less heavily preprocessed concepts
were used in OVP and because the answering of conjunctive
queries has a higher computational complexity; this is re-
flected in the higher times it took for reasoning, displayed
in Table 2. Note that, since the situation that had not been
representable as class query also lead to a rather unnatural
conjunctive query, Table 2 shows an additional total run-
time for a run considering only the five other situations.
And though the task for answering conjunctive queries was
more complex, TrOWL succeeds in performing the whole
task within only 2 seconds.

To sum up, it turned out that OWL 2 EL can model the
knowledge about our video platform faithfully (i.e., with-
out preprocessed concepts that are seemingly unnatural)
and even better so if we apply conjunctive query answer-
ing. Moreover, our experiments show that state-of-the-art
OWL 2 EL reasoners can perform situation recognition for
exemplary resource scheduling situations within 4 seconds,
which is acceptable to invoke mid-term adaptations (e.g.,
power on servers) or adaptations that are done proactively,
in advance to the actual situation requiring the adaptation.
Note that the very good performance of TrOWL should be
treated with caution given the fact that its answers were not
sound in all our test cases.

5. CONCLUSIONS AND FUTURE WORK
4 http://code.google.com/p/elk-reasoner/
5 http://code.google.com/p/factplusplus/
6 http://hermit-reasoner.com/
7 http://jcel.sourceforge.net/ 8 http://clarkparsia.com/pellet/
9 http://racer.sts.tuhh.de/ 10 http://trowl.eu/

The case study presented here investigated how to support
resource scheduling by application knowledge via ontology-
based situation recognition. To this end, we specified ex-
emplary situations where (non)adaptation leads to better
energy-efficiency, but where the actual recognition of the
situation depends on application knowledge. We further em-
ployed OWL 2 EL ontologies to integrate the system knowl-
edge and used query answering to recognize such situations.
All in all, our experiment underlined that several state-of-
the art reasoning systems can process realistic amounts of
data and recognize a small set of situations in acceptable
time. Thus, we showed that the application knowledge gap
can be closed using a generic method that does not require
to adapt the resource scheduler to each new application.

While this study focused on situation recognition to ac-
complish energy-efficiency, our approach can easily be ap-
plied to achieve other non-functional requirements, such as
security or robustness, as well. Furthermore, our approach
bears the potential to be extended for cross-layer integration
and hence assist to resolve conflicting adaptations.

In the future, we want to implement our approach in a
real-world setting—especially, to investigate the amount of
saved energy as well as the influence on service quality. Fur-
ther, we plan to consider situations that include temporal
information, which allows us to specify many real-world sit-
uations more accurately. We have already conducted theo-
retical research in this direction [5]. In particular, we con-
sidered a combination of conjunctive queries over DL-Lite
ontologies and operators of the propositional linear tempo-
ral logic LTL. Since these queries can be translated into
queries over databases, this approach suits many practical
settings.

Acknowledgments
This work was partially funded by the German Research
Council (DFG) through the Collaborative Research Cen-
ter CRC 912 ”Highly-Adaptive Energy-Efficient Systems”
(HAEC) and the cluster of excellence ”Center for Advancing
Electronics Dresden”.

References
[1] J. Attard, S. Scerri, I. Rivera, and S. Handschuh. Ontology-

based situation recognition for context-aware systems. In
Proc. of the 9th International Conference on Semantic Sys-
tems (I-SEMANTICS ’13), I-SEMANTICS’13, pages 113–
120. ACM, 2013.

[2] F. Baader, A. Bauer, P. Baumgartner, A. Cregan, A. Ga-
baldon, K. Ji, K. Lee, D. Rajaratnam, and R. Schwitter. A
novel architecture for situation awareness systems. In Proc.
of the 18th Int. Conf. on Automated Reasoning with Ana-
lytic Tableaux and Related Methods (Tableaux 2009), volume
5607 of LNCS, pages 77–92. Springer, 2009.

[3] F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope
further. In K. Clark and P. F. Patel-Schneider, editors, Proc.
of the OWLED 2008 DC Workshop on OWL: Experiences
and Directions, 2008.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource con-
tainers: A new facility for resource management in server
systems. In Proceedings of the Third Symposium on Oper-
ating Systems Design and Implementation, OSDI ’99, pages
45–58, Berkeley, CA, USA, 1999. USENIX Association.

[5] S. Borgwardt, M. Lippmann, and V. Thost. Temporal query
answering in the description logic dl-lite. In P. Fontaine,
C. Ringeissen, and R. A. Schmidt, editors, Proceedings of
the 9th International Symposium on Frontiers of Combin-
ing Systems (FroCoS 2013), volume 8152 of Lecture Notes
in Computer Science, pages 165–180, Nancy, France, 2013.
Springer-Verlag.

[6] S. Chantaraskul and L. Cuthbert. Using case-based reason-
ing in traffic pattern recognition for best resource manage-
ment in 3g networks. In Proc. of the 7th ACM International
Symposium on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems (MSWiM’04), MSWiM ’04, pages
252–259. ACM, 2004.

[7] W. Dargie, Eldora, J. Mendez, C. Möbius, K. Rybina,
V. Thost, and A.-Y. Turhan. Situation recognition for service
management systems using OWL 2 reasoners. In Proc. of the
10th IEEE Workshop on Context Modeling and Reasoning
(CoMoRea’13), pages 31–36. IEEE Computer Society, 2013.

[8] S. Götz, J. Mendez, V. Thost, and A.-Y. Turhan. OWL
2 reasoning to detect energy-efficient software variants from
context. In K. Srinivas and S. Jupp, editors, Proc. of the
10th OWL: Experiences and Directions Workshop (OWLED
2013), 2013.

[9] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. ebond:
Energy saving in heterogeneous r.a.i.n. In Proc. of the
Fourth International Conference on Future Energy Systems
(e-Energy ’13), e-Energy’13, pages 193–202. ACM, 2013.

[10] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fok-
oue, and C. Lutz. OWL 2 web ontology language profiles.
W3C Recommendation, October 2009. http://www.w3.org/
TR/2009/REC-owl2-profiles-20091027/.

[11] I. Pandis, J. Soldatos, A. Paar, J. Reuter, M. Carras, and
L. Polymenakos. An ontology-based framework for dy-
namic resource management in ubiquitous computing envi-
ronments. In Embedded Software and Systems, 2005. Second
International Conference on, 2005.

[12] T. Springer and A.-Y. Turhan. Employing description log-
ics in ambient intelligence for modeling and reasoning about
complex situations. Journal of Ambient Intelligence and
Smart Environments, 1(3):235–259, 2009.

[13] K. Taylor and L. Leidinger. Ontology-driven complex event
processing in heterogeneous sensor networks. In G. Anto-
niou, M. Grobelnik, E. Simperl, B. Parsia, D. P. De Leen-
heer, and J. Pan, editors, The Semanic Web: Research
and Applications, volume 6644 of LNCS, pages 285–299.
Springer, 2011.

[14] W3C OWL Working Group. OWL 2 web ontol-
ogy language document overview. W3C Recommen-
dation, October 2009. http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/.

[15] N. H. Walfield. Viengoos: A framework for stakeholder-
directed resource allocation. Technical report, The Johns
Hopkins University, October 2008.

[16] L. Wang, J. Xu, and M. Zhao. Application-aware cross-layer
virtual machine resource management. In Proc. of the 9th
International Conference on Autonomic Computing (ICAC
’12), ICAC’12, pages 13–22, New York, NY, USA, 2012.
ACM.

[17] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Currentcy:
A unifying abstraction for expressing energy management
policies. In Proc. of the Annual Conference on USENIX
Annual Technical Conference (ATEC ’03), ATEC’03, pages
4–4, Berkeley, CA, USA, 2003. USENIX Association.

