
Incremental Computation of Concept Diagrams

Francesco Kriegel

Theoretical Computer Science, TU Dresden, Germany

Abstract. Suppose a formal context K = (G,M, I) is given, whose con-
cept lattice B(K) with an attribute-additive concept diagram is already
known, and an attribute column C = (G, {n} , J) shall be inserted to
or removed from it. This paper introduces and proves an incremental
update algorithm for both tasks.

Keywords: Formal Concept Analysis, Concept Diagram, Incremental
Update, Column Insertion, Column Removal

1 Introduction

Every formal context K = (G,M, I) can be displayed by means of an (attribute-
additive) diagram of its concept lattice B(K). However, common algorithms
focus on the computation of the concept set B(K) or the concept neighborhood1

≺ as a whole, and do not provide any hints how to update the concept set,
the concept neighborhood or even the concept diagram2 upon changes in the
underlying formal context.

Thus, each change would require a recomputation of the whole concept di-
agram. This means that unchanging fragments would be recomputed (which
can be expensive), and furthermore it is then even not guaranteed that the un-
changed parts of the concept diagram can be recognized as unchanged in the
visualization by the user. To overcome this, I investigated the task of inserting
or removing an attribute column into or from a formal context while updat-
ing the corresponding concept diagram with as little effort or visual changes as
possible. The algorithm is called iFox,3 and could further be used to deduce an
update algorithm for setting or deleting just a single incidence entry in K, or for

1 The concept set may be ordered by extent inclusion, which yields a complete lat-
tice B(K) = (B(K),≤), see second section or [2] for further details. The concept
neighborhood ≺ is the reflexive-transitive reduction of the concept order ≤.

2 A concept diagram is a twice labeled directed acyclic graph (B(K),≺, γ−1, µ−1)
induced by the neighborhood relation on the concept set, together with a function
that maps each node to a position into a vector space, and each node (A,B) is
labeled below by all objects g ∈ G, whose object concept γ(g) equals (A,B), and
dually labeled above by all attributes m ∈M with µ(m) = (A,B).

3 Historical note: In my time at SAP I implemented a FCA library called fcaFox,
including an iPred algorithm. Thus, I chose the name iFox for my algorithm for the
incremental computation of concept diagrams.

2 Francesco Kriegel

adding or removing a bunch of attribute columns at once, or dualizing it to the
insertion or removal of object rows. 4

The next section gives some preliminaries on basic FCA and some lemmata
for context appositions, the third section then formulates the necessary propo-
sitions to update the concept set, the neighborhood relation, the labels, the
reducibility and seeds (for attributes, when drawing attribute-additive concept
diagrams), and the arrow relations, respectivelly. Finally, the algorithm is for-
mulated in pseudo code and its complexity is determined.

All lemmata and theorems can be found in, or are a condensed representation
of, [4], except the last proposition describing the incremental update for the down
arrows. The references further include some additional hints from the reviewers.
This paper does not cover the incremental computation of pseudo-intents or
implication bases. If you are interested in this topic, please have a look at [5].

2 Preliminaries

2.1 Basics of Formal Concept Analysis

A formal context K = (G,M, I) consists of two sets G (objects) and M (at-
tributes), and furthermore a binary relation I ⊆ G ×M (incidence) between
them. For a pair (g,m) that is enclosed in I, we also write gIm and say that
object g has attribute m (in context K). A common visualization is a cross table
as shown in the figure below on the left and another one on the right.

G

M

I

g

mI m

g ×

A formal concept (A,B) of a context K consists of two sets, an extent A ⊆ G
and an intent B ⊆M , such that their cartesian product A×B forms a maximal
rectangle within the incidence relation I, more formally

A = BI :=
{
g ∈ G

∣∣ ∀m∈B gIm
}

and B = AI :=
{
m ∈M

∣∣ ∀g∈A gIm} .
M

G A

B

I

6 ∃

6∃

4 If one wants to dualize the algorithm for row insertion or removal, and the concept
diagram is still to be drawn attribute-additivelly, a characterization for the object
reducibility update is neccessary. This can be found in [4].

Incremental Computation of Concept Diagrams 3

The set of all formal concepts is denoted by B(K), and this set can be ordered
by means of the extents, i.e. concept (A,B) is smaller than or equals concept
(C,D) iff extent A is contained in extent C, symbol: (A,B) ≤ (C,D).

B(K) := (B(K),≤) is a complete lattice and its infima and suprema are
given by the equations

∧
t∈T

(At, Bt) =

⋂
t∈T

At,

(⋃
t∈T

Bt

)II and
∨
t∈T

(At, Bt) =

(⋃
t∈T

At

)II
,
⋂
t∈T

Bt

 .

Sometimes the concept lattice of a given formal context shall be visualized
for a highly structured and integrated view on its content. For this purpose the
definition of a concept lattice is extended to the following notion of a concept
diagram.

Definition 1. Let K be a formal context and V a vector space, e.g. the real
plane R2 or the real space R3 (or a discrete subset of them like Z2) for common
visualizations. An attribute-additive concept diagram of K in V is a tuple

Bλ,σ(K) := (B(K),≺, λ, σ)

with the following components:

1. the concept lattice (B(K),≤) and its neighborhood relation ≺,
2. the default label mapping (other choices possible, e.g. extent cardinality)

λ :
B(K)→ ℘(G)× ℘(M)

b 7→ ({γ = b} , {µ = b}) ,

where all object labels in the first component γ−1(b) are drawn below the
concept b, and dually all attribute labels in the second component µ−1(b)
are drawn above b,

3. and an arbitrary seed vector mapping σ : Mirr → V .

The position of a concept (A,B) in V is then defined as the sum of the seed
vectors of all irreducible attributes in the intent, i.e.

π(A,B) :=
∑

m∈B∩Mirr

σ(m).

2.2 Appositions of Formal Contexts

For two formal contexts (G,M, I) and (G,N, J) with disjoint attribute sets M ∩
N = ∅ their apposition is defined as

(G,M, I)|(G,N, J) := (G,M ∪̇N, I ∪̇ J).

Lemma 2. Let (G,M, I)|(G,N, J) be an apposition context, then the following
equations hold for arbitrary objects g ∈ G and attributes m ∈M and n ∈ N .

4 Francesco Kriegel

1. g(I ∪̇ J)m⇔ gIm and
g(I ∪̇ J)n⇔ gJn

2. gI∪̇J = gI ∪̇ gJ
3. mI∪̇J = mI and

nI∪̇J = nJ

Proof. The proof is ommitted here, since the given equations are trivial.

Lemma 3. Let (G,M, I)|(G,N, J) be an apposition context and A ⊆ G and
B ⊆M ∪̇N . Then the following equations hold:

1. AI∪̇J ∩M = AI and
AI∪̇J ∩N = AJ and
AI∪̇J = AI ∪̇AJ

2. (B ∩M)I∪̇J = (B ∩M)I and
(B ∩N)I∪̇J = (B ∩N)J and
BI∪̇J = (B ∩M)I ∩ (B ∩N)J

3. AI(I∪̇J) = (AI∪̇J ∩M)I = AII and
AJ(I∪̇J) = (AI∪̇J ∩N)J = AJJ and
A(I∪̇J)(I∪̇J) = AII ∩AJJ

4. (B ∩M)I(I∪̇J) = (B ∩M)II ∪̇ (B ∩M)IJ and
(B ∩N)J(I∪̇J) = (B ∩N)JI ∪̇ (B ∩N)JJ and
B(I∪̇J)(I∪̇J) = ((B ∩M)I ∩ (B ∩N)J)I ∪̇ ((B ∩M)I ∩ (B ∩N)J)J

Proof. The proof is obvious, use 2.

3 A Very Simple Example

Consider the free distributive lattice FCD(3) with three generating elements
x, y, z, as shown in the figure below. An example is constructed that shows how
an insertion and a removal of one attribute column affect the concept diagram.

x
∨
y
∨
z

x
∨
y

x
∨
z

y
∨
z

x y z ⊥

x ∧ y ∧ z × × × × × × × ↗↙

y ∧ z × × × × ↗↙ × ×
x ∧ z × × × × × ↗↙ ×
x ∧ y × × × × × × ↗↙

z × ↗↙ × × ×
y × × ↗↙ × ×
x × × × ↗↙ ×
> ↗↙

x yz

Incremental Computation of Concept Diagrams 5

Choose all objects and the first six attributes as old context. The attribute
z is to be added. The appropriate contexts and their concept lattices are shown
below.

K
x
∨
y
∨
z

x
∨
y

x
∨
z

y
∨
z

x y

x ∧ y ∧ z × × × × × ×
y ∧ z × × × × ↗↙ ×
x ∧ z × × × × × ↗↙

x ∧ y × × × × × ×
z × ↗↙ × ×
y × × ↗↙ × ×
x × × × ↗↙ ×
> ↗↙

x

x

x ∧ z

y

y

y ∧ z

x ∧ y ∧ z, x ∧ y

z

In the initial state above some nodes are marked with a pentagon, these are
the generator concepts. The final state below shows the concept lattice after
insertion of column z, and the new concept nodes are marked with a star. As
you can see the generator structure is locally doubled, and each new concept is
a lower neighbor of its generator.

K|C

x
∨
y
∨
z

x
∨
y

x
∨
z

y
∨
z

x y z

x ∧ y ∧ z × × × × × × ×
y ∧ z × × × × ↗↙ × ×
x ∧ z × × × × × ↗↙ ×
x ∧ y × × × × × × ↗↙

z × ↗↙ × × ×
y × × ↗↙ × ×
x × × × ↗↙ ×
> ↗↙

x

x

y

y

x ∧ yx ∧ z y ∧ z

x ∧ y ∧ z

z

z

4 Incremental Computation of Concept Diagrams

Throughout the whole section let K = (G,M, I) be an arbitrary formal context,
called old context, with its concept diagram (B(K),≺, λ, σ). Now the question
arises what happens with the concept diagram when a new attribute column is
inserted into K, or when an existing attribute column is removed, respectivelly.

6 Francesco Kriegel

For this purpose let n /∈ M be the new attribute with its appropriate column
context C = (G, {n} , J). The new context is then defined as the apposition
K|C := (G,M ∪̇ {n} , I ∪̇ J). 5 6

G

M

I

n

J

In the ongoing text we analyze the changes that occur on different levels
of the concept diagram: concepts, neighborhood, labels, seeds, reducibility and
arrows. Most of the main results are displayed in a table style: The old concept
diagram on the left side and the new one on the right side, as shown below.

(B(K),≺, λ, σ) � (B(K|C),≺, λ, σ)

Lemma 4. 1. For all object sets A ⊆ G the following equivalence holds:

A ⊆ nJ ⇔ AJ = {n} .

2. For every concept (A,B) of K|C it holds that

A ⊆ nJ ⇔ n ∈ B.

Proof. 1. Let A ⊆ G. Trivially AJ ⊆ {n} always holds. The other set inclusion
follows from the galois property, as A ⊆ nJ is equivalent to AJ ⊇ {n}.

2. Let (A,B) be an arbitrary concept of K, i.e. B = AI∪̇J = AI ∪̇ AJ . Then
by the first part, A ⊆ nJ holds, iff AJ = {n} holds. Obviously this implies
n ∈ B. As n /∈ AI always holds, n ∈ B of course implies AJ = {n}. ut

4.1 Updating the Formal Concepts

First, we define a partition of the formal concept set of the old context K, and
dually a partition of the formal concept set of the new context K|C and then
formulate appropriate update functions, that map the parts of those partitions
to each other. This then fully describes the update mechanism on the concept
level from K to K|C and vice versa.

Definition 5. A concept (A,B) of K is called

5 For simplification of notion the set parenthesis of the singleton set {n} may be
omitted: The symbol n is used both for the element n itself and also for a singleton
set containing this element n. It is always clear which variant is meant. We thus
write (G,n, J) := (G, {n} , J) for the column context, and B ∪̇ n := B ∪̇ {n} or else
B \ n := B \ {n} for an attribute set B ⊆M .

6 Sometimes both the old context K and the new context K|C share the same set of
concept extents; then C is called redundant für K, and irredundant otherwise.

Incremental Computation of Concept Diagrams 7

1. old concept w.r.t. C, iff its extent is no subset of the new attribute extent,
i.e. A 6⊆ nJ ,

2. varying concept w.r.t. C, iff A ⊆ nJ , and
3. generating concept w.r.t. C, iff it is old and (A ∩ nJ)I = B holds.

The set of all old, varying and generating concepts is denoted by OC(K),
VC(K) and GC(K). Obviously every K-concept is either old or varying, and
each generating concept is particularly an old concept, i.e. {OC(K),VC(K)} is a
partition of B(K) and GC(K) ⊆ OC(K) holds.

Definition 6. A concept (A,B) of K|C is called

1. old concept w.r.t. C, iff its intent does not contain the new attribute, i.e.
n /∈ B,

2. varied concept w.r.t. C, iff n ∈ B and (B \ n)I = A, and
3. generated (or new) concept w.r.t. C, iff n ∈ B and (B \ n)I 6= A.

The set of old, varied and generated concepts of K|C is denoted by O(K|C),
V(K|C) and G(K|C). We can easily see, that {O(K|C),V(K|C),G(K|C)} forms
a partition of B(K|C).

As the names suggest, old concepts of K determine old concepts of K|C and
vice versa, K-varying concepts determine K|C-varied concepts, and generating
concepts from K induce new concepts of K|C. This is due to the following three
bijections.

Lemma 7. The following three mappings o, g and v are bijections.

OC(K) A 6⊆ nJ n /∈ B O(K|C)

GC(K)
A 6⊆ nJ

(A ∩ nJ)I = B

n ∈ B
(B \ n)I 6= A

G(K|C)

VC(K) A ⊆ nJ
n ∈ B

(B \ n)I = A
V(K|C)

(A,B) 7→ (A,B)

(A,B)←[(A,B)

(A,B) 7→ (A ∩ nJ , B ∪̇ n)

((B \ n)I , B \ n)← [(A,B)

(A,B) 7→ (A,B ∪̇ n)

(A,B \ n)← [(A,B)

⊆ o ◦ g

B(K) B(K|C)

o

g

v

Proof. Each of the following parts prove, that the mentioned mappings are well-
defined and bijective. The original proof in [4] used the nested concept lattice of
C in K, the presented proof here is much simpler.

1. The mapping o and its inverse are well-defined by lemma 4. The lower map-
ping is indeed the inverse, as we can easily see.

8 Francesco Kriegel

2. Let (A,B) be a generating concept of K w.r.t. C, then

(A ∩ nJ)I∪̇J = (A ∩ nJ)I ∪̇ (A ∩ nJ)J = B ∪̇ {n}

as surely n ∈ (A ∩ nJ)J holds (because every object in A ∩ nJ has the new
attribute n w.r.t. J), and

(B ∪̇ {n})I∪̇J = BI ∩ nJ = A ∩ nJ .

Thus, the mapping g is well-defined. The lower mapping is also well-defined
by the following observation for an arbitrary generated concept (A,B) of
K|C, see also lemma 3

(B \ {n})II = (B ∩M)II = (AI∪̇J ∩M)II = AIII = AI = · · · = B \ {n}

Both mappings are inverse to each other, as can be seen on the intents.
3. Let (A,B) be a varying concept of K w.r.t. C, then for the extent we have
AI∪̇J = AI ∪̇ AJ = B ∪̇ {n} and for the intent we infer (B ∪̇ {n})I∪̇J =
BI ∩ nJ = A ∩ nJ = A. Conversely for the lower mapping it holds that
AI = AI∪̇J ∩M = B ∩M = B \ {n} and (B \ {n})I = A by assumption.
Both mappings are mutually inverse by looking on the extents. ut

4.2 Updating the Neighborhood

Of course, when visualizing concept lattices, it is neccessary to update the con-
cept neighborhood relation as well. Some first investigations show that there are
blocks within the neighborhood that do not change from K to K|C and vice
versa. 7

When inserting the new attribute, mainly the lower neighbors of the new
concepts have to be computed. It is already clear that each new concept must
be a lower neighbor of its generating concept. Also, each varied concept can not
have any generator concept as upper neighbor.

For the attribute removal the columns and rows of new concepts of K|C are
just deleted, and the neighborhood between the varying and generator concepts
needs to be determined.

A complete overview is given in the following figure (the bold subrelations
change, and have to be computed; all other parts may be copied).

OC(K) GC(K) VC(K)

OC(K)
≺o

GC(K)

VC(K) v≺o v≺g ≺v

�

O(K|C) G(K|C) N(K|C) V(K|C)

O(K|C)
≺o

G(K|C)

N(K|C)
××××× ≺n

V(K|C) v≺o v≺n ≺v

7 It easy to see that the neighborhood between old concepts does not change, and so
also for the varying/varied concepts.

Incremental Computation of Concept Diagrams 9

Within the figure the really old concepts are used, that are just the old
concepts which are no generator concept, denoted by

O(K|C) := O(K|C) \G(K|C) and OC(K) := OC(K) \GC(K).

Theorem 8. The concept neighborhood relation only changes partially:

1. Let a, b be two generators in K w.r.t. C, then n(a) ≺n n(b) holds, iff

[a, b] ∩GC(K) = {a, b} ,

i.e. when there is no generating concept between a and b.

2. If a is varying and b a generator, both in K w.r.t. C, then v(a) v≺n n(b)
holds iff

[a, b] ∩GC(K) ∩VC(K) = {a, b} ,

so if there is no generator or varying concept between a and b.

3. Let a be a varied concept and b a new concept in K|C. Then v−1(a) v≺g g(b)
holds in B(K) iff a v≺n b and

(a, og(b)) ∩O(K|C) = ∅.

Proof. It is simply a proof by cases. The proof for the unchanging components
is ommited here, and only the changing fragments are investigated. Some first
clues can be obtained from the neighborhood structure within the nested concept
lattice.

1. Let first a and b be two generating concepts. When are their generated new
concepts neighboring? This can only be the case when no other concept is
between them, and the only type of concept fitting between two new concepts
is another new concept. In summary, the corresponding new concepts n(a)
and n(b) are neighbors, iff there is no other generator concept between a and
b.

2. Analogously, let a be a varying concept and b a generating concept. Then
the varied concept v(a) can only be covered by the new concept g(b), when
there is no other K|C-concept between them. There could only be a varied
or a new concept between them, and thus the statement holds exactly when
there is no generator or varying concept between a and b.

3. This is an immediate consequence of 2. For a varied concept a and a new
concept b, the corresponding varying concept v−1(a) can only be covered
by the generating concept g(b), when there is (in addition to the condition
from 2) no really old concept between v−1(a) and g(b), since this is the only
missing concept type in the characterization of neighboring varied and new
concepts, see 2. ut

10 Francesco Kriegel

4.3 Updating the Labels

Each concept node is labeled with some objects and attributes. More exactly,
each object concept (gII , gI) where g ∈ G is labeled with g above, and dually
every attribute concept (mI ,mII) where m ∈M is labeled with m below.

When changing the context by column insertion or removal, the attribute
label n must be inserted in or removed from the concept diagram, and further-
more some other already existing labels might have to be moved to other concept
nodes. In detail, the object concepts γ(g) and the attribute concepts µ(m) have
to be investigated to characterize the label update for the column insertion or
removal. A complete overview for this is given in [4], and the condensed result
is presented in the following proposition.

Proposition 9. 1. When adding the new attribute n, there must be an corre-
sponding attribute concept µ(n) that is labeled with n. If n is not redundant,
then this new concept is always generated by the greatest generator concept

>g :=
∨

GC(K) = (nJII , nJI),

and then µ(n) = n(>g) holds.
2. For the concept diagram transition from K to K|C only object labels at previ-

ously generator nodes can move downwards to the corresponding new concept
node. No attribute labels change.

3. Vice versa, for the transition from K|C back to K the attribute label n is
removed and the object labels of a generator concept are merged with the
object labels of the approriate new concept, i.e. let (A,B) be a generator with
object labels L and (C,D) the generated new concept with object labels M ,
then (A,B) is labeled with each element from the union L ∪M in the old
concept diagram.

G M

OC(K) λo

GC(K) λg

VC(K) λv

�

nJ{ nJ M n

O(K|C) λo

G(K|C) λg λg

N(K|C) λg × >g

V(K|C) λv

Proof. This is easy and straight-forward by analyzing the object and attribute
concepts, and determining whether they are old, varying/varied or generat-
ing/new. ut

4.4 Updating the Reducibility and Seeds

In order to maximize the quality of an attribute-additive concept diagram it
is important to know the irreducible attributes of the context. Each attribute
can then be displayed as the infimum of irreducible attributes, and thus, the

Incremental Computation of Concept Diagrams 11

set of irreducible attributes spans the whole concept diagram and it suffices to
assign seed vectors just to the irreducible attributes. Of course, when inserting
or removing C to K or from K|C, the attribute irreducibility may change for the
existing attributes.

Proposition 10. The attribute reducibility can be updated via the following ob-
servations:

1. Each K-reducible attribute is also K|C-reducible.
2. A K-irreducible attribute m ∈M is K|C-reducible, iff its K-attribute concept

is varying and the corresponding unique upper neighbor µ∗K(m) is really old,
and furthermore at least one superconcept of µ∗K(m) is a generator concept.

3. Every K|C-irreducible attribute is also K-irreducible.
4. A K|C-reducible attribute m ∈M is K-irreducible, iff its K|C-attribute con-

cept is varied and has exactly one old upper neighbor b and overthis only
new upper neighbors, that are generated from superconcepts of b.

µK(m)

∃!

∈ VC(K)

∈ OC(K)

∈ GC(K)

�

µK|C(m)

∃!

∈ V(K|C)

∈ O(K|C) ∈ N(K|C)

∈ G(K|C)

Proof. 1. First, if m is a K-reducible attribute, then the attribute extent mI can
be obtained by an intersection of attribute extents

⋂
m∈Bm

I with m 6∈ B.
Obviously then also

m(I∪̇J) = mI =
⋂
m∈B

mI =
⋂
m∈B

m(I∪̇J)

holds, hence m is K|C-reducible.
2. Second, let m be a K-irreducible attribute.

(⇒) Supposem is K|C-reducible. If µK(m) were an old concept, then µK|C(m) =
o(µK(m)) and the set of upper neighbors does not change according to
theorem 8. Thus, the irreducibility of m in K implies the irreducibility
of m in K|C. Contradiction! Hence, the attribute concept µK(m) must
be varying. By 7, there are no other old or varied upper neighbors of
µK|C(m). If µ∗K(m) would be a varying or generating concept, then

µK|C(m) = v(µK(m)) ≺

{
v(µ∗K(m)) if µ∗K(m) ∈ VC(K)

g(µ∗K(m)) if µ∗K(m) ∈ GC(K)

holds. Let b ∈ GC(K) with b 6= µ∗K(m), such that g(b) covers µK|C(m),
then µK(m) must be a lower neighbor of b and there is no varying or gen-
erating concept between them. So µK(m) ≺ µ∗K(m) < b must hold, but
this is a contradiction. In summary, v(µ∗K(m)) or g(µ∗K(m)), respectivelly,

12 Francesco Kriegel

must be the unique upper neighbor of µK|C(m), and m would be K|C-
irreducible. Contradiction! Hence µ∗K(m) must be an old non-generator
concept. Finally if there were no generating superconcept above µ∗K(m),
then o(µ∗K(m)) were the only upper neighbor of µK|C(m), i.e. m would
be K|C-irreducible. Contradiction!

(⇐) Suppose the attribute concept µK(m) is a varying concept and its unique
upper neighbor µ∗K(m) is an old non-generator concept that has at least
one generator superconcept. Denote the minimal ones of these generator
superconcepts by ξ1, ξ2, . . . , ξk. Then the following structure on the left
side can be found within the concept lattice of K. Neighboring concept
nodes are connected by straight line segments and comparable concepts
are connected by zig zag line segments. Then according to theorem 8 the
new concepts g(ξ1), . . . , g(ξk) must cover the varied attribute concept
v(µK(m)). This is due to the fact, that no varying concept can be greater
than an old concept, and the generators ξ1, . . . , ξk are minimal. Further-
more µ∗K(m) is the unique upper neighbor of µK(m), hence there cannot
be any varying or generating concept between µK(m) and each ξj . In
summary, the transition from K to K|C changes the concept lattice struc-
ture as displayed in the right diagram. Obviously µK|C(m) = v(µK(m))
has more than one upper neighbor, hence m is K|C-reducible.

3. Let first m ∈ M be a K|C-irreducible attribute. Then m must also be K-
irreducible, as otherwise m were K|C-irreducible by 1.

4. Second, let m ∈M be K|C-reducible attribute.

(⇒) Suppose m is K-irreducible. Then µK|C(m) must be a varied concept.
Otherwise µK(m) = o−1(µK|C(m)) were an old concept and this is a
contradiction to 1. If µK|C(m) had more than one old (and thus non-
generating) upper neighbor in B(K|C), then the according old con-
cepts in B(K) would cover µK(m). This is a contradiction to the K-
irreducibility of m. So µK|C(m) has exactly one old upper neighbor
ω ∈ O(K|C), all other upper neighbors must be varied or new con-
cepts. If a varied concept covers µK|C(m), then its appropriate varying
concept covers µK(m) as well. Again, this is a contradiction to the K-
irreducibility. So all other upper neighbors must be new concepts. If there
were any new concept ν ∈ G(K|C) whose generator ξ is not a supercon-
cept of ω, then µK(m) would be covered by o−1(ξ). Then µK(m) had at
least two upper neighbors and this contradicts the K-irreducibility.

(⇐) Suppose µK|C(m) varies and has exactly one upper neighbor ω and over-
this only new upper neighbors ν1, . . . , νk, whose generators are greater
than ω. Then choose ξj := g(νj) and the same structure as in the right
diagram above occurs, and by theorem 8 o−1(ω) = µ∗K(m) must be the
unique upper neighbor of µK(m). This means m is K-irreducible. ut

The update of the seed map can now be done with the following rules.

1. When adding the new column, delete the seeds for K|C-reducible attributes,
that were K-irreducible, and introduce a new seed for n.

Incremental Computation of Concept Diagrams 13

2. When removing the column, delete the seed for n and compute seeds for the
previously reducible attributes in K|C, which are now irreducible in K.

irr? R2

Mirr(K)
× σK|C Mirr(K|C)

× σK
Mred(K|C)

Mred(K)

�

irr? R2

Mirr(K)
× σK|C Mirr(K|C)

Mred(K|C)
Mred(K)

× σ(n) n

5 Incremental Computation of the Arrow Relations

5.1 Updating the Up Arrows

This section investigates the changes for the up arrow relation. For this purpose
the object set and the attribute set is splitted into the following components:

G1 :=
{
g
∣∣ g /∈ nJ} , G2 :=

{
g
∣∣ g ∈ nJ} , and

M1 :=
{
m
∣∣mI 6⊂ nJ

}
, M2 :=

{
m
∣∣mI ⊂ nJ

}
When the column is inserted the block↗K ⊆ G1×M2 can simply be deleted.

The only entries to compute is the upper column ↗n ⊆ G1 × {n}. 8 It is even
possible to give a characterization for the ↗K block for the column removal.

M1 M2

G1 ↗K

G2 ↗K|C

�

M1 M2 n

G1 ↗n

G2 ↗K|C

Proposition 11. 1. Up arrows in K and K|C may only differ on the subset
G1 ×M2 and G1 × {n}. All other parts are equal.

2. Let g ∈ G1 and m ∈ M2, then g ↗K m holds, iff one of the following
conditions is fulfilled:

(a) m is K|C-reducible, and its attribute concept µK|C(m) ∈ V(K|C) has
exactly one old upper neighbor b and overthis only new upper neighbors
generated by superconcepts of b, and furthermore γK|C(g) is a subconcept
of b.

8 Of course, there cannot be any arrows in the lower column G2 × {n} as it is full of
crosses.

14 Francesco Kriegel

µK|C(m)γK|C(g)

∃!

∈ V(K|C)

∈ O(K|C) ∈ N(K|C)

∈ G(K|C)

(b) m is K|C-irreducible, µ∗K|C(m) ∈ N(K|C) and the old object concept

γK|C(g) ∈ O(K|C) is a subconcept of the generator og(µ∗K|C(m)).

µK|C(m)

γK|C(g) ∃!

∃!

∈ V(K|C)

∈ N(K|C)

∈ G(K|C)

Proof. 1. This is obvious.
2. In case g ∈ nJ this follows from the preceding lemma as well. Suppose g 6∈ nJ .

Then the object concept of g in K|C is given by

γK|C(g) =

{
o(γK(g)) if γK(g) ∈ OC(K)

v(γK(g)) if γK(g) ∈ VC(K)
.

(a) Let m be K|C-reducible. g ↗K m can only hold, when m is irreducible
in K, i.e. when µK|C(m) ∈ V(K|C) has exactly one old upper neighbor ω
and overthis only new upper neighbors, whose generators are supercon-
cepts of ω, according to 10. Then o−1(ω) is the unique upper neighbor
of µK(m). Furthermore, γK|C(g) ≤ ω holds, iff γK(g) ≤ µ∗K(m), i.e. iff
g ↗K m.

(b) When m is K|C-irreducible, then m is also K-irreducible by 10. Fur-
thermore, g 6∈ nJ implies g ↗\ K|C m, i.e. γK|C(g) is no subconcept of

µ∗K|C(m). If µ∗K|C(m) is an old concept, then o−1(µ∗K|C(m)) is the unique
upper neighbor of

µK(m) =

{
o−1(µK|C(m)) if µK|C(m) ∈ O(K|C)

v−1(µK|C(m)) if µK|C(m) ∈ V(K|C)
.

Then γK(g) is a subconcept of µ∗K(m), iff γK|C(g) is a subconcept of
µ∗K|C(m). As this cannot occur according to the preconditions, g ↗\ K m

must hold. If µ∗K|C(m) is a varied concept, then v−1(µ∗K|C(m)) is the

unique upper neighbor of µK(m) = v−1(µK|C(m)). Then γK(g) is smaller
than µ∗K(m), iff γK|C(g) is a subconcept of µ∗K|C(m). Thus, g ↗\ K m as

well in this case. If the unique upper neighbor µ∗K|C(m) is a new concept,

then according to 8 g(µ∗K|C(m)) must be the unique upper neighbor of

µK(m) = v−1(µK|C(m)). Furthermore γK(g) can only be a subconcept

Incremental Computation of Concept Diagrams 15

of µ∗K(m), if it is an old concept and a subconcept of the generator. (If
γK(g) would be varying and smaller than the generator, γK|C(g) must
be smaller than the new generated concept as well, in contradiction to
the preconditions.) In summary, g ↗K m holds in this case, iff γK|C(g)
is an old concept and smaller than the generator of the upper neighbor
of µK|C(m). ut

5.2 Updating the Down Arrows

Suppose, g ∈ G is an object and m ∈M is an attribute of K. First, observe that
by definition of the down arrows it holds that

g ↙K m⇔ g Irm and ∀
h∈G

gI (hI ⇒ h I m

and analogously

g ↙K|C m⇔ (g,m) /∈ (I ∪̇ J)︸ ︷︷ ︸
⇔gIrm

and ∀
h∈G

gI∪̇J (hI∪̇J ⇒ h (I ∪̇ J) m︸ ︷︷ ︸
hIm

.

Proposition 12. 1. When g ↙K|C m holds, then also g ↙K m holds.
2. Let g ↙K m where g Jr n. Then g ↙K|C m holds, if there is no K-equivalent

object h (i.e. gI = hI), which is not K|C-equivalent to g (i.e. h J n).
3. Let g ↙K m where g J n. Then g ↙K|C m holds, if each object h ∈ G with

gI (hI also has the new attribute n.

Proof. 1. This is obvious, since gI (hI implies g(I∪̇J) (h(I∪̇J).
2. Suppose g does not have the new attribute n, and g ↙K m holds. When does
g ↙K|C m also hold? For h ∈ G with gI∪̇J (hI∪̇J it holds that gI (hI ∪̇hJ .

– If gI (hI , then h I m holds since g ↙K m.
– If gI = hI and h J n, then h Irm since g does not have m (as g ↙K m

holds).
Obviously g ↙K|C m cannot hold, when the second condition is fulfilled.

3. Finally, let g have the new attribute n and g ↙K m. To check, whether
g ↙K|C m hold, let h ∈ G be an object, whose K|C-intent is a proper superset

of gI∪̇J . It then easily follows, that also h must have the new attribute n and
gI (hI must hold for the K-intents. By the precondition this yields h I m.
Since this is true for all such objects h, g ↙K|C m can be concluded. ut

6 Conclusion

This document described an update algorithm for the insertion or removal of
an attribute column to or from a formal context, whose concept diagram is
already known. It has been implemented in ConceptExplorer FX, that is a par-
tial re-implementation of the well-known FCA tool ConceptExplorer by Serhiy
Yevtushenko et al.

16 Francesco Kriegel

The introduced lemmata and propositions may be extended for the insertion
or removal of several attribute columns at once, or it may be dualized for object
row insertion or deletion, as also suggested in the introduction. Furthermore it
may be possible to generalize it to insert elements into an arbitrary complete
lattice, not only to insert new attribute concepts into a concept lattice (and also
for deletion, of course).

References

1. C. Carpineto and G. Romano. Concept Data Analysis : Theory and Applications.
Wiley, 2004.

2. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer, 1. edition, 12 1998.

3. Missaoui R. Godin, R. and H. Alaoui. Incremental concept formation algorithms
based on galois (concept) lattices. Computational Intelligence, 11:246–267, 1995.

4. Francesco Kriegel. Visualization of conceptual data with methods of formal concept
analysis. Master’s thesis, Technische Universität Dresden, faculty of mathematics,
institute for algebra / SAP AG, Research Center Dresden, 2012.

5. Sergei A. Obiedkov and Vincent Duquenne. Attribute-incremental construction of
the canonical implication basis. Ann. Math. Artif. Intell., 49:77–99, 2007.

6. Martin Skorsky. Endliche Verbände – Diagramme und Eigenschaften. PhD thesis,
1992.

7. Missaoui R. Valtchev, P. and P. Lebrun. A partition-based approach towards con-
structing galois (concept) lattices. Discrete Mathematics, 256:801–829, 2002.

	
	Introduction
	Preliminaries
	A Very Simple Example
	Incremental Computation of Concept Diagrams
	Incremental Computation of the Arrow Relations
	Conclusion

