
The Complexity of Computing the Behaviour of Lattice
Automata on Infinite Trees

Karsten Lehmanna, Rafael Peñalozab

aOptimisation Research Group, NICTA
Artificial Intelligence Group, Australian National University

bTheoretical Computer Science, TU Dresden, Germany
Center for Advancing Electronics Dresden

Abstract

Several logic-based decision problems have been shown to be reducible to the
emptiness problem of automata. In a similar way, non-standard reasoning prob-
lems can be reduced to the computation of the behaviour of weighted automata.
In this paper, we consider a variant of weighted Büchi automata working on (un-
labeled) infinite trees, where the weights belong to a lattice. We analyse the
complexity of computing the behaviour of this kind of automata if the underly-
ing lattice is not distributive.

We show that the decision version of this problem is in ExpTime and
PSpace-hard in general, assuming that the lattice operations are polynomial-
time computable. If the lattice is what we call linear-space-computable-encoded,
then the upper bound can be reduced to PSpace, but the lower bound also de-
creases to NP-hard and co-NP-hard. We conjecture that the upper bounds
provided are in fact tight.

Keywords: Weighted Automata, Behaviour Computation, Lattices,
Complexity

1. Introduction

Automata have long been recognized as tools for solving logic-based rea-
soning tasks. Beyond well-known results on the equivalence of recognizable
and MSOL-definable languages [10, 20], automata working on infinite inputs
have been successfully applied to decide satisfiability of Linear Temporal Logic
(LTL) [31, 22] formulas, and reason with Description Logic (DL) [2] knowledge
bases, to name just two well-known examples. The main idea in both cases is
to construct an automaton A that accepts all the (well-structured) models of
the input, and perform an emptiness test on A. The constructed automaton is
a generalized Büchi automaton on infinite words in the case of LTL [38], and a

Email addresses: karsten.lehmann@nicta.com.au (Karsten Lehmann),
penaloza@tcs.inf.tu-dresden.de (Rafael Peñaloza)

Preprint submitted to Elsevier October 10, 2013

looping automaton (that is, a Büchi automaton where all states are accepting)
on infinite trees for DL reasoning [3, 7, 11, 28].1

In most of these constructions, it is possible to use a simplified alphabet
having only one symbol. Additional alphabet symbols can be encoded within
the set of states of the automaton, and in this case the relevant models are
described by the accepting runs of the automaton, rather than by the recognized
language.

Automata-based decision procedures have been generalized to weighted au-
tomata over lattices as a means to deal with non-standard reasoning problems,
such as axiom-pinpointing [6, 24], access control [4, 25], or context-based rea-
soning [5], as well as with non-standard semantics like fuzzy [9, 34, 35] and
possibilistic semantics [30, 32]. The idea behind these constructions is that ev-
ery model can be associated to a “weight” corresponding to the non-standard
task. For example, in the axiom-pinpointing scenario, where one is interested
in finding the causes of an inconsistency, this weight will be the set of axioms
violated by the model.2 We are then interested in finding the supremum of the
weights of all these models, which in the case of axiom-pinpointing will be the
set of all sets of axioms that prevent the existence of a model.

Suppose that we can associate every transition of the constructed automaton
with a weight in such a way that the infimum of the weights of all transitions ap-
pearing in a successful run (that is, the weight of this successful run) corresponds
exactly to the weight of the model it represents, as described before. Then, this
kind of non-standard reasoning reduces to a computation of the behaviour of
the weighted automaton. To fully understand the complexity of non-standard
reasoning tasks, we need to study how hard it is to compute the behaviour of
lattice automata. Thus, we are interested in the complexity of computing the
behaviour of Büchi automata on infinite trees, whose weights belong to a lattice.

For distributive lattices, it is known that the behaviour of generalized Büchi
automata can be computed in polynomial time [6, 16], matching the complexity
of deciding emptiness of (unweighted) Büchi automata [33, 37]. This result pro-
vides tight upper bounds for the complexity of axiom-pinpointing in expressive
DLs, and of reasoning in special kinds of fuzzy and possibilistic DLs and LTL.
Unfortunately, distributivity of the lattice is not always a valid assumption. For
example, in access control the underlying access lattice is often provided by the
security manager, or automatically generated from a compact description of the
access rights needed [14], and it can take any shape. In this paper we study
the complexity of computing the behaviour in case the lattice is not distribu-
tive. We notice that without distributivity, the automata are not any more
weighted automata in the standard sense, as defined in [26, 27, 17]. Variants of
weighted automata on finite [18] and infinite [19] trees, in which the distribu-

1Other automata models have been considered in the literature, e.g. [12]. For the sake of
brevity and clarity, in this paper we focus only on those based on Büchi automata.

2The actual weights used are slightly more complex than described here. For the full details
see [6].

2

tivity assumption is dropped have been recently studied; in fact, the underlying
algebra has been generalized to more complex valuation monoids [15]. How-
ever, those papers focus mostly on the expressivity of the automata, and their
relation with weighted logics. To the best of our knowledge, there has been
no systematic study of the complexity of computing the behaviour of automata
over non-distributive structures.

We show that the behaviour of automata over arbitrary lattices can be com-
puted by a simple “black-box” mechanism that tests emptiness of exponen-
tially many unweighted Büchi automata. This yields an exponential time upper
bound for the computation of the behaviour, assuming that lattice operations
can be performed in polynomial time. Unfortunately, the best-case running
time of this algorithm is also exponential on the number of different weights
appearing in the automation. If the lattice can be represented in such a way
that its operations do not increase the space requirements (a condition we call
linear-space-computable-encoded), then this upper bound can be improved to
polynomial space. The exponential upper bound for general lattices is not new;
in fact, it is a simple consequence of the results from [19], where it was shown
that every recognizable tree language over bi-locally finite strong bimonoids can
be expressed as a recognizable step-function; i.e., the behaviour of every au-
tomaton over such strong bimonoids can be described as a finite weighted sum
of languages accepted by (unweighted) automata. The tighter upper bound for
the class of linear-space-computable-encoded lattices, on the other hand, was
previously unknown.

Regarding lower bounds, we provide a linear-space-computable-encoded lat-
tice Lsat and show that computing the behaviour of automata over this lattice
is hard for the classes NP and co-NP. We further improve the lower bound for
general lattices by providing a lattice Lqbf for which computing the behaviour
is PSpace-hard. This second lattice, however, is not linear-space-computable-
encoded. The best previously known lower bound for the complexity of comput-
ing the behaviour was the polynomial-time lower bound obtained for distributive
lattices [6, 16]. Our results show that dropping the distributivity does increase
the complexity of the problem. To the best of our efforts, we were unable to close
the gap between the lower and upper bounds found; however, we conjecture that
the upper bounds are tight.

The paper is divided as follows. We first recall basic concepts from lattice
and automata theory, and formally define the decision problem we study. Then,
in Section 3 we provide upper bounds for the complexity of this problem by
means of an algorithm. The lower bounds are provided in Section 4, before
concluding the paper.

2. Lattice Tree Automata

We study a simple class of weighted automata that receive as input infinite
unlabeled trees of a fixed arity k, and use elements of a possibly infinite lattice
as weights. For a positive integer k, we denote the set {1, . . . , k} by [k]. We
identify the nodes of an infinite tree by words from [k]∗ in the usual way: the

3

root node is represented by the empty word ε, and the i-th successor of a node
u is represented by ui for i, 1 ≤ i ≤ k. In the case of labeled trees, we refer to
the labeling of the node u ∈ [k]∗ in the tree r by r(u). An infinite tree r with
labels from a set Q can be described as a function r : [k]∗ → Q.

As previously said, we consider only unlabeled trees as inputs for our au-
tomata. Given an arity k, there is exactly one such tree, that we simply call
[k]∗. We will often refer to paths in this tree. A path is a subset p ⊆ [k]∗ that
contains the empty word (ε ∈ p), is closed under prefixes (i.e., if ui ∈ p, then
u ∈ p for every u ∈ [k]∗, i ∈ [k]), and every node has exactly one successor (that
is, if u ∈ p, then there is exactly one i ∈ [k] with ui ∈ p).

We call the unary tree, where k = 1, an infinite word. Notice that an infinite
word has exactly one path that is equivalent to the word itself. As usual, we will
often represent an infinite word with labels from a set Q as an infinite sequence
of elements from Q.

A lattice [23] is an algebraic structure (L,∨,∧) over a carrier set L with the
two binary operations join ∨ and meet ∧ that are idempotent, associative, and
commutative and satisfy the absorption laws `1∨(`1∧`2) = `1 = `1∧(`1∨`2) for
all `1, `2 ∈ L. The lattice is called distributive if meets and joins distribute over
each other; i.e. (`1∨`2)∧`3 = (`1∧`3)∨(`2∧`3) holds for every `i ∈ L, 1 ≤ i ≤ 3,
and dually interchanging the ∨ and ∧ operators.

The lattice operations induce a partial order ≤ on L, defined by `1 ≤ `2 iff
`1∧`2 = `1 for all `1, `2 ∈ L. As usual, we write `1 < `2 if `1 ≤ `2 and `1 6= `2. A
subset T ⊆ L is called an antichain (in L) if there are no two elements `1, `2 ∈ T
with `1 < `2. When it is clear from the context, we will often use the carrier
set L to denote the lattice (L,∨,∧).

We consider only lattices that are bounded ; that is, where there are two
elements 0 and 1 such that 0 ≤ ` ≤ 1 holds for every ` ∈ L. Notice that
any lattice (L,∨,∧) can be extended to a bounded lattice (L′,∨,∧) by simply
setting L′ = L ∪ {0,1} and 0 ∨ ` = ` = 1 ∧ `, 0 ∧ ` = 0 and 1 ∨ ` = 1, for all
` ∈ L′.

For the investigation of the complexity of problems, it is necessary to consider
the size of a lattice element. To do that we assume that the lattice elements are
represented as finite strings over some finite alphabet Σ, so L ⊆ Σ∗. We call
this representation “encoding”. The size of an element ` ∈ L, denoted as |`|, is
defined as the length of its encoding. Two lattices are isomorphic if they only
differ in their encoding. Whenever the details of the encoding are not relevant,
as in Section 3, we will simply assume that an appropriate encoding is being
used. The results from Section 4 depend on a specific choice of the encoding of
the elements, which we then describe in detail.

Before formally defining lattice Büchi tree automata, we recall the notion of
(unweighted) Büchi tree automata.

Definition 2.1 (tree automata). A Büchi tree automaton (BTA) for arity k is
a tuple A = (Q, I,∆, F) where

• Q is a finite set of states,

4

• I ⊆ Q is the set of initial states,

• ∆ ⊆ Qk+1 is the set of transitions, and

• F ⊆ Q is the set of accepting states.

A run of the BTA A is a labeled tree r : [k]∗ → Q such that for every u ∈ [k]∗,
(r(u), r(u1), . . . , r(uk)) ∈ ∆. The run r is successful if, for every path p, there
are infinitely many nodes u ∈ p with r(u) ∈ F . We say that A is not empty, in
symbols L(A) 6= ∅, if there is at least one successful run r of A with r(ε) ∈ I.

It is well known that emptiness of an BTA A can be decided in polynomial
time on the number of states of A [33, 37]. Lattice tree automata are a gener-
alization of tree automata, in which transitions are associated to a weight from
a given lattice L. Rather than deciding the existence of a successful run, we are
interested in computing the so-called behaviour, which accumulates the weights
of all existing successful runs.

Definition 2.2 (lattice tree automata). Let L be a lattice. A lattice Büchi tree
automaton (LBTA) over L for arity k is a tuple A = (Q, in,wt, F) where

• Q is a finite set of states,

• in : Q→ L is the initial distribution,

• wt : Qk+1 → L assigns a weight to every transition, and

• F ⊆ Q is the set of accepting states.

A run of the LBTA A is a labeled tree r : [k]∗ → Q. The weight of this run
is wt(r) :=

∧
u∈[k]∗ wt(r(u), r(u1), . . . , r(uk)). A run is successful if, for every

path p, there are infinitely many nodes u ∈ p with r(u) ∈ F .
Let succA denote the set of all successful runs of A. The behaviour of the

automaton A is
‖A‖ :=

∨
r∈succA

in(r(ε)) ∧ wt(r),

where as usual, we define
∨
`∈∅ ` = 0.

Büchi tree automata are special cases of lattice Büchi tree automata, where
the underlying lattice is the the Boolean lattice ({0, 1},∨,∧), where ∨ and ∧
stand for the logical disjunction and conjunction, respectively. In that case, the
functions in and wt can be seen as the characteristic functions of the sets I and
∆, respectively.

Notice that even if the lattice L is infinite, the weights of runs and the
behaviour of an LBTA are well defined. The definition of wt(r) requires com-
puting the meet over an infinite set of indices; however, since Q is finite and ∧ is
idempotent, this meet is computed over finitely many different lattice elements.
Additionally, although there may exist infinitely many successful runs, there
are only finitely many values that may appear as their weights. Thus, the join

5

that defines ‖A‖ is computed over finitely many lattice elements too. For more
details, see Section 3, where we exploit these facts to develop an algorithm that
computes the behaviour.

Remark. We are interested in finding the complexity of computing the be-
haviour of LBTA. To abstract from the complexity of performing lattice opera-
tions, we parameterize the problem in terms of the lattice used. To ensure that
the complexity problem we study is not influenced by the lattice operations, we
only consider lattices where there is a Turing-Machine that computes the join
and the meet of any two given elements in time polynomial in the size of the
given elements.

In particular, as we restrict our attention only to lattices where joins and
meets are polynomially computable, we have that the size of infima and suprema
is also polynomial on the size of their arguments. However, iterative compu-
tation of suprema may yield an element of exponential size. For that reason,
when dealing with space complexity classes it is sometimes worth looking at a
subclass of lattices where the operations do not increase the space requirements.

Definition 2.3 (linear-space-computable-encoded). A lattice (L,∨,∧) is called
linear-space-computable-encoded if for every two elements `1, `2 ∈ L it holds
that

|`1 ∧ `2| ≤ max{|`1|, |`2|} and |`1 ∨ `2| ≤ max{|`1|, |`2|}.

Intuitively, in a linear-space-computable-encoded lattice, the representation
of the meet (respectively, join) of two elements `, `′ consumes at most as much
space as the representation of each of these elements. This restriction will
allow us to bound the space requirement throughout the computation of the
behaviour, as described in the following section.

Before studying the complexity of computing the behaviour of LBTA, we
briefly describe some properties of linear-space-computable-encoded lattices.
Every total order is linear-space-computable-encoded since the meet and join
of two elements is always one of them; in symbols, {`1 ∧ `2, `2 ∨ `2} = {`1, `2}.
This fact holds true independently from the choice of encoding of the elements
of the lattice. Additionally, every finite lattice L is isomorphic to a linear-space-
computable-encoded lattice: we need only to encode the elements of the lattice
in such a way that they all consume the same space. For instance, if L has car-
dinality n, we can simply enumerate all the elements, and describe them using
a binary string of length log2(n) bits for each of its elements. Moreover, every
countable distributive lattice can be encoded to be linear-space-computable-
encoded, even if it is infinite.

Theorem 2.4. Every countable distributive lattice is isomorphic to a linear-
space-computable-encoded lattice.

Proof. Let L be a countable distributive lattice, and let `1, `2, . . . be an arbitrary
enumeration of the elements of L. Let Ln, n ∈ N denote the sublattice of L

6

generated by {`1, `2, . . . , `n}. By distributivity, we know that Ln ⊆ L has at
most 22

n

elements, for every n ∈ N. We encode the elements of L using binary
strings as follows: `1 is encoded by the string 1. For every n > 1 we encode
every element in Ln \ Ln−1 using a unique binary string of length 2n, which
is always possible. We now show that under this encoding, the lattice L is
linear-space-computable-encoded.

Let `, `′ ∈ L such that |`| = 2n, |`′| = 2m and assume without loss of gener-
ality that n ≤ m. Then `, `′ ∈ Lm, which is the lattice generated by the first
m elements in the enumeration. But then ` ∧ `′ ∈ Lm and ` ∨ `′ ∈ Lm, which
means that |` ∧ `′| ≤ 2m = max{|`|, |`′|}, and |` ∨ `′| ≤ 2m = max{|`|, |`′|},
satisfying the condition for linear-space-computable-encoded.

Notice that this construction does not work for non-distributive lattices,
since the sublattice generated by a finite subset of a non-distributive lattice
may be infinite; to encode all these elements, strings of larger lengths would be
required, violating the conditions from Definition 2.3.

If we want to formally consider the complexity of finding the behaviour of
automata, we need to reformulate the task in terms of a decision problem. We
call this reformulation the behaviour verification problem.

Definition 2.5. Let L be a lattice. The behaviour verification problem consists
in deciding, given an LBTA A over L and ` ∈ L, whether ‖A‖ = `.

Other related decision problems, such as e.g. deciding whether ‖A‖ ≤ `, can
also be studied. The precise behaviour of an automaton can also be computed
from the answers of this problem over several instances `. As these problems
have the same complexity, we focus exclusively on deciding the equality.

Notice that the lattice (especially its size) is not part of the input of the
problem from Definition 2.5, but is given as a fixed parameter. This allows
us to study the complexity of behaviour verification abstracting from the cost
of the lattice operations performed. However, the weights appearing in the
functions in and wt are considered in the size of the input LBTA A, as they
need to be explicitly expressed in the description of A. Formally, let γ be the
largest element in the range of in and wt; i.e.

γ := max({|in(q)| | q ∈ Q} ∪ {|wt(q, q1, . . . , qk)| | (q, q1, . . . , qk) ∈ Qk+1}).

We define the size |A| of the LBTA A = (Q, in,wt, F) for arity k as

|A| := |Q|k+1 · γ.

As described before, we restrict our attention to lattices where infima and
suprema can be computed in polynomial time by a deterministic Turing ma-
chine. Without this assumption, it is easy to show that the behaviour verifica-
tion problem is highly undecidable. In fact, every decision problem P can be
simulated by lattice operations, as described next.

Let P1, P2, . . . be all the positive instances and N1, N2, . . . all the negative
instances of P. We construct the lattice LP whose Hasse diagram is depicted in

7

1

? P1 P2
. . .

+
N1N2

. . .

0

Figure 1: The lattice LP

Figure 1, where ? and + are two designated symbols. In particular, the meet of
a positive instance with the designated element ? yields +, while the meet of ? a
negative instance yields the lower bound 0. Thus, the problem P can be decided
through operations on the lattice LP . Given an instance I of P, we can build
in linear time the LBTA AI = ({q, q′}, in,wt, {q′}), where in(q) =?, in(q′) = 0,
and wt(q, q′) = I, wt(q′, q′) = 1, and wt(q, q) = wt(q′, q) = 0. It is easy to
see that ‖AI‖ = + if and only if I is a positive instance of P. As this is true
for any problem P, in particular for highly undecidable problems (see e.g. [21]).
Clearly, this high complexity arises not from the behaviour computation itself,
but from the complexity of computing meets in the lattice LP . To abstract
from this problem, we will restrict our attention to lattices whose operations
are computable in polynomial time.

In the next section we show that the behaviour verification problem is in
ExpTime, and show that this upper bound can be reduced to PSpace if the
underlying lattice is linear-space-computable-encoded. Later on, we provide
lower bounds for the complexity of this problem.

3. A Behaviour Verification Algorithm

In this section we describe a simple algorithm deciding the behaviour ver-
ification problem. This algorithm requires exponential time in general, but if
the lattice is linear-space-computable-encoded, then it requires only polynomial
space.

The exponential time algorithm follows conceptually the same ideas used
in [19] to show that weighted automata over lattices recognize step functions.
We describe it in detail, as the polynomial space algorithm will be a variant of
this one. Let A be an LBTA over some lattice (L,∨,∧). We define the subset
LA ⊆ L of all weights appearing in A as follows:

LA := {in(q) | q ∈ Q} ∪ {wt(q, q0, . . . , qk) | (q, q0, . . . , qk) ∈ Qk+1}.

8

Notice that, since Q is finite, the set LA is also finite, even if L is infinite. Every
subset M ⊆ LA defines the (unweighted) BTA AM = (Q,∆M , IM , F) where:

• (q, q0, . . . , qk) ∈ ∆M iff wt(q, q0, . . . , qk) ∈M , and

• q ∈ IM iff in(q) ∈M .

Intuitively, the automaton AM accepts all successful runs of A that only use
weights appearing in M . We will use this, together with the polynomial-time
emptiness test of BTA to compute the behaviour of A.

Let M(A) := {M ⊆ LA | L(AM) 6= ∅} be the set of all subsets of weights
from LA for which the automaton AM has a successful run. Then we have the
following equivalence.

Theorem 3.1. For every LBTA A it holds that

‖A‖ =
∨

M∈M(A)

∧
`∈M

`.

Proof. For every successful run r of A define

Mr := {in(r(ε))} ∪ {wt(r(u), r(u1), . . . , r(uk)) | u ∈ [k]∗};

that is, Mr is the set of all weights appearing in the run r. Clearly, Mr ⊆ LA,
and in(r(ε)) ∧ wt(r) =

∧
`∈Mr

`. Moreover, since r is a successful run, it holds
that L(AMr

) 6= ∅. Then it follows that

‖A‖ =
∨

r∈succA

in(r(ε)) ∧ wt(r) =
∨

r∈succA

∧
`∈Mr

`

≤
∨

M∈M(A)

∧
`∈M

`.

For the opposite direction, for every M ∈ M(A) there exists a successful run
rM of AM . By definition, if we consider rM as a run of A, it follows that
in(rM (ε)) ∈ M and wt(rM (u), rM (u1), . . . , rM (uk)) ∈ M for every u ∈ [k]∗. It
thus follows that

∧
`∈M ` ≤ in(rM (ε)) ∧ wt(rM). This implies that∨

M∈M(A)

∧
`∈M

` ≤
∨

r∈succA

in(r(ε)) ∧ wt(r) = ‖A‖.

To decide the behaviour verification problem for an LBTA A and an ` ∈ L,
we simply need to find which sets of weights belong toM(A), and compute the
supremum of the infima of their values, as described in Algorithm 1. This yields
the behaviour of A that is then compared to `. The algorithm executes the for
loop an exponential number of times, measured on the size of A; namely, once
for every subset of LA, where the size of LA is bounded by |Q|k+1 + |Q|. For
each of these subsets, the algorithm performs an emptiness test that requires
polynomial time [33, 37]. Thus, in total the algorithm requires exponential
running time on |A|.

9

Algorithm 1 A behaviour computation algorithm.

Input: LBTA A, ` ∈ L
Output: ‖A‖ = `

1: m := 0
2: for M ⊆ LA do
3: if L(AM) 6= ∅ then
4: m := m ∨

∧
`∈M `

5: end if
6: end for
7: if ` = m then
8: return yes
9: else

10: return no
11: end if

Theorem 3.2. Behaviour verification is in ExpTime.

In general, Algorithm 1 may also need exponential space; for instance, if the
behaviour of A is exponential on both, A and the given input value `. Exam-
ple 4.12 in Section 4.2 shows an exponential-space execution of this algorithm.
However, although the algorithm may require exponential space, this does not
imply that the behaviour verification problem is necessarily ExpTime-hard.
Other algorithms may be able to compute the answer within a better com-
plexity bound. In fact, if the lattice is distributive, then the behaviour can be
computed in polynomial time [6], and hence behaviour verification is in P.

If the lattice from which the weights are taken is linear-space-computable-
encoded, then Algorithm 1 can be executed using only polynomial space mea-
sured on |A|: at every step of the execution, the algorithm needs to store in
memory, along with the input automaton A, the set LA, a subset M ⊆ LA, and
the current computed value for m. All this information needs only polynomial
space on the size of the input automaton, since all the elements of LA are readily
represented in A, and the space required to encode m is bounded by the largest
representation of an element in LA, due to the linear-space-computable-encoded
assumption. Thus, we have the following improved upper bound.

Theorem 3.3. Behaviour computation of LBTA over linear-space-computable-
encoded lattices is in PSpace.

In the following section we provide some lower bounds for the complexity of
this problem.

4. Lower Bounds

In this section we will show that the behaviour computation of LBTA is (i)
NP-hard and co-NP-hard, if we consider only linear-space-computable-encoded

10

⊕1 N 0 1 X

N N 0 1 X
0 0 0 X X
1 1 X 1 X
X X X X X

⊗1 N 0 1 X

N N N N N
0 N 0 N 0
1 N N 1 1
X N 0 1 X

Table 1: ⊕1 and ⊗1

X

0 1

N

Figure 2: The lattice (L1,⊕1,⊗1)

lattices, and (ii) PSpace-hard in general. We show the former by providing re-
ductions from satisfiability (SAT) and unsatisfiability (UNSAT) of propositional
formulas, and the latter through a reduction from validity of quantified Boolean
formulas (QBF). In the following, we assume that the reader is familiar with
the basic notions of propositional logic and quantified boolean formulas, and in
particular with the problems of satisfiability and validity of these formulas. For
an introduction on these topics, we refer the reader to [8].

4.1. Hardness for Linear-Space-Computable-Encoded Lattices

We now show a reduction from satisfiability and unsatisfiability of propo-
sitional formulas to the behaviour of LBTA over a linear-space-computable-
encoded infinite lattice Lsat. We will define this lattice with the help of a family
of finite lattices Ln for n ≥ 1, as follows.

Let (L1,⊕1,⊗1) be the lattice with L1 = {1, 0, N,X} and functions ⊕1,⊗1

defined in Table 1. This lattice is depicted as a Hasse diagram in Figure 2. One
can think of this lattice as the base for Belnap’s four-valued relevance logic [1],
in which 0 represents false, 1 means true, X represents that a statement is both,
true and false, and N expresses that a statement is neither true, nor false.

For every n ≥ 1, (Ln,⊕n,⊗n) is the lattice obtained by restricting (L1)n

to the elements in {0, 1, X}n ∪ {N}n.3 We further extend this lattice to L′n by
adding an element Yn, i.e. L′n = Ln ∪ {Yn}, with the operators

Yn ⊕n ` =

{
Yn if ` = Nn

Xn otherwise,
Yn ⊗n ` =

{
Yn if ` = Xn

Nn otherwise.

3We represent the elements of Ln as words of length n over the alphabet L1.

11

XX

X0 X10X 1X

00 01 10 11

NN

Y2

Figure 3: The lattice L2 and its extension L′
2 with dotted lines

For every natural number n, (L′n,⊕n,⊗n) defines a lattice. For instance, the
lattices L2 and its extension L′2 are depicted in Figure 3, where dotted lines are
used to differentiate the new relations added by the inclusion of Y2.

The lattice (Lsat,⊕sat,⊗sat) has Lsat :=
⋃
n≥1 Ln ∪ {>,⊥} as its carrier set,

and its operators are defined by:

`1 ⊕sat `2 =


`1 ⊕n `2 if `1, `2 ∈ Ln
`2 if `1 = ⊥
`1 if `2 = ⊥
> otherwise,

`1 ⊗sat `2 =


`1 ⊗n `2 if `1, `2 ∈ Ln
`2 if `1 = >
`1 if `2 = >
⊥ otherwise.

It is easy to see that the operators ⊕sat and ⊗sat are idempotent, associative
and commutative. To show that (Lsat,⊕sat,⊗sat) is a lattice, we need only to
verify that the absorption laws are satisfied. Let `1, `2 be two elements of Lsat.
If `1, `2 ∈ Ln for some n ≥ 1, then `1 ⊕sat (`1 ⊗sat `2) = `1 = `1 ⊗sat (`1 ⊕sat `2)
follows from the fact that Ln is a lattice, and that⊕sat and⊗sat behave as⊕n and
⊗n, respectively, over these elements. If `1 ∈ Ln and `2 ∈ Lm for n 6= m, then
`1⊕sat (`1⊗sat`2) = `1⊕sat⊥ = `1 = `1⊗sat> = `1⊗sat (`1⊕sat`2). The remaining
case, where {`1, `2}∩{>,⊥} 6= ∅, can be easily verified by a direct computation,
using the definition; e.g., if `2 = ⊥, then `1 ⊕sat (`1 ⊗sat `2) = `1 ⊕sat `1 = `1.

The meets and joins of elements from Lsat can be computed in polynomial
time: one needs only to test first whether the two elements have the same lenght
(i.e., they belong to the same lattice Ln), which can be done in linear time.
Afterwards, the operations ⊗n (respectively, ⊕n), which need constant time
each, need to be applied component-wise throughout the length of the words.
This yields, in total, quadratically many steps for computing these operations.

The lattice Lsat is not distributive. To verify this, notice that on the one
hand X ⊕sat (XX ⊗sat XXX) = X ⊕sat ⊥ = X, but on the other hand we have

12

that (X ⊕sat XX) ⊗sat (X ⊕sat XXX) = > ⊗sat > = >. However, the lattice is
linear-space-computable-encoded. To see this recall that the size of the elements
of Lsat is given by:

|`| =

{
n if ` ∈ Ln
1 otherwise.

It is a direct consequence of the definition of ⊗sat and ⊕sat that

|`1 ⊕sat `2| ≤ |`1| ≤ max{|`1|, |`2|}, and

|`1 ⊗sat `2| ≤ |`1| ≤ max{|`1|, |`2|}.

To recall, Lsat is an infinite, linear-space-computable-encoded lattice that is not
distributive. We will now show how to reduce satisfiability and unsatisfiability
of propositional formulas to verifying the behaviour of automata with weights
taken from this lattice.

Given a propositional formula φ, we will construct an LBTA Aφ over the
lattice Lsat for arity 1 such that its behaviour ‖Aφ‖ expresses whether φ is
satisfiable or unsatisfiable.

Let φ be a propositional formula. We may assume that it is in conjunctive
normal form (CNF); that is, φ is of the form

(χ11 ∨ . . . ∨ χ1m1
) ∧ (χ21 ∨ . . . ∨ χ2m2

) ∧ . . . ∧ (χk1 ∨ . . . ∨ χkmk),

where each χij , 1 ≤ i ≤ k, 1 ≤ j ≤ mi is a literal.4 Every propositional for-
mula can be transformed in linear time into a satisfiable-equivalent formula in
CNF [36]. As usual in the literature, we call a disjunction of literals a clause;
hence, a formula is in CNF iff it is a conjunction of clauses.

We produce one state for every occurrence of a literal in the formula φ plus
two auxiliary states q0 and qe; formally, the set of states is

Qφ := {qij | 1 ≤ i ≤ k, 1 ≤ j ≤ mi} ∪ {q0, qe}.

Intuitively, the states qij will be used to identify which literal χij is used to
satisfy the i-th clause. The automaton will try to satisfy each clause sequentially,
and the state qe expresses that all clauses have been already verified.

Let now n be the number of propositional variables appearing in the formula
φ. The automaton Aφ will use only weights taken from the sub-lattice L′n of
Lsat, as described next.

Definition 4.1 (Aφ). Given the propositional formula

φ = (χ11 ∨ . . . ∨ χ1m1
) ∧ . . . ∧ (χk1 ∨ . . . ∨ χkmk)

in CNF, using the variables x1, . . . , xn, the automaton Aφ = (Qφ, inφ,wtφ, Qφ)
over the lattice Lsat is defined by:

4Recall that a literal is a propositional variable, or a negated propositional variable.

13

q0

q11 q12

q21 qe

XX

1X
X1 Y2

0X
0X

XX XX

Figure 4: The automaton Aφ for φ = (x1 ∨ x2) ∧ ¬x1. Not-drawn edges that have weight
NN .

• Qφ := {qij | 1 ≤ i ≤ k, 1 ≤ j ≤ mi} ∪ {q0, qe},

• inφ(q) =

{
Xn if q = q0,

Nn otherwise,

• wtφ(q0, q1j) =

{
Xκ−11Xn−κ if χ1j = xκ

Xκ−10Xn−κ if χ1j = ¬xκ

• wtφ(qij′ , q(i+1)j) =

{
Xκ−11Xn−κ if χ(i+1)j = xκ

Xκ−10Xn−κ if χ(i+1)j = ¬xκ

• wtφ(q, qe) =


Xn if q = qkj for some j, 1 ≤ j ≤ mk

Xn if q = qe

Yn if q = q0,

• all other transitions have weight Nn.

Intuitively, the weights ensure that a literal is chosen for satisfying every
clause in the formula φ, and that these choices form a valid valuation of the
propositional variables; i.e., that there is no propositional variable χ such that
both χ and ¬χ are chosen.

Example 4.2. Consider the formula φ := (x1 ∨ x2) ∧ ¬x1. The automaton
Aφ obtained from this formula through the previous construction is depicted in
Figure 4. Notice that the states q12 and q21 both correspond to the variable x1,
but represent the appearances of this variable in different clauses of φ. Let r be
the run given by the word q0q12q21qeq

ω
e . This run expresses the choice in which

the first clause is satisfied by its second literal, in this case x2, and the second
clause is satisfied by its first literal, here ¬x1. The weight of this run is

wt(r) = wt(q0, q12)⊗sat wt(q12, q21)⊗sat wt(q21, qe)⊗sat wt(qe, qe)

= X1⊗sat 0X ⊗sat XX ⊗sat XX = 01.

14

This weight can be interpreted as the satisfying valuation setting the variable
x1 to “false” and x2 to “true”.

Let now r′ be the run q0q11q21qeq
ω
e . Intuitively, this run chooses to satisfy

the first clause through x1 and the second clause through ¬x1. We now have

wt(r′) = wt(q0, q11)⊗sat wt(q11, q21)⊗sat wt(q21, qe)⊗sat wt(qe, qe)

= 1X ⊗sat 0X ⊗sat XX ⊗sat XX = NN.

The value NN expresses that the choices described by the run r′ do not corre-
spond to a valid valuation of the variables appearing in φ.

Since all the states are accepting states, every run on this automaton is
successful. Moreover, the run re = q0q

ω
e has weight Yn since wt(q0, qe) = Yn,

wt(qe, qe) = Xn and Yn ⊗n Xn = Yn. Thus,

‖Aφ‖ ≥ in(re(ε))⊗sat wt(re) = Xn ⊗n Yn = Yn.

This implies that ‖Aφ‖ ∈ {Yn, Xn}. We will show that ‖Aφ‖ = Yn iff φ is
unsatisfiable, and thus ‖Aφ‖ = Xn iff φ is satisfiable.

Lemma 4.3. If φ is satisfiable, then ‖Aφ‖ = Xn.

Proof. If φ is satisfiable, then there exists a valuation V that satisfies all its
clauses; that is, in every clause i there is a literal χiji that V makes true. Let r
be the run defined by r = q0q1j1q2j2 . . . qkjkqeq

ω
e ; then inφ(r(ε)) = Xn. Addition-

ally, since no transition in this run has weight Yn, it follows that wtφ(r) 6= Yn.
We show that wtφ(r) > Nn.

Suppose that wtφ(r) = Nn, then since all transitions from r have weight
greater than Nn, this implies that there are i, j ∈ N and κ, 1 ≤ κ ≤ n such
that wtφ(r(1i), r(1i+1)) = Xκ−10Xn−κ and wtφ(r(1j), r(1j+1)) = Xκ−11Xn−κ.
This means that V satisfies ¬xκ in clause i and xκ in clause j, contradicting the
assumption that V is a valuation. Thus, wtφ(r) > Nn, and ‖Aφ‖ = Xn.

Lemma 4.4. If ‖Aφ‖ = Xn, then φ is satisfiable.

Proof. If ‖Aφ‖ = Xn, then there exists a run r with wtφ(r) /∈ {Nn, Yn}; that is,
wtφ(r) ∈ {0, 1, X}n. This run must be of the form q0q1j1q2j2 . . . qkjkqeq

ω
e , since

otherwise, it would have a transition with weight in {Nn, Yn}, contradicting the
previous statement. Define the valuation V that maps the variable xi to “true”
if the i-th component of wtφ(r) is 1 and to “false” otherwise; i.e. if the i-th
component of wtφ(r) is either 0 or X. We show that this valuation satisfies the
formula φ.

Suppose V does not satisfy φ; then there must be an i, 1 ≤ i ≤ k such
that V violates χij for all j, 1 ≤ j ≤ mi; i.e, V violates the i-th clause from
φ. In particular, it must violate χij0 where qij0 = r(1i). If χij0 = xκ, then
V evaluates xκ to “false”, but wtφ(r) ≤ wtφ(r(1i−1), r(1i)) = Xκ−11Xn−κ,
contradicting the construction of V . An analogous argument can be used if
χij0 = ¬xκ. Hence V must satisfy φ.

15

The automaton Aφ has linearly many states measured on the size of the
input formula φ,5 and only uses weights from L′n; thus, it can be constructed in
polynomial time. This, together with the previous lemmas, yields our hardness
result.

Theorem 4.5. Behaviour verification over linear-space-computable-encoded lat-
tices is NP-hard and co-NP-hard.

Proof. Let φ be a propositional formula in CNF. From Lemmas 4.3 and 4.4
it follows that φ is satisfiable iff behaviour verification answers “yes” on input
Aφ, Xn, and φ is unsatisfiable iff behaviour verification answers “yes” on input
Aφ, Yn. Since (un)satisfiability of propositional formulas is (co-)NP-hard [13],
the former shows NP-hardness, and the latter implies co-NP-hardness of the
behaviour verification problem.

4.2. Hardness for General Lattices

If we allow lattices that are not linear-space-computable-encoded, then the
lower bound presented in the previous section can be increased to PSpace. We
show this through a reduction from the problem of validity of quantified Boolean
formulas (QBF). Recall that satisfiability and unsatisfiability of propositional
formulas can be seen as special cases of QBF: a propositional formula φ is
satisfiable if and only if ∃x1 · · ·xn.φ is valid, and analogously for unsatisfiability
using only universal quantifiers; i.e., φ is unsatisfiable if ∀x1 · · ·xn.¬φ is valid.
Based on this fact, the reduction presented in this section will follow the same
basic idea used before for proving the NP and co-NP lower bounds. However, it
will require additional technical details for dealing with the nesting and changes
of quantifiers. Intuitively, the weights in a run will ensure that all relevant
valuations are considered.

The weights of our automaton will be sets of tuples from Ln. To encode
a set as strings, one could introduce a new symbol that is not in the current
alphabet and write it as a list where the elements are separated by the new
symbol. For reasons of readability, we are going to use the set representation
in our notations. Each weight intuitively expresses a set of valuations that
satisfy the propositional formula φ, obtained from ignoring the quantifiers in
the input QBF. The order in which variables are quantified will correspond to
the order in which they are represented in the tuple. Finally, since existentially
and universally quantified variables are treated differently, we specify also a
partition of the variables, as described next.

Definition 4.6 (LS). Let S = (n, I∀), where n ≥ 1 and I∀ ⊆ {1, . . . , n}. Given
a set S ⊆ Ln, a word w ∈ S is I∀-incompatible with respect to S if any of the
following conditions hold:

5As usual, we measure the size of a formula by the number of propositional variables it
contains.

16

1. w is of the form u0v for some u ∈ Li−1, i ∈ I∀ and there is no u′1v′ or
u′Xv′ in S such that u′ ∈ Li−1, and u⊗i−1 u′ 6= N i−1, or

2. w is of the form u1v for some u ∈ Li−1, i ∈ I∀ and there is no u′0v′ or
u′Xv′ in S such that u′ ∈ Li−1, and u⊗i−1 u′ 6= N i−1.6

We denote as incI∀(S) the set of all I∀-incompatible elements in S.
The lattice (LS ,⊕S ,⊗S) uses as carrier set LS the set of all antichains

S ⊆ ℘(Ln) such that incI∀(S) = ∅, where ℘(L) denotes the power set of L.
Given S1, S2 ∈ LS , let ≤ be the ordering from Ln. We extend the operators ⊕n
and ⊗n to sets of words as follows:

S1 ⊕n S2 := {w ∈ S1 ∪ S2 | for every u ∈ S1 ∪ S2, w 6< u},
S1 ⊗n S2 := {w ∈ Ln | there exist u ∈ S1, v ∈ S2 such that w = u⊗n v and

for every u′ ∈ S1, v
′ ∈ S2, w 6< u′ ⊗n v′}.

The operators ⊕S and ⊗S are defined as follows:

S1 ⊕S S2 := S1 ⊕n S2

S1 ⊗S S2 := (S1 ⊗n S2) \ incI∀(S1 ⊗n S2).

The idea is that the set I∀ expresses the indices of the variables that are
universally quantified. For each of these variables x, given a choice of valuation
of the variables in which it depends, we need to ensure that both choices for
evaluating x still satisfy the formula φ. The set S stores the set of valuations
that do not violate the formula. The incompatibility condition then detects
which of these valuations violate the universal quantification. For example, if
S = (1, {1}), it means that the formula has only one variable that is universally
quantified. Then LS = {{X}, {0, 1}, {N}}. Notice that {1} is also an antichain
of L1, but 1 ∈ incI∀({1}), since we can see 1 as the word ε1ε with ε ∈ L0,
and there is no word ε0v or εXv in {1}. Thus, 1 satisfies the Condition 2
from Definiton 4.6. This means that {1} does not belong to LS . The following
example gives the intuition of these notions in further detail.

Example 4.7. The tuple (2, {1}) is used to express that the formula uses two
variables, with the first one being universally quantified; that is, we are dealing
with a quantified Boolean formula of the form ∀x1.∃x2.φ(x1, x2). This formula
is valid if, for every possible valuation of x1, we can find a valuation of x2 that
makes φ(x1, x2) true. One possibility is to use the valuations 00 and 11, given a
chosen valuation of x1, x2 is evaluated to the same truth value. Indeed, {00, 11}
is an antichain of L2, and none of its elements is {1}-incompatible, which means
that {00, 11} ∈ L(2,{1}). Intuitively, this means that this set represents a valid
choice of valuations for verifying the validity of the input formula.

Consider now the tuple (2, {2}), which will be used to deal with formulas of
the form ∃x1.∀x2.φ(x1, x2). This means that we have to choose one value for

6For the case where i = 1, we set L0 = {ε}, and N0 = ε.

17

x1 in such a way that both valuations of x2 make φ true. Clearly, the previous
choice of valuations 00 and 11 is not adequate, since it depends on choosing a
different value for x1. In fact, {00, 11} does not belong to L(2,{2}) since both
elements in this set are {2}-incompatible with respect to {00, 11}.

We will now show that the structure (LS ,⊕S ,⊗S) is indeed a lattice, as
claimed before, and then describe how we can use it to decide validity of quan-
tified Boolean formulas.

Lemma 4.8. Let S = (n, I∀). Then (LS ,⊕S ,⊗S) is a lattice.

Proof. It is easy to see that the operators⊕S and⊗S are idempotent, associative
and commutative. We now prove that they satisfy the absorption laws. Let
S1, S2 ∈ LS . Consider some w ∈ S1. We show that w ∈ S1 ⊕S (S1 ⊗S S2). By
definition, it suffices to show that there is no u ∈ S1 ⊗S S2 such that w < u.
For every u ∈ S1 ⊗S S2 there exist u1 ∈ S1, u2 ∈ S2 such that u = u1 ⊗n u2.
In particular, u ≤ u1. Thus, if there exists some u with w < u then w < u1,
contradicting the fact that S1 is an antichain from Ln. We thus have that
S1 ⊆ S1 ⊕S (S1 ⊗S S2).

Conversely, let w ∈ S1 ⊕S (S1 ⊗S S2), and suppose that w /∈ S1. It must
then hold that (i) w ∈ S1⊗S S2 ⊆ S1⊗n S2 and (ii) there is no u ∈ S1 such that
w ≤ u. From (i) it follows that there exist u1 ∈ S1, u2 ∈ S2 with w = u1 ⊗n u2.
In particular w ≤ u1, which violates (ii). Hence S1 ⊕S (S1 ⊗S S2) ⊆ S1. The
other absorption law can be proven in an analogous way.

As done for the case of satisfiability of propositional formulas, we construct
an infinite lattice that contains as sub-lattices each of the lattices LS . We
assume that each of these sub-lattices are disjoint; that is, we make disjoint
copies of them for different pairs S,S ′. The lattice (Lqbf ,⊕qbf ,⊗qbf) has

Lqbf :=
⊎

n≥1,I⊆{1,...,n}

L(n,I) ∪ {>,⊥}

as carrier set, and its operators are defined by:

`1 ⊕qbf `2 =


`1 ⊕S `2 if `1, `2 ∈ LS
`2 if `1 = ⊥
`1 if `2 = ⊥
> otherwise,

`1 ⊗qbf `2 =


`1 ⊗S `2 if `1, `2 ∈ LS
`2 if `1 = >
`1 if `2 = >
⊥ otherwise.

The proof that these operators define a lattice is analogous to the one presented
before for the lattice Lsat. It is also easy to verify that this lattice is not distribu-
tive. Recall that every element of Lqbf \ {>,⊥} is a set of words of length n, for
some n. We use the obvious encoding of these elements, explicitly stating the
words that appear in the set. The size of such a set is the number of elements
it has, times their length. Formally, we obtain that the size of an element ` of

18

Lqbf is given by:

|`| =

{
n ·m if ` ⊆ Ln, and ` has m elements

1 otherwise.
(1)

The join and meet of two sets of words `, `′ ∈ Lqbf can be computed in poly-
nomial time, as it corresponds to the pairwise application of the operator ⊗n
(respectively, ⊕n), which produces m ·m′ words, where m,m′ are the number
of words in ` and `′, respectively. Afterwards, it is only necessary to compare
all these words to remove all redundant and incompatible elements, which can
also be done in polynomial time.

Under this encoding, this lattice is not linear-space-computable-encoded, as
shown by the following example.

Example 4.9. Let S = (n, ∅) and consider the antichains {Xn} and for every
i, 1 ≤ i ≤ n {Xi−11Xn−i, Xi−10Xn−i}. These are all elements of LS , which
contain at most two words of length exactly n each; i.e., every one of these
elements has size 2n. However,

{Xn} ⊗S
⊗

1≤i≤n

{Xi−11Xn−i, Xi−10Xn−i} = {0, 1}n,

is an antichain of LS with 2n elements. In other words, the meet of these
n elements has size larger than each of the individual elements, violating the
definition of linear-space-computable-encoded.

This example does not imply that there is no encoding under which Lqbf

is linear-space-computable-encoded. Indeed, we now describe an encoding that
make this lattice linear-space-computable-encoded.7 For every n ∈ N, there are
at most 4n words of length n using the symbols X, 0, 1, N . This implies that each
lattice L(n,I) has at most 24

n

elements. We can represent each of these elements
using a binary string of length 4n that describes which elements belong to the
set and which do not. Under this encoding, every element of L(n,I) has size 4n,
yielding a linear-space-computable-encoded lattice. However, as discussed at
the end of this section, such an encoding would yield an exponential reduction,
which would not be useful for obtaining the desired complexity lower bounds.

Let now ∇1x1 . . .∇nxn.φ with ∇i ∈ {∃,∀} be a quantified Boolean formula.
As done for satisfiability of propositional formulas, we can assume that φ is in
CNF.

Given the QBF ψ := ∇1x1 . . .∇nxn.φ, let I∀ = {i | ∇i = ∀} be the set
of indices of all universally quantified variables in ψ. We will construct an
automaton Aψ with weights belonging to the lattice L(n,I∀), whose behaviour
characterises validity of ψ.

We introduce one state qi for each variable xi appearing in the formula ψ
and one state qn+j for each clause (χj1∨. . .∨χjmj), along with the distinguished

7We are grateful to an anonymous reviewer for providing the idea of this construction.

19

q0 q1 q2 q3 q4

{XX}

{1X, 0X} {X1, X0} {0X,X1} {1X,X0}

{XX}

Figure 5: The automaton Aψ for ψ = ∀x1∃x2.(¬x1 ∨ x2) ∧ (x1 ∨ ¬x2).

initial state q0. Notice that, contrary to the construction used in Section 4.1,
here we do not consider one state for each occurrence of a variable, but rather
one for each variable appearing in ψ.

Definition 4.10 (Aψ). Given a QBF ψ = ∇1x1 . . .∇nxn.φ with

φ = (χ11 ∨ . . . ∨ χ1m1) ∧ . . . ∧ (χk1 ∨ . . . ∨ χkmk),

let Qψ := {qi | 0 ≤ i ≤ n+ k} and for every i, 1 ≤ i ≤ k let

Ci :={Xκ−11Xn−κ | χij = xκ, 1 ≤ j ≤ mi} ∪
{Xκ−10Xn−κ | χij = ¬xκ, 1 ≤ j ≤ mi}.

The automaton Aψ = (Qψ, inψ,wtψ, Qψ) is defined by:

inψ(q) =

{
{Xn} if q = q0

{Nn} otherwise.

wtψ(qi, qj) =


{Xj−11Xn−j , Xj−10Xn−j} if j = i+ 1, 1 ≤ j ≤ n
Cj−n if j = i+ 1, n < j ≤ n+ k

{Xn} if i = j = n+ k

{Nn} otherwise.

All weights are elements of the sub-lattice L(n,I∀) with I∀ := {i | ∇i = ∀}.

Example 4.11. Consider the QBF ψ := ∀x1∃x2.(¬x1∨x2)∧ (x1∨¬x2), which
is valid. Figure 5 depicts the automaton Aψ. All the transitions belong to LS
with S = (2, {1}). The transitions that are not depicted have weight {NN}.
We compute now the weight of the run r = q0q1q2q3q4q

ω
4 :

wtψ(r) = {1X, 0X} ⊗S {X1, X0} ⊗S {0X,X1} ⊗S {1X,X0}
= {00, 01, 10, 11} ⊗S {0X,X1} ⊗S {1X,X0}
= {00, 01, 11} ⊗S {1X,X0} = {00, 11}.

Intuitively, the words in wtψ(r) describe the valuations that make ψ valid: if
x1 is evaluated to “false”, then x2 must also be evaluated to “false”, and if x1
evaluates to “true” so must also x2. The condition of having only compatible el-
ements in these sets ensures that both choices of universally quantified variables

20

are verified, for every choice of their preceding existential variables. Indeed, if a
word u0v appears in this set, where 0 corresponds to a valuation of a universally
quantified variable, the compatibility condition ensures that there is a v′ such
that u1v′ belongs also to this set, and analogously for words of the form u1v.

Consider now the formula ψ′ := ∃x1∀x2.(¬x1 ∨ x2) ∧ (x1 ∨ ¬x2), which is
not valid. The automaton Aψ′ is the same depicted in Figure 5, but with the
weights belonging to LS′ with S ′ = (2, {2}). Notice that

{00, 01, 10, 11} ⊗2 {0X,X1} = {00, 01, 11}

but 11 is {2}-incompatible. Thus {00, 01, 10, 11} ⊗S′ {0X,X1} = {00, 01} and

wtψ′(r) = {1X, 0X} ⊗S′ {X1, X0} ⊗S′ {0X,X1} ⊗S′ {1X,X0}
= {00, 01, 10, 11} ⊗S′ {0X,X1} ⊗S′ {1X,X0}
= {00, 01} ⊗S′ {1X,X0} = ∅.

Once we choose a valuation for the variable x1, there is only one valuation
of x2 that makes the formula (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) true. These valuations
are removed by the incompatibility condition, since x2 is universally quantified.
Intuitively, having wtψ′(r) = ∅ means that the formula φ′ is not valid.

Before showing that these automata can be used to decide validity of QBF,
we show that Algorithm 1 may require exponential space to verify their be-
haviour, as claimed in Section 3.

Example 4.12. Given n ∈ N, let ψn := ∃x1∃x2 . . . ∃xn.(x1 ∨¬x1). Notice that
Aψn has n+ 1 states, and all its weights are sets of at most two words of length
n, thus the size of Aψn is polynomial on n. Moreover,

LAψn = {{Xi−11Xn−i, Xi−10Xn−i} | 1 ≤ i ≤ n}.

Suppose now that we call Algorithm 1 with input Aψn and {Xn}, which is
also polynomial on n. When the for loop terminates, the algorithm stores the
behaviour of Aψn in the variable m. It is a simple computation to verify that
this behaviour is

m :=
⊗

`∈LAψn

` = {0, 1}n;

that is, m stores 2n words of length n. This set needs space exponential on n
to be stored.

All runs of the automaton Aψ are accepting. Additionally, all the weights
used are greater or equal to {Nn}. Thus, the behaviour of this automaton is
always greater or equal to {Nn}. We will show that ‖Aψ‖ = {Nn} iff ψ is not
valid.

To do this, notice that we can understand every S ⊆ {0, 1}n as a set of
valuations of the variables x1, . . . , xn. As described in Example 4.9, the first
transitions of the automaton Aψ simply produce the set of all valuations {0, 1}n.
The subsequent transitions remove those valuations that do not satisfy each of
the clauses, as described by the following lemma.

21

Lemma 4.13. Given a set V ⊆ {0, 1}n and a clause ci := (χi1 ∨ . . . ∨ χimi),
the set (V ⊗n Ci) \ {Nn} contains exactly those valuations from V that satisfy
ci.

Proof. Notice first that by definition of ⊗n, for every w ∈ {0, 1}n and every
w′ ∈ {0, 1, X}n, w ⊗n w′ ∈ {w,Nn}. Thus (V ⊗n Ci) \ {Nn} ⊆ S. Let w ∈ V.
If w ∈ (V ⊗n Ci) \ {Nn}, then there exists a w′ ∈ Ci such that w ⊗n w′ = w.
If w′ is of the form Xκ−11Xn−κ, then this means that w is of the form u1v for
some u ∈ {0, 1}κ−1 and v ∈ {0, 1}n−κ, and xκ appears positively in the clause
ci. Thus, w satisfies ci. An analogous argument can be used if w′ is of the form
Xκ−10Xn−κ.

Conversely, if w /∈ (V ⊗n Ci) \ {Nn}, then it must be the case that, for
every w′ ∈ Ci, w ⊗n w′ = Nn holds. Let χij = xκ with 1 ≤ j ≤ mi. Then
wij := Xκ−11Xn−κ ∈ Ci. As w ⊗n wij = Nn, this means that w is of the form
u0v for some u ∈ {0, 1}κ−1 and v ∈ {0, 1}n−κ. Thus w does not satisfy χij .
An analogous argument can be used for all variables appearing negatively in ci.
Thus, w does not satisfy any literal in ci.

With the help of this lemma, we can show that the behaviour of the automa-
ton Aψ characterises validity of the QBF ψ.

Lemma 4.14. If ‖Aψ‖ 6= {Nn}, then ψ is valid.

Proof. If ‖Aψ‖ 6= {Nn}, then there exists a run r such that inψ(r(ε)) 6= {Nn}
and wtψ(r) 6= {Nn}. In particular, for every i, 0 ≤ i ≤ n + k, r(1i) = qi and
r(1j) = qn+k for every j > n + k; in symbols, r = q0q1q2 . . . qn+k−1qn+kq

ω
n+k.

Otherwise, there would be a transition with weight {Nn}, and wtψ(r) = {Nn}.
As explained before,

inψ(r(ε))⊗qbf

⊗
0≤i<n

wtψ(qi, qi+1) = {0, 1}n.

Moreover, since inψ(r(ε))⊗qbf wtψ(r) 6= {Nn}, from Lemma 4.13 it follows that
inψ(r(ε))⊗qbf wtψ(r) is the set of all valuations that satisfy φ. Since this value
is in L(n,{i|∇i=∀}), it follows from the compatibility conditions that for every i
with ∇i = ∀, and u ∈ {0, 1}i−1, a valuation u1v satisfies φ iff a valuation u0v′

also satisfies φ. Thus, all universal and existential restrictions are satisfied, and
ψ is valid.

Lemma 4.15. If ψ is valid, then ‖Aψ‖ 6= {Nn}.

Proof. Let V be the set of all valuations that satisfy φ and V ′ := V \ incI∀(V).
Since ψ is valid, it holds that V ′ is in L(n,I∀) and V ′ /∈ {∅, {Nn}}. Let now r be
the run given by

r(1i) =

{
qi 0 ≤ i ≤ n+ k

qn+k i > n+ k,

i.e, r = q0q1q2 . . . qn+k−1qn+kq
ω
n+k. Using Lemma 4.13, we obtain that

inψ(r(ε))⊗qbf wtψ(r) = V ′ 6≤ {Nn}

22

and hence ‖Aψ‖ 6= {Nn}.

PSpace-hardness of the behaviour verification problem is a direct conse-
quence of these lemmas.

Theorem 4.16. Behaviour verification is PSpace-hard.

Proof. As a direct consequence from Lemmas 4.14 and 4.15, a QBF ψ is not
valid iff behaviour verification answers “yes” on input Aψ, {Nn}. The number
of states of Aψ is linear on the number of variables and clauses appearing in
ψ. Moreover, each of the weights used is at most a pair of words of size n,
where n is the number of variables in ψ. Thus, this automaton can be con-
structed in polynomial time, yielding a polynomial reduction from validity of
QBF to the behaviour verification problem of LBTA. Since validity of quantified
Boolean formulas is PSpace-hard and PSpace =co-PSpace [29], we have that
behaviour verification is PSpace-hard.

We emphasize that the encoding of the lattice Lqbf as sets of words, in which
every element of this lattice has size described by Equation (1) is fundamental for
this lower bound to hold. Indeed, as describe before, one could also measure the
size of every element of LS , for S = (n, I∀), as having size 4n. This would yield a
linear-space-computable-encoded lattice. However, the constructed automaton
would have size exponential on n, the number of variables in ψ.

5. Conclusions

We have studied the complexity of computing the behaviour of lattice Büchi
automata over infinite trees. Our results provide different bounds for this prob-
lem, depending on the properties of the representation of the elements of the
lattice. Mainly, we have studied the problem with respect to arbitrary lattices
with the restriction that the meet and join can be computed in polynomial time
but without assuming additional properties, such as finiteness or distributivity.
For this general setting, we have provided a simple algorithm with exponential
runtime, which provides an ExpTime upper bound. This matches the upper
bound previously obtained for bi-locally finite strong bimonoids in [19], a class
of algebraic structures that properly contain all bounded lattices. We also pro-
vided a reduction from the validity problem of quantified Boolean formulas to
the behaviour verification problem of lattice automata, thus obtaining a PSpace
lower bound for the complexity of this problem. Although these lower bounds
were shown for infinite trees, very similar arguments can be used for proving
hardness also for automata over finite words; the successful runs of our au-
tomata are in fact finite words followed by an infinite chain of the distinguished
accepting state. Using that state as the only final state for a finite automaton
would yield the claimed lower bounds.

Additionally, we studied the complexity of the problem under the assumption
that lattice operations do not increase the space required to represent lattice
elements; what we call linear-space-computable-encoded lattices. Under this

23

assumption, we were able to tighten the upper bound to PSpace. However, the
reduction we used to show PSpace-hardness does not apply to this setting, as
it uses an encoding of the lattice elements that is not linear-space-computable-
encoded. For this restricted setting we were able to produce NP and co-NP
lower bounds. The class of linear-space-computable-encoded lattices is interest-
ing, as it covers the class of all total orders, and many other lattices, such as
e.g. finite and distributive lattices, have encodings that make them linear-space-
computable-encoded.

Despite the best of our efforts, we were not able to close the gaps between
these complexity bounds. However, we conjecture that the ideas used for proving
the NP lower bound with respect to linear-space-computable-encoded lattices
and the PSpace-hardness for general lattices can be combined to prove PSpace-
hardness also for linear-space-computable-encoded lattices. As future work, we
plan to continue studying techniques for closing these complexity gaps.

It is worth recalling that our complexity results are parameterized on the
lattice used. We restricted our investigation to lattices where the meet and
the join can be computed in polynomial time, to be able to focus only on the
behaviour of the automaton. Also, our hardness results show only that there
exist some lattices for which behaviour verification is a hard problem. There
may well be other lattices for which the problem is easier to solve. In fact, it
is already known that for (infinite) distributive lattices, the behaviour can be
computed in polynomial time. We will continue studying other restrictions on
lattices that might lower the complexity of the problem.

Acknowledgements

R. Peñaloza is partially supported by DFG under grant BA 1122/17-1 and
within the Cluster of Excellence ‘cfAED’.

[1] Anderson, A. R., Belnap, N. D., 1975. Entailment: The Logic of Relevance
and Necessity. Vol. 1. Princeton University Press.

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider,
P. F. (Eds.), 2003. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press.

[3] Baader, F., Hladik, J., Peñaloza, R., 2008. Automata can show PSPACE
results for description logics. Information and Computation 206 (9,10),
1045–1056, special Issue: First International Conference on Language and
Automata Theory and Applications (LATA’07).

[4] Baader, F., Knechtel, M., Peñaloza, R., 2009. A generic approach for large-
scale ontological reasoning in the presence of access restrictions to the on-
tology’s axioms. In: et al., A. B. (Ed.), Proceedings of the 8th Interna-
tional Semantic Web Conference (ISWC 2009). Vol. 5823 of Lecture Notes
in Computer Science. Washington, DC, pp. 49–64.

24

[5] Baader, F., Knechtel, M., Peñaloza, R., April 2012. Context-
dependent views to axioms and consequences of semantic web on-
tologies. Journal of Web Semantics 12–13, 22–40, available at
http://dx.doi.org/10.1016/j.websem.2011.11.006.

[6] Baader, F., Peñaloza, R., August 2010. Automata-based axiom pinpointing.
Journal of Automated Reasoning 45 (2), 91–129, Special Issue: Selected
Papers from IJCAR 2008.

[7] Baader, F., Tobies, S., 2001. The inverse method implements the automata
approach for modal satisfiability. In: Goré, R., Leitsch, A., Nipkow, T.
(Eds.), Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR 2001). Vol. 2083 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, Siena, Italy, pp. 92–106.

[8] Biere, A., Heule, M. J. H., van Maaren, H., Walsh, T. (Eds.), February
2009. Handbook of Satisfiability. Vol. 185 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press.

[9] Borgwardt, S., Peñaloza, R., 2011. Description logics over lattices with
multi-valued ontologies. In: Walsh, T. (Ed.), Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence (IJCAI’11).
Barcelona, Spain, pp. 768–773.

[10] Büchi, J. R., 1960. On a decision method in restricted second order arith-
metic. In: Nagel, E., et al. (Eds.), Proceedings of the International Congress
on Logic, Methodology and Philosophy of Science. Stanford University
Press, pp. 1–11.

[11] Calvanese, D., De Giacomo, G., Lenzerini, M., 1999. Reasoning in expres-
sive description logics with fixpoints based on automata on infinite trees.
In: Proceedings of the 16th Interntional Joint Conference on Artificial In-
telligence (IJCAI’99). pp. 84–89.

[12] Calvanese, D., De Giacomo, G., Lenzerini, M., 2002. 2ATAs make DLs
easy. In: Proceedings of the 2002 Description Logic Workshop (DL 2002).
pp. 107–118.

[13] Cook, S. A., 1971. The complexity of theorem-proving procedures. In: Pro-
ceedings of the third annual ACM symposium on Theory of computing.
STOC ’71. ACM, New York, NY, USA, pp. 151–158.
URL http://doi.acm.org/10.1145/800157.805047

[14] Dau, F., Knechtel, M., 2009. Access policy design supported by FCA meth-
ods. In: Dau, F., Rudolph, S. (Eds.), Proceedings of the 17th International
Conference on Conceptual Structures, (ICCS 2009). Vol. 5662 of Lecture
Notes in Computer Science. pp. 141–154.

25

[15] Droste, M., Götze, D., Märcker, S., Meinecke, I., 2011. Weighted tree au-
tomata over valuation monoids and their characterization by weighted log-
ics. In: Kuich, W., Rahonis, G. (Eds.), Algebraic Foundations in Computer
Science. Vol. 7020 of Lecture Notes in Computer Science. Springer, pp. 30–
55.

[16] Droste, M., Kuich, W., Rahonis, G., 2008. Multi-valued MSO logics over
words and trees. Fundamenta Informaticae 84 (3,4), 305–327.

[17] Droste, M., Kuich, W., Vogler, H., 2009. Handbook of Weighted Automata,
1st Edition. EATCS. Springer Publishing Company, Incorporated.

[18] Droste, M., Stüber, T., Vogler, H., 2010. Weighted finite automata over
strong bimonoids. Information Sciences 180 (1), 156–166.

[19] Droste, M., Vogler, H., 2012. Weighted automata and multi-valued logics
over arbitrary bounded lattices. Theoretical Computer Science 418, 14–36.

[20] Elgot, C. C., 1961. Decision problems of finite automata design and related
arithmetics. Transactions of the American Mathematical Society 98, 21–52.

[21] Finkel, O., 2009. Highly undecidable problems about recognizability by
tiling systems. Fundamenta Informaticae 91 (2), 305–323.

[22] Gabbay, D. M., Pnueli, A., Shelah, S., Stavi, J., 1980. On the temporal
analysis of fairness. In: Proceedings of the 7th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL’80). pp. 163–
173.

[23] Grätzer, G., 2003. General Lattice Theory, Second Edition. Birkhäuser
Verlag.

[24] Horridge, M., Parsia, B., Sattler, U., 2009. Explaining inconsistencies in owl
ontologies. In: Godo, L., Pugliese, A. (Eds.), Proceedings of the Third In-
ternational Conference on Scalable Uncertainty Management (SUM 2009).
Vol. 5785 of Lecture Notes in Computer Science. Springer, pp. 124–137.

[25] Knechtel, M., 2010. Access restrictions to and with description logic web
ontologies. Ph.D. thesis, Dresden University of Technology, Germany.

[26] Kuich, W., Salomaa, A., 1985. Semirings, Automata and Languages. Vol. 6
of EATCS. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[27] Kupferman, O., Lustig, Y., 2007. Lattice automata. In: Cook, B., Podelski,
A. (Eds.), Proceedings of the 8th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2007). Vol. 4349 of
Lecture Notes in Computer Science. Springer, pp. 199–213.

[28] Lutz, C., Sattler, U., 2000. The complexity of reasoning with boolean modal
logic. In: Proceedings of Advances in Modal Logic 2000 (AiML 2000).

26

[29] Papadimitriou, C. H., 1994. Computational complexity. Addison-Wesley.

[30] Peñaloza, R., 2010. Using sums-of-products for non-standard reasoning. In:
Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (Eds.), Proceedings of the 4th
International Conference on Language and Automata Theory and Appli-
cations (LATA 2010). Vol. 6031 of Lecture Notes in Computer Science.
Springer-Verlag, pp. 488–499.

[31] Pnueli, A., 1977. The temporal logic of programs. In: Proceedings of
the 18th Annual Symposium on the Foundations of Computer Science
(FOCS’77). pp. 46–57.

[32] Qi, G., Ji, Q., Pan, J. Z., Du, J., Apr. 2011. Extending description logics
with uncertainty reasoning in possibilistic logic. International Journal on
Intelligent Systems 26 (4), 353–381.
URL http://dx.doi.org/10.1002/int.20470

[33] Rabin, M. O., 1970. Weakly definable relations and special automata. In:
Bar-Hillel, Y. (Ed.), Proceedings of Symposium on Mathematical Logic
and Foundations of Set Theory. North-Holland Publ. Co., Amsterdam, pp.
1–23.

[34] Stoilos, G., Stamou, G. B., Pan, J. Z., Tzouvaras, V., Horrocks, I., 2007.
Reasoning with very expressive fuzzy description logics. Journal of Artificial
Intelligence Research (JAIR) 30, 273–320.

[35] Straccia, U., 2001. Reasoning within fuzzy description logics. Journal of
Artificial Intelligence Research (JAIR) 14, 137–166.

[36] Tseitin, G. S., 1983. On the complexity of derivation in propositional cal-
culus. In: Siekmann, J., Wrightson, G. (Eds.), Automation of Reasoning
2: Classical Papers on Computational Logic 1967-1970. Springer, Berlin,
Heidelberg, pp. 466–483.

[37] Vardi, M. Y., Wolper, P., 1986. Automata-theoretic techniques for modal
logics of programs. Journal of Computer and System Sciences 32 (2), 183–
221.

[38] Wolper, P., Vardi, M. Y., Sistla, A. P., 1983. Reasoning about infinite com-
putation paths. In: Proceedings of the 24th Annual Symposium of Foun-
dations of Computer Science (SFCS’83). IEEE Computer Society, Wash-
ington, DC, USA, pp. 185–194.

27

