
Employing DL-LiteR-Reasoners for Fuzzy Query
Answering?

Theofilos Mailis and Anni-Yasmin Turhan

Chair for Automata Theory,
Theoretical Computer Science,

TU Dresden, Germany

Abstract. Fuzzy Description Logics generalize crisp ones by providing
membership degree semantics for concepts and roles by fuzzy sets. Re-
cently, answering of conjunctive queries has been investigated and imple-
mented in optimized reasoner systems based on the rewriting approach
for crisp DLs. In this paper we investigate how to employ such exist-
ing implementations for crisp query answering in DL-LiteR over fuzzy
ontologies. To this end we give an extended rewriting algorithm for the
case of fuzzy DL-LiteR-ABoxes that employs the one for crisp DL-LiteR

and investigate the limitations of this approach. We also tested the per-
formance of our proto-type implementation FLite of this method.

1 Introduction

Description Logics (DLs) are a class of knowledge representation languages with
well-defined semantics that are widely used to represent the conceptual knowl-
edge of an application domain in a structured and formally well-understood way.
Some applications require to describe sets for which there exists no sharp, unam-
biguous distinction between the members and nonmembers. For example, when
classifying numerical sensor values into symbolic classes, a crisp (non-fuzzy), un-
ambiguous distinction between the members and nonmembers is not a natural
way of modeling. To represent this kind of information faithfully, fuzzy vari-
ants of DLs were introduced. These variants generalize crisp ones by providing
membership degree semantics for their concepts and roles by fuzzy sets.

In the last years conjunctive query answering was the main reasoning task
investigated for DLs. This reasoning task allows to access data in a flexible
way. In order to cope with huge amounts of data, the property of first order
(FOL) rewritability of DLs was defined and investigated. This property of a
DL allows to implement query answering by a two step procedure: First, the
initial query is rewritten such that it captures the information from the TBox.
Second, this query is executed over a database capturing the facts from the ABox
by means of SQL queries. FOL rewritability is the key feature of the DL-Lite
family, which has been proposed and investigated in [2]. It guarantees that query
answering can be done efficiently—in the size of the data and in the overall size

? Partially supported by DFG SFB 912 (HAEC).

of the corresponding ontology. This is the main reason why DL-LiteR is the DL
underlying OWL 2 QL, one of the three profiles of OWL 2 language.

So far several fuzzy extensions of DL-Lite have been investigated. In [11,12]
the problem of evaluating ranked top-k queries in fuzzy DL-Lite is considered,
and a variety of query languages by which a fuzzy DL-Lite knowledge base can
be queried is presented in [6]. Though all of these approaches are tractable w.r.t.
data complexity, they do not exploit the optimized query rewriting techniques
that have been implemented in many systems for the classical case such as
QuOnto2 [1,7], Ontop [8], Owlgres [9], and IQAROS [14]. There are also reduc-
tion techniques for very expressive DLs such as SHIQ from fuzzy to crisp [5]
for query answering. These techniques are not promising in terms of efficiency,
since they don’t allow for FOL rewriting-based algorithms that employ relational
databases (as the DL-Lite family).

Our approach to answering conjunctive queries over fuzzy DL-LiteR-ontologies
is to use existing optimized crisp DL-Lite reasoners as a black box to obtain an
initial rewriting of the conjunctive query. We extend this query by (1) fuzzy
atoms and (2) by so-called degree variables that capture the numerical mem-
bership degrees, which are used to return the corresponding fuzzy degrees. This
straightforward approach allows to employ a standard SQL query engine—as
in the crisp case and is thus easy to implement. It gives correct answers for
the Gödel family of operators, which is widely used. However, for other families
of fuzzy operators, answers concerning the degrees may be incorrect. We give
a characterization of such cases and an estimation function for the interval in
which the correct degrees lie. We have implemented the query answering en-
gine FLite based on this approach for fuzzy DL-LiteR, which uses the Ontop
system [8] to obtain the initial crisp rewriting.

The rest of the paper is structured as follows: next, we introduce fuzzy DL-
LiteR. Section 3 presents the algorithms for consistency checking and query
answering for fuzzy DL-LiteR-ontologies. In Section 4 we describe limitations
of our approach: we characterize the cases in which incorrect results are ob-
tained and why other fuzzy extensions of DL-Lite-ontologies are problematic.
The FLite system, based on the Ontop framework, is described and evaluated
in Section 5. We end with conclusions and future work.

2 Preliminaries

We introduce the logic DL-LiteR, its ontologies and then the fuzzy variant of the
latter [12,6]. Starting from a set of concept names NC and role names NR complex
concepts can be build. DL-LiteR distinguishes basic concepts represented by B,
general concepts represented by C, basic roles represented by Q, and general
roles represented by R, by the grammar:

B →A | ∃Q C →> | B | ¬B Q→P | P− R→Q | ¬Q

where > is the top concept. A degree d is a number from the unit interval
[0, 1]. The DL-LiteR-concepts and -roles are used in axioms, which can have the

Table 1. Families of fuzzy logic operators.

Family t-norm a⊗b negation 	a implication α⇒ b

Gödel min(a, b)

{
1, a = 0

0, a > 0

{
1, a 6 b

b, a > b

 Lukasiewicz max(a+ b− 1, 0) 1− a min(1− a+ b, 1)

Product a× b

{
1, a = 0

0, a > 0

{
1, a 6 b

b/a, a > b

following forms:

B v C (general concept inclusion axiom)

Q v R (role inclusion axiom)

funct(Q) (functionality axiom)

A TBox T is a finite set of axioms. The set NI is the set of individual names. Let
a, b ∈ NI and d be a degree, then a fuzzy assertion is a statement of the form:

〈B(a), d〉 (fuzzy concept assertion)

〈P (a, b), d〉 (fuzzy role assertion)

An ABox A is a finite set of fuzzy assertions. A fuzzy DL-Lite ontology O =
(T ,A) consists of a TBox T and an ABox A. The crisp DL-LiteR-ontologies
(ABoxes) are a special case, where only degrees d = 1 are admitted.

The semantics of fuzzy DL-LiteR are provided via the different families of
fuzzy logic operators depicted in Table 1 and interpretations. An interpretation
for fuzzy DL-LiteR is a pair I = (∆I , ·I) where ∆I is the interpretation domain
and ·I is an interpretation function mapping every individual a onto an element
aI ∈ ∆I , every concept name A onto a concept membership function AI : ∆I →
[0, 1], every atomic role P onto a role membership function P I : ∆I×∆I → [0, 1].

Let δ, δ′ denote elements of ∆I and 	 denote fuzzy negation (Table 1), then
the semantics of concepts and roles are inductively defined as follows:

(∃Q)I(δ) = sup
δ′∈∆I

QI(δ, δ′) (¬B)I(δ) = 	BI(δ) >I(δ) = 1

P−I(δ, δ′) = P I(δ′, δ) (¬Q)I(δ, δ′) = 	QI(δ, δ′)

We say an interpretation I satisfies a

– concept inclusion axiom B v C iff BI(δ) 6 CI(δ) for every δ ∈ ∆I ,
– role inclusion axiom Q v R iff QI(δ, δ′) 6 RI(δ, δ′) for every δ, δ′ ∈ ∆I ,
– functionality axiom func(Q) iff for every δ ∈ ∆I there is a unique δ′ ∈ ∆I

such that QI(δ, δ′) > 0.

We say that an interpretation I is a model of a TBox T , i.e. I |= T , iff it satisfies
all axioms in T . I satisfies a fuzzy concept assertion 〈B(a), d〉 iff BI(aI) > d,
and a fuzzy role assertion 〈P (a, b), d〉 iff P I(aI , bI) > d. I is a model of an ABox
A, i.e. I |= A, iff it satisfies all assertions in A. Finally an interpretation I is a
model of an ontology O = (T ,A) iff it is a model of A and T .

Based on the formal semantics several reasoning problems can be defined for
DLs. A DL-LiteR-concept or TBox is satisfiable iff it has a model. Likewise, a
DL-LiteR-ontology is consistent iff it has a model, otherwise it is inconsistent.
Given a TBox T and two concepts C and D, C is subsumed by D w.r.t. T (de-
noted C vT D), iff for all models I of T CI(δ) ≤ DI(δ) holds. The reasoning
problem we want to address in this paper is answering of (unions of) conjunctive
queries, which allows retrieval of tuples of individuals from the ontology by the
use of variables. Let NV be a set of variable names and let t1, t2 ∈ NI ∪ NV be
terms (either individuals or variable names). An atom is an expression of the
form: C(t1) (concept atom) or P (t1, t2) (role atom). Let x and y be vectors over
NV, then φ(x,y) is a conjunction of atoms of the form A(t1) and P (t1, t2). A con-
junctive query (CQ) q(x) over an ontology O is a first-order formula ∃y.φ(x,y),
where x are the answer variables, y are existentially quantified variables and
the concepts and roles in φ(x,y) appear in O. Observe, that the atoms in a CQ
do not contain degrees. A union of conjunctive queries (UCQ) is a finite set of
conjunctive queries that have the same number of answer variables.

Given a CQ q(x) = ∃y.φ(x,y), an interpretation I, a vector of individuals
α with the same arity as x, we define the mapping π that maps: i) each in-
dividual a to aI , ii) each variable in x to a corresponding element of αI , and
iii) each variable in y to a corresponding element δ ∈ ∆I . Suppose that for an
interpretation I, Π is the set of mappings that comply to these three conditions.
Computing the t-norm ⊗ of all atoms: AI(π(t1)) and P I(π(t1), π(t2)) yields the
degree of φI(αI , π(y)). A tuple of individuals α is a certain answer to q(x),
over O, with a degree greater or equal than d (denoted O |= q(α) > d), if for
every model I of O:

qI(αI) = sup
π∈Π
{φI(α, π(y))} > d.

We denote the set of certain answers along with degrees, to a query q(x) w.r.t.
an ontology O with ans(q(x),O):

ans(q(x),O) = {(α, d) | O |= q(α) > d

and there exists no d′ > d such that O |= q(α) > d′}.

A special case of CQs and UCQs are those with an empty vector x of answer
variables. These queries return only a degree of satisfaction and are called degree
queries. An ontology entails a degree query q to a degree of d, if O |= q() > d
and O 6|= q() > d′ for every d′ > d. In the crisp case, these queries are Boolean
queries and return true of false. A crisp ontology entails a Boolean query q, if
O |= q().

Example 1. To illustrate the expressiveness of fuzzy DL-LiteR, we give an exam-
ple from the operating systems domain focusing on information about servers.
The first two concept inclusions in the TBox Tex state that each server has a
part that is a CPU. The functional restriction states that no CPU can belong to
more than one server. The ABox Aex provides information about the connections
between servers and CPUs and each CPU’s degree of overutilization.

Tex := {Server v ∃hasCPU, ∃hasCPU− v CPU, func(hasCPU−)}
Aex := {〈Server(server1), 1〉, 〈hasCPU(server1, cpu1), 1〉,

〈OverUtilized(cpu1), 0.6〉, 〈hasCPU(server1, cpu2), 1〉,
〈OverUtilized(cpu2), 0.8〉 }

Based on the ontology Oex = (Tex,Aex) we can formulate the following queries:

q1(x) =CPU(x) (1)

q2(x, y) =hasCPU(x, y) ∧OverUtilized(y) (2)

q3(x) =∃y hasCPU(x, y) ∧OverUtilized(y) (3)

The query q1 asks for all the CPUs of our system. The query q2 asks for pairs
of Servers and CPUs with an overutilized CPU. The query q3 asks for Servers
for which there exists an overutilized CPU. If conjunction and negation are
interpreted based on the Gödel family of operators, the certain answers for each
of the queries w.r.t. Oex are:

ans(q1(x),Oex) = {(cpu1, 1), (cpu2, 1)}
ans(q2(x, y),Oex) = {(server1, cpu1, 0.6), (server2, cpu2, 0.8)}
ans(q3(x),Oex) = {(server1, 0.8)}.

3 Fuzzy Reasoning by Extending Crisp Rewritings

Let q(x) be the conjunctive query that the user has formulated over the vo-
cabulary of the DL-LiteR ontology O = (T ,A). The main idea underlying the
classic DL-LiteR reasoning algorithms is to rewrite the query with the informa-
tion from the TBox and then apply the resulting UCQ to the ABox A alone. The
reasoning algorithm rewrites q(x) by the use of T into a UCQ qT (x), called the
rewriting of q w.r.t. T . For DL-LiteR-ontologies it is well-known that O |= q(α)
iff A |= qT (α) for any ABox A and any tuple of individuals in A holds [4,2]. The
PerfectRef(q, T) algorithm, described in [4], computes the rewriting, i.e., the
corresponding UCQ.

In order to perform consistency checking for a given DL-LiteR-ontology
O = (T ,A) the system rewrites the information from T into a Boolean UCQ
qunsatT () that contains only existentially quantified variables by the Consistent(O)
algorithm, described in [4]. It holds that: an ontology O = (T ,A) is inconsistent
iff A |= qunsatT ().

For fuzzy DLs we adopt the same approach for reasoning. The main differ-
ence is that the degrees of ABox assertions must also be taken into account here.
The extensive investigation on the crisp algorithms for DL-LiteR [11,3] and the
readily available optimized reasoner systems motivate our investigation on how
to employ the classic DL-LiteR algorithm as a black box procedure to perform
reasoning for the fuzzy case as well. The main idea is to apply the DL-LiteR

rewriting algorithm on the crisp part of the ontology, i.e., by considering asser-
tions as crisp and treating the degrees in a separate form of atoms in a second
rewriting step. We apply this idea for satisfiability checking and query answer-
ing, extending the classical Consistent(O) and PerfectRef(q, T) algorithms
to the fuzzy setting.

Before presenting the algorithm, we need introduce some additional notation
to accommodate the degrees. For each concept name A we introduce the bi-
nary predicate Af and for each role name P we introduce the ternary predicate
Pf . Intuitively, a fuzzy assertion of the form A(a) > d (or P (a, b) > d) can be
represented by a predicate assertion of the form Af (a, d) (or Pf (a, b, d)), where
d ∈ [0, 1]. The Af , Pf predicates can be stored as tables in a database. Simi-
larly to the relational database tables tabA, tabr of arity 2 and 3 respectively,
presented in [12].

Now, to have the fuzzy connectors implemented by the SQL engine correctly,
degree variables and degree predicates are needed, which represent the fuzzy
operators in the resulting query. These degree variables and predicates are used
in the rewritings and enrich the query format used by our algorithms internally.
Let NVd be a set of degree variables. Such degree variables xd, yd ∈ NVd can only
be mapped to a value in [0, 1]. By using degree variables in conjunctive queries,
we obtain again crisp UCQs with the fuzzy part represented by an additional
answer variable xd.

In order to represent fuzzy conjunction and negation by the t-norm and nega-
tion operator described in Table 1, we consider the degree predicates Φ>, Φ	, Φ⊗
such that for every α, β, β1, . . . , βn ∈ NVd:

Φ>(α, β) = {(α, β) | α > β} (4)

Φ	(α, β) = {(α, β) | α = 	β} (5)

Φ⊗(α, β1, β2) = {(α, β1, β2) | α = β1⊗β2} (6)

Φ⊗(α, β1, . . . , βn) = {(α, β1, . . . , βn) | α = β1⊗ . . .⊗βn} (7)

We call an expression formed over a degree predicate and a tuple of degree
variables a degree atom. The degree predicates can be materialized in a query
language such as SQL or SPARQL by standard mathematical functions and
comparison operators. Depending on the family of operators used for fuzzy DL-
LiteR, the degree predicates Φ	 and Φ⊗ are instantiated according to Table 1.

In the remainder of the paper we use f to distinguish between the fuzzy
and the crisp version of the algorithms and the parameters. For example, the
Consistent algorithm used for classic DL-LiteR is extended to the fuzzy case
in the Consistentf algorithm, similarly we use the predicates A and Af .

3.1 The Consistentf Algorithm

The Consistentf method depicted in Algorithm 1 first computes the query
qunsatT () used for consistency checking in the crisp case. A second rewriting step
by RewriteWithDegrees introduces CQs with degree variables and atoms to
the query qunsatTf () to take into account the degrees from the ABox. The idea is

that each CQ in qunsatT () corresponds to a different type of inconsistency that may
appear in our ontology: line 5 of Function RewriteWithDegrees ensures that
no functional restriction is violated, line 7 that no inverse functional restriction
is violated, line 9 that no subsumption of the form A vT ¬A′ is violated, line 11
that no subsumption of the form A vT ¬∃P is violated and so on. Since these are
all forms of clashes that can occurr in DL-LiteR, the crisp Consistent algorithm
produces the UCQ qunsatT (), which covers all possible cases. The correctness of
the method can be shown based on the semantics of fuzzy and crisp DL-LiteR.

Example 2. According to the TBox T = {OverUtilized v ¬UnderUtilized} a
CPU cannot be in both states of utilization in the crisp case. Therefore, if the
conjunctive query qunsatTex () = ∃x.OverUtilized(x) ∧ UnderUtilized(x) is entailed,
our ontology is inconsistent. However, for the fuzzy case, the degree of OverUti-
lization should also be taken into account. The query qunsatTex () is rewritten to:

qunsatTexf () = ∃x, yd1 , yd2 , yd3 .OverUtilizedf (x, yd1) ∧UnderUtilizedf (x, yd2) ∧
Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2).

This query asks, if there exists a CPU such that its degree of over-utilization is
greater than the negation of its degree of under-utilization. In such a case an
entailment O |= qunsatTexf () would only be given, if O is inconsistent.

3.2 The PerfectReff Algorithm for Answering Conjunctive Queries

Suppose, the conjunctive query q(x) = ∃y.φ(x,y), where φ(x,y) is a conjunction
of concept and role atoms containing variables from x,y, is to be answered.
Based on the crisp DL-LiteR PerfectRef algorithm, the CQ q(x) is rewritten
to the qT (x). This UCQ qT (x) contains atoms of the form A(t1) and P (t1, t2),
where t1, t2 are variables in x,y or individuals from O. For each CQ q′(x) in the
UCQ qT (x), each atom A(t1), P (t1, t2) is replaced by Af (t1, yd′), Pf (t1, t2, yd′)
respectively, where yd′ is a new degree variable. Likewise, the t-norms of all the
degree variables yd′ appearing in Af (t1, yd′) and Pf (t1, t2, yd′) are added in the
extended rewriting in form of degree predicates Φ⊗. The actual computation
of the degree values takes place, when the query is evaluated over the ABox.
This idea is made precise in Algorithm 2. This algorithm returns a UCQ that,
if answered w.r.t. the ABox A, results in tuples of individuals, along with the
degree by which they satisfy the query. If the same tuple of individuals is returned
as an answer, but with a different degree, then only the answer with the highest
degree is kept.

Algorithm 1 The Consistentf algorithm

1: function Consistentf (O)
. O is a fuzzy DL-LiteR A ontology O = (T ,A).

2: qunsatT () := Consistent(remove-degrees(O))
. The query qunsatT () is obtained from the crisp Consistent algorithm.

3: if ans(RewriteWithDegrees(qunsatT ()),A) = ∅ then
4: return true
5: else
6: return false
7: end if
8: end function

1: function RewriteWithDegrees(qunsatT ())
2: qunsatTf () := ∅
. qunsatTf () is an initially empty crisp UCQ.

3: for all CQs q in qunsatT () do
4: if q has the form ∃x, y1, y2.P (x, y1) ∧ P (x, y2) ∧ y1 6= y2 then
5: qf := ∃x, y1, y2, yd1 , yd2 .Pf (x, y1, yd1) ∧ Pf (x, y2, yd2) ∧ y1 6= y2 ∧

Φ>(yd1 , 0) ∧ Φ>(yd2 , 0)
. qf the extension of q for querying fuzzy ABoxes.

6: else if q has the form ∃x1, x2, y.P (x1, y) ∧ P (x2, y) ∧ x1 6= x2 then
7: qf := ∃x1, x2, y, yd1 , yd2 .Pf (x1, y, yd1) ∧ Pf (x2, y, yd2) ∧ x1 6=x2 ∧

Φ>(yd1 , 0) ∧ Φ>(yd2 , 0)
8: else if q has the form ∃x.A(x) ∧A′(x) then
9: qf := ∃x, yd1 , yd2 , yd3 .Af (x, yd1) ∧ A′f (x, yd2) ∧ Φ>(yd1 , yd3) ∧

Φ	(yd3 , yd2)
10: else if q has the form ∃x, y.A(x) ∧ P (x, y) then
11: qf := ∃x, y, yd1 , yd2 , yd3 .Af (x, yd1) ∧ Pf (x, y, yd2) ∧

Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2)
12: else if q has the form ∃x, y.A(x) ∧ P (y, x) then
13: qf := ∃x, y, yd1 , yd2 , yd3 .Af (x, yd1) ∧ Pf (y, x, yd2) ∧

Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2)
14: else if q has the form ∃x, y1, y2.P (x, y1) ∧ P ′(x, y2) then
15: qf := ∃x, y1, y2, yd1 , yd2 , yd3 .Pf (x, y1, yd1) ∧ P ′f (x, y2, yd2) ∧

Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2)
16: else if q has the form ∃x, y1, y2.P (x, y1) ∧ P ′(y2, x) then
17: qf := ∃x, y1, y2, yd1 , yd2 , yd3 .Pf (x, y1, yd1) ∧ P ′f (y2, x, yd2) ∧

Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2)
18: else if q has the form ∃x, y1, y2.P (y1, x) ∧ P ′(y2, x) then
19: qf := ∃x, y1, y2, yd1 , yd2 , yd3 .Pf (y1, x, yd1) ∧ P ′f (y2, x, yd2) ∧

Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2)
20: else if q has the form ∃x, y.P (x, y) ∧ P ′(x, y) then
21: qf := ∃x, y, yd1 , yd2 , yd3 .Pf (x, y, yd1) ∧ P ′f (x, y, yd2) ∧

Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2)
22: else if q has the form ∃x, y.P (x, y) ∧ P ′(y, x) then
23: qf := ∃x, y, yd1 , yd2 , yd3 .Pf (x, y, yd1) ∧ P ′f (y, x, yd2) ∧

Φ>(yd1 , yd3) ∧ Φ	(yd3 , yd2)
24: end if
25: qunsatf := qunsatf ∪ {qf}
26: end for
27: return qunsatf

28: end function

Algorithm 2 The PerfectReff algorithm

1: function PerfectReff (q(x), T)
2: qT (x) := PerfectRef(q(x), T)
3: qfT (x) := ∅
4: for all CQs q′(x) = ∃y.φ(x,y) in qT (x) do
5: yd := ()
. yd is a vector that keeps the existentially quantified degree variables.

6: φf (x,y) := ∅
. φf (x,y) is a conjunction of atoms corresponding to the fuzzy version of φ(x,y).

7: for all A(t) in q′(x) do
8: Add the degree variable yd′ to the vector yd

. yd′ is a fresh degree variable name.
9: φf (x,y) := φf (x,y) ∧Af (t, yd′)

10: end for
11: for all P (t1, t2) in q′(x) do
12: Add the degree variable yd′ to the vector yd

13: φf (x,y) := φf (x,y) ∧ Pf (t1, t2, yd′)
14: end for
15: q′f (x, xd) := ∃y,yd.φf (x,y) ∧ Φ⊗(xd,yd)

16: qfT (x, xd) := qfT (x, xd) ∪ {q′f (x, xd)}
17: end for
18: return qfT (x)
19: end function

Example 3. Based on Oex = (Tex,Aex) from Example 1 we illustrate the ap-
plication of PerfectReff algorithm to the queries q1, q2, q3 from Example 1.
Initially, q1, q2, q3 are rewritten, by the crisp PerfectRef algorithm to the
following UCQs:

q1Tex(x) ={CPU(x), ∃y.hasCPU(y, x)}
q2Tex(x, y) ={hasCPU(x, y) ∧OverUtilized(y)}
q3Tex(x) ={∃y.hasCPU(x, y) ∧OverUtilized(y)}

In the next step, the PerfectReff algorithm extends the queries with degree
variables and atoms, so that the corresponding degrees can be returned:

q1
f
Tex(x, xd) ={CPU(x, xd), ∃y.hasCPU(y, x, xd)}

q2
f
Tex(x, y, xd) ={hasCPU(x, y, yd1) ∧OverUtilized(y, yd2) ∧ Φ⊗(xd, yd1 , yd2)}
q3
f
Tex(x, xd) ={∃y.hasCPU(x, y, yd1) ∧OverUtilized(y, yd2) ∧ Φ⊗(xd, yd1 , yd2)}

For the ABox Aex we get the following set of answers to each of the queries:

ans(q1
f
Tex(x, xd),Aex) ={(cpu1, 1), (cpu2, 1)}

ans(q2
f
Tex(x, y, xd),Aex) ={(server1, cpu1, 0.6), (server1, cpu2, 0.8)}

ans(q3
f
Tex(x, xd),Aex) ={(server1, 0.6), (server1, 0.8)}

Finally, for each answer to a query, only the one with the highest degree is kept
per (tuple of) individual(s):

ans(q1
f
Tex(x, xd),Aex) ={(cpu1, 1), (cpu2, 1)}

ans(q2
f
Tex(x, xd),Aex) ={(server1, cpu1, 0.6), (server1, cpu2, 0.8)}

ans(q3
f
Tex(x, xd),Aex) ={(server1, 0.8)}

Unfortunately, this practical approach does not always yield correct results.
The simplifications made during the rewriting step by the crisp algorithms
PerfectRef and Consistent are correct for the crisp, but not for the fuzzy
case. Specifically, a conjunctive query that contains the atom A(x) repeatedly
is simplified in the crisp case to a conjunctive query containing the same atom
only once—an obvious optimization for the crisp case. However, in the fuzzy
case, such simplification causes our algorithm to become unsound, since for ev-
ery AI(o) ∈ (0, 1) it applies that AI(o) > AI(o) ⊗ AI(o) for the Lukasiewicz
and product families of operators. Similarly, each time two atoms are unified
during the rewriting, one contribution degree is lost. These effects are better
illustrated by the following example.

Example 4. Suppose that ⊗ is the product (×) t-norm and our ontology has the
following TBox and ABox:

T = {A1 v A2, A3 v A4} A = {A1(a) > 0.8, A3(a) > 0.9}.

Then the conjunctive query q(x) = A1(x) ∧ A2(x) ∧ A3(x) ∧ A4(x) has a as an
answer with degree ≥ 0.5184, since A1

I(aI) × A1
I(aI) × AI3 (aI) × AI3 (aI) =

0.5184. Now, the crisp algorithm returns the following UCQ as rewriting:

qT (x) = {A1(x) ∧A2(x) ∧A3(x) ∧A4(x), A1(x) ∧A3(x) ∧A4(x),

A1(x) ∧A2(x) ∧A3(x), A1(x) ∧A3(x)}

For the crisp case there is no difference between the answers to the conjunctive
queries A1(x)∧A3(x) or A1(x)∧A1(x)∧A3(x)∧A3(x). If we apply our rewriting
technique for fuzzy queries to the last query, we get a fuzzy conjunctive query
of the form:

qfT (x, xd) = ∃ydA1
, ydA3

.A1f (x, ydA1
) ∧A3f (x, ydA3

) ∧ Φ×(xd, ydA1
, ydA3

) (8)

and the answer for the variables x and xd is (a, 0.72), i.e., a is an answer with a
degree ≥ 0.72 instead of 0.5184 which is the correct degree.

To conclude, our pragmatic approach for query answering over a fuzzy ontology,
that uses the rewritings obtained during crisp query answering, yields sound
results fuzzy semantics with idempotent operators such as the Gödel family of
operators. For other families of operators, that are not idempotent, the algorithm
need not be sound in the sense that the degree of a result returned may be greater
than the actual degree.

4 Limitations of the Approach

4.1 Identifying and Assessing Unsound Results for Non-idempotent
Fuzzy DLs

Since our approach for conjunctive query answering is sound for the Gödel fam-
ily of operators, a natural question is when a case that might yield an unsound
result is encountered. To this end we present a straightforward idea for identi-
fing unsound results for the degrees and to give a narrowed down interval for
the missed degrees. Recall that the DL-LiteR-CQs have concept or role atoms,
whereas the UCQs returned from our algorithms have degree atoms in addi-
tion. Let |q(x)|CR denote the number of concept and role atoms of a CQ (degree

atoms are not taken into account), and let qfT (x) be the UCQ that the algorithm
PerfectReff returns. A property of the crisp DL-LiteR algorithm is that

|q(x)|CR > |q′f (x, xd)|CR for every q′f (x, xd) ∈ qfT (x).

This property allows to infer: if |q(x)|CR = |q′f (x, xd)|CR for every CQ q′f (x, xd)

in qfT (x), then no atom simplification has been applied and thus our algorithm
gave a correct result.

In case |q(x)|CR > |q′f (x, xd)|CR for some q′f (x, xd) ∈ qfT (x), a pessimistic
estimation for the not correctly calculated degrees can be computed in the fol-
lowing way. Suppose that |q(x)|CR = n, while |q′f (x, xd)|CR = m with n > m.
Based on the PerfectRef algorithm, each concept and role atom in q(x) can
be mapped to some corresponding ‘fuzzy’ atom in q′f (x, xd). Since n > m, there
is at least one atom in q′f (x, xd) to which several atoms in q(x) map to. Thus a
simplification has taken place and the degree variables of some of the atoms in
q′f (x, xd) are not calculated correctly. In fact, exactly n−m occurrences of degree
variables are ignored. Since |q′f (x, xd)|CR = m, the query q′f (x, xd) contains the
predicate Φ⊗(xd, yd1, . . . , ydm), where xd, yd1, . . . , ydm ∈ NVd. Each such simpli-
fication step causes a predicate atom Af (ti, ydi) or Pf (ti, t

′
i, ydi) with 1 ≤ i ≤ n

occurring in q(x) being omitted when computing the membership degree for the
conjunction in q′f (x, xd) by evaluating Φ⊗(xd, yd1, . . . , ydm). Since it is unknown
which of the predicate atoms and consequently which degree variable is missing,
we consider the most pessimistic case, i.e., that the variable taking the lowest
degree in each answer has not been calculated. This minimum value is repre-
sented in the variable yλ: Φmin(yλ, yd1, . . . , ydm) (the predicate Φmin corresponds
to the predicate Φ⊗ in Equation 7 where ⊗ is replaced by the min t-norm). The
membership degree for the pessimistic case can be calculated by changing the
line 15 of Algorithm 2, so that the value of the degree variable xd in the query
is calculated by:

Φ⊗(xd,yd, yλ, . . . , yλ︸ ︷︷ ︸
n−m times

) ∧ Φmin(yλ, yd1, . . . , ydm).

The difference of the value returned by the algorithm and the value from the
pessimistic estimation, give an estimate how close the returned answer is to the
correct answer.

Example 5. Extending Example 4, the query to acquire a pessimistic degree
estimation is:

qfT (x, xd) = ∃ydA , ydB , yλ.Af (x, ydA) ∧Bf (x, ydB)∧
∧ Φ×(xd, ydA , ydB , yλ, yλ) ∧ Φmin(yλ, ydA , ydB).

In the single pessimistic answer returned, yλ takes the value of 0.8 and the
estimation is that a is an answer to the query with a degree ≥ 0.4608. This
estimation is very close to the correct one, i.e., a is the answer to the query with
a degree ≥ 0.5184. Now, with the pessimistic answer (a, 0.4608) and the unsound
answer (a, 0.72), we know that the correct degree is between the two values.

4.2 Extended Use of Fuzzy Information

Our pragmatic approach can only handle fuzzy information in ABox assertions.
Sometimes it can be useful to have also concept inclusion axioms with degrees
or to extend conjunctive queries by fuzzy information.

Fuzzy DL-LiteR with degrees in concept inclusions: So far we have only
considered concept inclusions of the form B v C in the extended rewriting
approach. To extend our approach to the general case of fuzzy concept inclusions,
i.e., 〈B v C, d〉, is not straightforward. Such concept inclusions are satisfied by an
interpretation I iff for every δ ∈ ∆I and the implication operator from Table 1:

(BI(δ)⇒ CI(δ)) > d.

We present here the intuition what the obstacles are. Suppose that our al-
gorithm contains the concept inclusion 〈B v C, d〉 and the corresponding CQ
contains only the atom C(x). During the rewriting, the replacement of Cf (x, yC)
by Bf (x, yB) takes place and the degree d should also to be calculated, i.e., the
CQ returned after the replacement should be ∃yB .Bf (x, yB) ∧ Φ⊗(xd, yB , d),
where d is a degree and not a degree variable. Unfortunately, this cannot be
done by the crisp rewriting algorithm since it does not keep track of the degrees
in fuzzy concept inclusions.

One could introduce a new set of concept names corresponding to the α-cuts
of each concept, similar to the reduction technique presented in [10]. Here, the
concept B>0.3 represents the set of elements that belong to the concept B with
a degree greater or equal than 0.3 and the concept inclusion 〈B v C, d〉 can be
replaced by the set of concept inclusions: 〈B>d⊗d′ v C>d′ , 1〉 for each degree d′

in T . Then in the final query each concept atom Bf>d(x, ydB) is replaced by

Bf (x, ydB) and the degree d is simply used in the predicate atom Φ⊗(. . .).
This procedure would remedy the above problem, but it would not yield

optimized queries for the following reasons:

– Simplifications, optimizations and variable unifications are not performed
since the crisp DL-Lite algorithm lacks the information that B>0.3 and B>0.4

are different α-cuts of the same concept.

– If there are n nested replacements in the rewriting, then the algorithm would
need to compute all possible products of n factors for the Lukasiewicz and
product families of operators.

Therefore this method needs to be further investigated regarding its applicability
and effectiveness.

Fuzzy DL-LiteR with generalized query component: A generalized form
of fuzzy CQs are those queries in which a score of a query is computed via a
monotone scoring function. Such kind of queries have already been investigated
in [6,12] and the question is whether our black box approach can be applied
to answer them as well. Extending Example 4, we can express via a scoring
function that the parameter A3 is more important than A4 which in turn is
more important than A1 and A2:

q(x) = 0.2 ·A1(x) + 0.1 ·A2(x) ∧ 0.4 ·A3(x) + 0.3 ·A4(x). (9)

Again, due to the simplifications taking place in the crisp rewriting step,
some of the atoms may be merged and therefore after this step the initial
weight corresponding to the merged atoms are unknown. For equation 9, the
crisp PerfectRef algorithm returns an UCQ containing, among others, the
CQ A1(x) ∧ A3(x). For this CQ, one cannot guess correctly how to assign the
weights 0.2, 0.1, 0.4, 0.3 to the two remaining atoms.

Fuzzy DL-LiteR threshold queries: Another interesting form of queries
w.r.t. to a fuzzy ontology, are threshold queries. These queries ask for all individ-
uals that satisfy each atom with at least a certain degree. Threshold conjunctive
queries may take the following form:

q(x) = Server(x) > 1∧hasPart(x, y) > 1 ∧ CPU(y) > 1 ∧ Overutilized(y) > 0.4

Again, due to the simplifications taking place, threshold queries cannot be han-
dled directly by employing the crisp rewritings first.

5 Practical Implementation and Performance Test

5.1 The FLite Reasoner

We have developed a reasoner for conjunctive query answering with respect
to a TBox T and a fuzzy ABox A for DL-LiteR. FLite (Fuzzy DL-LiteR

query engine) implements the query answering algorithm presented in Section 3
and it builds on the rewriting algorithms for crisp DL-LiteR implemented in
the Ontop framework [8] developed at the Free University of Bozen Bolzano.

Rela%onal	
Database	

C
on

ju
nc

tiv
e

Q
ue

ry

O
nt
op

	
Fr
am

ew
or
k	

Re
du

c%
on

	 A
lg
or
ith

m
	

S
Q

L
Q

ue
ry

S
Q

L
Q

ue
ry

 e
xt

en
de

d

w
ith

 d
eg

re
es

R
es

ul
t S

et

TBox

M

Fig. 1. FLite implementation.

Figure 1 illustrates the whole
query answering pipeline and
the components involved. The
initial input is a conjunctive
query q(x) represented in the
form of a SPARQL query. The
Ontop framework requires that
the ABox A is stored in a rela-
tional database. A mapping M,
in the form of multiple SQL queries, translates the Tables of the relational
database to ABox assertions. By combining the mapping M with the TBox
assertions, the Ontop framework rewrites the initial query to a UCQ qT (x), in
the form of an SQL query. The rewritten query is post-processed by FLite, as
described in Section 3, resulting in the UCQ qfT (x, xd) that additionally asks for
the associated degree of each answer by means of degree variables. The final SQL
query is then evaluated over the relational database returning the corresponding
result set with degrees.

Example 6. Let’s consider again the three conjunctive queries and the ontol-
ogy Oex from Example 1 and assume that ABox Aex is stored in a relational
database. The mapping M is used to map the set of answers to: i) the query
select Server id from Servers to instances of the concept Server, ii) the
query select Server id,CPU id from CPUs to instances of the role hasCPU,
iii) the query select CPU id,Degree from Overutilized to instances of the
concept OverUtilized along with their corresponding degree. In this example,
only the concept OverUtilized is fuzzy. It is represented by rows in the Table
Overutilized stating the CPU and its degree of over-utilization. For an entry
(cpu1, 0.6) in Table Overutilized we have that OverUtilized(cpu1) > 0.6, all
the other concepts are crisp and therefore have a degree of 1.0. Next the On-
top framework transforms the CQ in equation 2 to the following SQL query (in
black), which is augmented by our extended rewriting algorithm (in gray).

SELECT QVIEW1.Server_id AS x, QVIEW1.CPU_id AS y,

QVIEW2.Degree AS d

FROM CPUs QVIEW1 ,Overutilized QVIEW2

WHERE QVIEW1.Server_id IS NOT NULL AND QVIEW1.

CPU_id IS NOT NULL AND (QVIEW1.CPU_id = QVIEW2.

CPU_id)

5.2 An Initial Performance Evaluation

We have evaluated the performance of FLite on an ontology. The current version
of the HAEC fuzzy DL-LiteR ontology contains 311 TBox axioms, 178 concepts,
39 roles, together with 15 conjunctive queries. We performed our evaluation
for a complicated query containing 13 concept and role atoms. Out of these
13 atoms, 9 were about fuzzy concepts, thus the extended SQL contained 9
additional degree variables. Out of the 10 relational database tables used to
store the fuzzy ABox information 4 contained fuzzy information. Thus, about

40% of the ABox assertions were fuzzy. We evaluated the performance of our
approach by comparing FLite to the standard Ontop framework for the classic
DL-LiteR language by simply ignoring the degrees in concept assertions.1

0	
500	
1000	
1500	
2000	
2500	
3000	

0	
500

00	

100
000

	

150
000

	

200
000

	

250
000

	

300
000

	

350
000

	

Q
ue

ry
	 a
ns
w
er
in
g	
-m

e	
(m

s)
	

Number	 of	 ABox	 database	 asser-ons	

FLite	 reasoner	 Ontop	 reasoner	

Fig. 2. Running times: Ontop - FLite.

The evaluation of the system
was performed on a MacBook
Pro laptop with 2.6 GHz Intel
Core i7 Processor, 8 GB 1600
MHz DDR3 Memory, running
a PostgreSQL 9.3.4 on x86 64-
apple-darwin database. Figure 2
depicts the comparison between
Ontop and its extension FLite
in terms of running time. The
graph shows the performance
of the two query engines w.r.t.
the number of assertions in the
ABox. As we can see the over-
head of adding degrees and an-
swering queries containing de-
grees can be handled well by our algorithm and the database. In fact, FLite
answered the queries having to examine up to 326, 340 ABox assertions within
only 1, 519 ms for the crisp and within 2717 ms for the fuzzy case.

6 Conclusions

We presented a pragmatic approach for answering conjunctive queries over on-
tologies with fuzzy ABoxes. Our approach uses rewritings obtained by the al-
gorithm for answering crisp queries. Although described here for DL-LiteR, our
approach can be extended to other DLs that enjoy FOL rewritability. Our al-
gorithm is sound for those t-norms that have idempotent operators, such as the
Gödel t-norm. This does not need be for other t-norms. We devised a method by
which unsound answers can be identified and the correct degrees estimated. We
implemented our approach in the FLite system and evaluated it against the On-
top framework. Our initial experiments suggest that the overhead for handling
fuzzy information does not crucially affect the overall performance.

Our extended rewriting approach cannot be extended in straight-forward way
to other interesting forms of queries such as threshold queries. To answer these
kind of queries one would have to implement an algorithm from scratch [13,6]
or extend the source code of an existing rewriting implementation. A thorough
investigation of this subject remains future work.

1 A comparison of the performance of FLite with SoftFacts [13] –an ontology me-
diated database system based on the DLR-Lite language–would have been more
appropriate, but the system could not be set up.

References

1. Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau-
rizio Lenzerini, Mattia Palmieri, and Riccardo Rosati. Quonto: querying ontologies.
In AAAI, pages 1670–1671, 2005.

2. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-lite family and relations. Journal of artificial intelligence
research, 36(1):1–69, 2009.

3. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and
databases: The DL-Lite approach. Springer, 2009.

4. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-lite family. Journal of Automated reasoning, 39, 2007.

5. Theofilos Mailis, Rafael Peñaloza, and Anni-Yasmin Turhan. Conjunctive query
answering in finitely-valued fuzzy description logics. In Web Reasoning and Rule
Systems. Springer, 2014.

6. Jeff Z Pan, Giorgos B Stamou, Giorgos Stoilos, and Edward Thomas. Expressive
querying over fuzzy DL-Lite ontologies. In Description Logics, 2007.

7. Antonella Poggi, Mariano Rodriguez, and Marco Ruzzi. Ontology-based database
access with DIG-Mastro and the OBDA plugin for protégé. In Proc. of OWLED,
2008.

8. Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev.
Ontology-based data access: Ontop of databases. In International Semantic Web
Conference (1), volume 8218 of LNCS, pages 558–573. Springer, 2013.

9. Markus Stocker and Michael Smith. Owlgres: A scalable OWL reasoner. In
OWLED, volume 432, 2008.

10. Umberto Straccia. Transforming fuzzy description logics into classical description
logics. In Logics in Artificial Intelligence, pages 385–399. Springer, 2004.

11. Umberto Straccia. Answering vague queries in fuzzy DL-Lite. In Proceedings of
the 11th International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems,(IPMU-06), pages 2238–2245, 2006.

12. Umberto Straccia. Towards top-k query answering in description logics: the case
of DL-Lite. In Logics in Artificial Intelligence, pages 439–451. Springer, 2006.

13. Umberto Straccia. Softfacts: A top-k retrieval engine for ontology mediated access
to relational databases. In Systems Man and Cybernetics (SMC), 2010 IEEE
International Conference on, pages 4115–4122. IEEE, 2010.

14. Tassos Venetis, Giorgos Stoilos, and Giorgos Stamou. Query extensions and in-
cremental query rewriting for OWL 2 QL ontologies. Journal on Data Semantics,
pages 1–23, 2014.

