
Axiom Dependency Hypergraphs for Fast
Modularisation and Atomic Decomposition

Francisco Mart́ın-Recuerda1 and Dirk Walther2
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Abstract. In this paper we use directed hypergraphs to represent the
locality-based dependencies between the axioms of an OWL ontology.
We define a notion of an axiom dependency hypergraph, where axioms
are represented as nodes and dependencies between axioms as hyper-
edges connecting possibly several nodes with one node. We show that a
locality-based module of an ontology corresponds to a connected compo-
nent in the hypergraph, and an atom of an ontology to a strongly con-
nected component. Collapsing the strongly connected components into
single nodes yields a condensed axiom dependency hypergraph, which
contains the atomic decomposition of the ontology. To condense the ax-
iom dependency hypergraph we exploit linear time graph algorithms on
its graph fragment. This optimization can significantly reduce the time
needed to compute the atomic decomposition of an ontology. We provide
an experimental evaluation for computing the atomic decomposition of
large biomedical ontologies, and for computing syntactic locality-based
modules using the condensed axiom dependency hypergraph.

1 Introduction

An axiom dependency hypergraph (ADH) for OWL ontologies is a directed hy-
pergraph which explicitly represents the locality-based dependencies between
axioms. This graph can be used to compute the atomic decomposition (AD) of
an ontology [5]. Different to other hypergraph representations of ontologies [12,
10], the nodes represent axioms that are connected by hyperedges which explic-
itly describe the locality-based dependencies between axioms. These hyperedges
mimic the order in which axiom are included in a locality-based module by
the module extraction algorithm [7]. Due to this particular hypergraph repre-
sentation the correspondence between atoms of an ontology and the strongly
connected components (SCCs) of its hypergraph becomes apparent. This allows
us to employ standard algorithms from graph theory to compute atoms. Simi-
larly, modules can be characterized as connected components in an ADH. The
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notion of an ADH provides a new perspective on previous work on locality and
atomic decomposition from the point of view of graph theory.

Computing all SCCs in a directed hypergraph is an inherently quadratic pro-
cess [1], whereas in a directed graph, it can be done in linear time wrt. the size of
the graph [11, 13]. For several well-known biomedical ontologies from the NCBO
Bioportal,1 many (if not all) of the locality-based dependencies between axioms
can be represented by simple edges [9]. In the case that all dependencies between
axioms of an ontology can be represented using simple edges only, the ADH is
a directed graph, and its SCCs can be computed very efficiently. For ontologies
containing axioms that exhibit dependencies which can only be represented using
complex hyperedges, we can still benefit from the use of linear-time algorithm
for computing SCCs in the graph fragment of the ADH.

We have implemented a Java prototype for computing the atomic decomposi-
tion and syntactic locality-based modules. We confirm a significant improvement
in running time for prominent biomedical ontologies from the NCBO Bioportal
compared against state-of-the-art implementations [14, 15].

The paper is organised as follows. In Section 2, we introduce the notion of
minimal non-locality signature of an axiom which can be used to check whether
an axiom is non-local wrt. a signature. In Section 3, we introduce the notion of an
axiom dependency hypergraph, and we show how to characterize locality-based
modules as well as atoms together with their dependencies. We demonstrate the
applicability of the hypergraph-based approach with an evaluation of our Java
prototype in Section 4. The paper is concluded in a final section.

2 Non-locality of Axioms

In this paper, we consider ontologies formulated in the expressive description
logic SROIQ [8] which underlies the Web Ontology Language OWL 2.2 For the
evaluation, we consider prominent biomedical ontologies that are formulated in
the light-weight description logic EL++ [2] which is at the core of the OWL 2 EL
profile.3 For a detailed introduction to description logics, we refer to [3].

A module M of an ontology O wrt. a signature Σ is a subset of O that
preserves all entailments formulated using symbols from Σ only. More formally,
M⊆ O is a module of O wrt. Σ if for all axioms α with sig(α) ⊆ Σ: M |= α iff
O |= α, where sig(α) denotes the signature of α. The notion of syntactic locality
has been suggested as a practical approach to computing approximations of
minimal modules in polynomial time [7]. Syntactic locality for a signature Σ
defines a set of axioms that are syntactically local wrt. Σ. We consider the
syntactic locality-based notions ⊥-locality and >-locality, and we do not consider
any semantic locality notion. An axiom α is local wrt. Σ if α is equivalent to a
tautology after all symbols in α that are not in Σ have been replaced by either
> or ⊥, respectively. Intuitively, α is local wrt. Σ if it does not state anything

1 http://bioportal.bioontology.org/
2 http://www.w3.org/TR/owl2-overview/
3 http://www.w3.org/TR/owl2-profiles/#OWL_2_EL



about the symbols in Σ. An ontology can safely be extended with α or it can
safely import α, where ‘safe’ means not changing the meaning of terms in Σ. We
denote with Mod xO(Σ), for x ∈ {⊥,>}, the x-local module of ontology O wrt.
the signature Σ consisting of axioms that are not x-local wrt. Σ.

We can check for the state of syntactic non-locality of an axiom in terms of
signature containment. To this end, we introduce the notion of minimal non-
locality signature for SROIQ axioms.

Definition 1. Let α be an axiom, and let x ∈ {⊥,>} denote a locality notion.
A Minimal non-x-Locality Signature for an axiom α is a signature Σ ⊆ sig(α)
such that α is not x-local wrt. Σ, and Σ is minimal (wrt. set inclusion) with
this property. The set of minimal non-x-locality signatures of α is denoted by
MLS x(α). a

The notion of minimal non-locality signature turns out to be equivalent to the
notion of minimal globalising signatures, which where introduced specifically for
computing modules from an atomic decomposition [4].

The following example shows that there can be exponentially many minimal
non-locality signatures for axioms formulated in a simple concept description
language using merely conjunction and disjunction as operators.

Example 1. Let α = (X11tX12t· · ·tX1m)u· · ·u (Xn1tXn2t· · ·tXnm) v Y
be an axiom. The minimal non-⊥-locality signature MLS⊥(α) of α is as follows:

MLS⊥(α) = {{X1i1 , X2i2 , . . . , Xnin} | i1, i2, . . . , in ∈ {1, ...,m}}

Then: |MLS⊥(α)| = mn. �

However, exponentially many minimal non-locality signatures can be avoided
if the axiom is normalised. An ontology O is normalised by applying the nor-
malisation rules presented in [10], which are an extension of the normalisa-
tion for EL in [12]. Axioms of a normalised ontology have one of the follow-
ing forms, where Ai ∈ NC ∪ {>}, Bi ∈ NC ∪ {⊥}, Ri ∈ NR ∪ inv(NR), X,Y ∈
{∃R.B, (≥nR.B),∃R.Self | B ∈ NC, R ∈ NR ∪ inv(NR), n ≥ 0} and `,m ≥ 0:

α1 : A1 u . . . uA` v B1 t . . . tBm α5 : X v Y
α2 : X v B1 t . . . tBm α6 : R1 v R2

α3 : A1 u . . . uA` v Y α7 : Dis(R1, R2)
α4 : R1 ◦ . . . ◦R` v R`+1

where NC, NR are mutually disjoint sets of concept names and role names, inv(NR)
is the set of inverse roles r−, for r ∈ NR, and ∃R.Self expresses the local re-
flexivity of R. The normalisation of O runs in linear time in the size of O. The
normalised ontology is a conservative extension of O wrt. sig(O) [10].4

The following proposition can readily be seen.

4 The normalisation in [10] can straightforwardly be extended to SROIQ-ontologies.
Then a normalised axiom can be of the forms as described, where Ai and Bi addi-
tionally range over nominals. However, nominals are not contained in any minimal
non-locality signature of a normalised axiom.



Proposition 1. Let α be a normalised axiom. Then: |MLS⊥(α)| = 1 and
|MLS>(α)| ≤ 2. a

We can apply additional normalisation rules to reduce the number of symbols
on the left- and right-hand side of normalised axioms. Bounding the number of
symbols in an axiom results in bounding the size of the minimal non-locality
signatures of the axiom.

We now give simple conditions under which normalised axioms are not syn-
tactic local. Similar non-locality conditions are presented in the notions of ⊥-
and >-reachability in [10].

Proposition 2 (Non-locality via Signature Containment). Let α be a
normalised axiom. Let Σ be a signature. Then: α is not ⊥-local wrt. Σ iff one
of the following holds:

– sig(LHS(α)) ⊆ Σ if α is of the form α1, α2, α3, α4, α5, α6;
– sig(α) ⊆ Σ if α is of the form α7;

Then: α is not >-local wrt. Σ iff α is of the form α7 or one of the following
holds:

– sig(RHS(α)) ∩Σ 6= ∅ if α is of the form α3, α4, α5, α6;
– sig(RHS(α)) ⊆ Σ if α is of the form α1, α2. a

3 Axiom Dependency Hypergraph

A directed hypergraph [6] is a tuple H = (V, E), where V is a non-empty set
of nodes (vertices), and E is a set of hyperedges (hyperarcs). A hyperedge e is
a pair (T (e), H(e)), where T (e) and H(e) are non-empty disjoint subsets of V.
H(e) (T (e)) is known as the head (tail) and represents a set of nodes where
the hyperedge ends (starts). A B-hyperedge is a directed hyperedge with only
one node in the head. Directed Hypergraphs with only B-hyperedges are called
Directed B-hypergraphs. This is the only type of hypergraphs that we consider
in this paper.

A node v is B-connected (or forward reachable) from a set of nodes V ′ (writ-
ten V ′ ≥B v) if (i) v ∈ V ′, or (ii) there is a B-hyperedge e such that v ∈ H(e)
and all tail nodes in T (e) are B-connected from V ′. For a set of nodes V ′ ⊆ V,
we denote with ≥B(V ′) the set ≥B(V ′) = {v ∈ V | V ′ ≥B v} of B-connected
nodes from V ′.

In a directed hypergraph H, two nodes v1 and v2 are strongly B-connected if
v2 is B-connected to v1 and vice versa. In other words, both nodes, v1 and v2,
are mutually reachable. A strongly B-connected component (SCC) is the set of
all nodes from H which are all mutually reachable [1]. We allow an SCC to be a
singleton set as the reachability relation is reflexive, i.e., any axiom is mutually
reachable from itself.

Directed B-hypergraphs can be used to explicitly represent the locality-based
dependencies between axioms. Axiom dependency hypergraphs for ontologies wrt.
the locality-based modularity notions are defined as follows. We use sig(S) to
denote the signature of a set S of axioms.



Definition 2 (Axiom Dependency Hypergraph). Let O be an ontology.
Let x ∈ {⊥,>} denote a locality notion. The Axiom Dependency Hypergraph
HxO for O wrt. x-locality (x-ADH) is defined as the directed B-hypergraph HxO =
(Vx, Ex), where

– Vx = O; and
– e = (T (e), H(e)) ∈ Ex iff T (e) ⊆ Vx and H(e) = {β}, for some β ∈ Vx,

such that:
(i) β /∈ T (e), and

(ii) β is not x-local wrt. sig(T (e)). a

The nodes of the axiom dependency hypergraph are the axioms in the on-
tology. Hyperedges are directed and they connect possibly many tail nodes with
one head node. Note that a head node of a hyperedge is not allowed to occur in
its tail. Intuitively, the tail nodes of an hyperedge e correspond to axioms that
provide the signature symbols wrt. which the axiom represented by the head
node of e is non-local. We can think of walking along hyperedges to access B-
connected nodes as part of the process of how the module extraction algorithm
computes a module by successively including axioms into the module.

The notion of ADH for ontologies depends on the notion of syntactic locality.
Using Prop. 2, we can equivalently define this notion using minimal non-locality
signatures by replacing Item (ii) of Def. 2 with:

(iib) Σ ⊆ sig(T (e)), for some Σ ∈ MLS x(β).

An ADH HO contains all locality-based dependencies between different ax-
ioms of the ontology O. These dependencies are represented by the hyperedges
in HO. Note that HO contains exponentially many hyperedges, many of which
can be considered redundant in the following sense.

Definition 3. A hyperedge e in a directed B-hypergraph H is called redundant
if there is a hyperedge e′ in H such that H(e) = H(e′) and T (e′) ( T (e). a

A compact version of a directed B-hypergraphH is obtained fromH by removing
all redundant hyperedges while the B-connectivity relation between axioms is
preserved. In the remainder of the paper, we consider ADHs that are compact.
Notice that compact ADHs are unique and they may still contain exponentially
many hyperedges. The number of hyperedges can be reduced to polynomially
many by first normalising the ontology as discussed in Section 2. In the following,
we characterise modules and atoms together with their dependencies in terms of
ADHs for which B-reachability is crucial.

3.1 Locality-based modules in an ADH

B-connectivity in an ADH can be used to specify locality-based modules in
the corresponding ontology. A locality-based module of an ontology O for the
signature of an axiom α (or a subset of axioms O′ ⊆ O) corresponds to the
B-connected component in the ADH for O from α (or O′) [9].



Proposition 3. Let O be an ontology, O′ ⊆ O and Σ = sig(O′). Let ≥B
be the B-connectivity relation of the x-ADH for O, where x ∈ {⊥,>}. Then:
Mod xO(Σ) = ≥B(O′). a

However, ADHs do not contain sufficient information for computing a module
for an arbitrary signature as the following simple example shows.

Example 2. Let O = {α1 = A v C,α2 = C u B v D,α3 = D v A} and
Σ = {A,B}. We have that Mod⊥O(Σ) = {α1, α2, α3}. The ⊥-ADH for O contains
no hyperedge e with H(e) = {α2} and, consequently, α2 cannot be reached via
a hyperedge. �

The problem can be solved by incorporating the signature Σ into the ADH.
The Σ-extension HxO,Σ of an x-ADH HxO for an ontology O wrt. x-locality,
x ∈ {⊥,>}, is defined as the ADH according Def. 2 but with Item (ii) replaced
with:

(iii) β is not x-local wrt. Σ ∪ sig(T (e)).

Intuitively, no symbol in Σ contributes to the dependencies between axioms.
Consequently, less axioms in the tail are needed to provide the signature for non-
locality of β. Note that hyperedges that are non-redundant in the original ADH
may become redundant in the Σ-extended ADH. The remaining hyperedges
represent the dependencies between axioms modulo Σ.

Example 3. Let O and Σ as in Ex. 2. The Σ-extension of ⊥-ADH for O contains
the edge e = {{α1}, {α2}}. Hence, α2 can be reached via the hyperedge e. Axiom
α1 is the only axiom that is not-⊥ local wrt. Σ. The B-connected nodes from
α1 are the axioms in Mod⊥O(Σ). �

Given the Σ-extension of an ADH for an ontology, B-connectivity can be
used to determine the axioms that are not local wrt. to Σ and to compute the
corresponding locality-based module.

Proposition 4. Let O be an ontology, Σ a signature and x ∈ {⊥,>}. Let OxΣ be
the set of axioms from O that are not x-local wrt. Σ. Let ≥B be the B-connectivity
relation of the Σ-extension of the x-ADH for O. Then: Mod xO(Σ) = ≥B(OxΣ). a

3.2 ADH Atomic Decomposition

Atoms represent sets of highly related axioms in the sense that they always co-
occur in modules [5]. We denote with AtomsxO the set of all atoms of O wrt.
x-locality modules, for x ∈ {⊥,>}. The atoms of an ontology partition the set of
its axioms (i.e., every axiom occurs in exactly one atom). A dependency relation
between atoms can be established: an atom a2 depends on an atom a1 in an
ontology O (written a1 <O a2) if a2 occurs in every module of O containing
a1. The binary relation <O is a partial order. For a given ontology, the poset
〈AtomsxO,<O〉 was introduced as Atomic Decomposition (AD) and it represents
the modular structure of the ontology [5].



In the previous section, we have established that locality-based modules of
an ontology O correspond to sets of B-connected nodes in the axiom depen-
dency hypergraph for O. An atom of O consists of axioms α that share the same
modules wrt. the signature of α. It holds that for every x-local atom a ⊆ O with
x ∈ {⊥,>}: α, β ∈ a if, and only if, Mod xO(sig(α)) = Mod xO(sig(β)) [5]. Together
with Proposition 3, we can now characterise the notion of an atom with a corre-
sponding notion in axiom dependency hypergraphs. We have that two nodes in
an ADH represent axioms that are contained in the same atom if, and only if,
the nodes agree on the set of nodes that are B-connected from them. Formally:
α, β ∈ a if, and only if, ≥B(α) = ≥B(β), where ≥B be the B-connectivity rela-
tion of the ADH HO for O. It follows that all axioms of an atom are mutually
B-connected in HO. Axioms that are mutually B-connected constitute strongly
B-connected components of HO. Consequently, the set of atoms for an ontol-
ogy O corresponds to the set of strongly B-connected components in the axiom
dependency hypergraph for O. Let SCCs(HxO) be the set of strongly connected
components of the hypergraph HxO, where x ∈ {⊥,>}.

Proposition 5. Let O be an ontology and let x ∈ {⊥,>} denote a locality no-
tion. Then: Atoms xO = SCCs(HxO). a

The condensed ADH is formed by collapsing the strongly B-connected com-
ponents into single nodes and turning hyperedges between axioms into hyper-
edges between sets of axioms. The condensed ADH corresponds to the quotient
hypergraph HO/'B

of HO under the mutual B-connectivity relation 'B in HO.
The 'B-equivalence classes are the strongly B-connected components of HO.
The partition of a hypergraph under an equivalence relation is defined as fol-
lows.

Definition 4 (Quotient Hypergraph). Let H = (V, E) be a hypergraph. Let
' be an equivalence relation over V. The quotient of H under ', written H/',
is the graph H/' = (V/', E'), where

– V/' = {[x]' | x ∈ V}; and
– e = (T (e), H(e)) ∈ E' iff there is an e′ ∈ E such that T (e) = {[x]' | x ∈
T (e′)}, H(e) = {[x]' | x ∈ H(e′)} and T (e) ∩H(e) = ∅. a

We can now define the notion of a condensed ADH as the partition of the
ADH under the mutual B-reachability relation.

Definition 5 (Condensed Axiom Dependency Hypergraph). Let HxO =
(Vx, Ex) be the x-ADH for an ontology O, where x ∈ {⊥,>}. Let 'B be the
mutual B-connectivity relation in HxO. The condensed axiom dependency hy-
pergraph for O wrt. x-locality (x-cADH) is defined as the quotient HxO/'B

of
HxO under 'B. a

The dependency relation <xO between x-local atoms of O, for x ∈ {⊥,>}, is
defined as follows [5]. For atoms a, b ∈ Atoms xO and axioms α ∈ a and β ∈ b:
a <xO b if, and only if, b ⊆ Mod xO(α) if, and only if, Mod xO(β) ⊆ Mod xO(α).



Proposition 6. Let O be an ontology with α, β ∈ O. Let a, b ∈ Atoms xO such
that α ∈ a and β ∈ b, where x ∈ {⊥,>}. Let ' be the mutual B-connectivity
relation in the x-ADH for O and ≥ the B-connectivity relation in the x-cADH
for O. Then: a <xO b iff [α]' ≥ [β]'. a

Example 4. Let O = {α1, ..., α5}, where α1 = A v B, α2 = B u C u D v E,
α3 = E v A uC uD, α4 = A v X, α5 = X v A. The ⊥-ADH H⊥O contains the
following hyperedges:

e1 = ({α1, α3}, {α2}) e2 = ({α1}, {α4}) e3 = ({α2}, {α3}) e4 = ({α3}, {α1})
e5 = ({α3}, {α4}) e6 = ({α4}, {α1}) e7 = ({α4}, {α5}) e8 = ({α5}, {α1})
e9 = ({α5}, {α4})

We obtain the following ⊥-local modules for the axioms:

Mod⊥O(α1) = Mod⊥O(α4) = Mod⊥O(α5) = {α1, α4, α5}
Mod⊥O(α2) = Mod⊥O(α3) = {α1, α2, α3, α4, α5}

The resulting atoms in Atoms⊥O are a1 = {α2, α3} and a2 = {α1, α4, α5},
where a1 < a2, i.e. a2 depends on a1. The ADH H⊥O with the SCCs and the
condensed ADH H⊥O/'B

is depicted in Figure 1.
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Fig. 1. Example 4: From the ⊥-ADH to the condensed ⊥-ADH

The strongly connected components ofH⊥O are SCC1 = {α2, α3} and SCC2 =
{α1, α4, α5}. Moreover, SCC2 depends on SCC1 as any axiom in SCC2 is B-
connected from any axiom in SCC1. Note that the atoms a1 and a2 of O and
their dependency coincide with the strongly connected components of H⊥O. �

Analogously to the previous section, we can characterise modules in terms of
B-reachability in condensed axiom dependency hypergraphs. Proposition 3 can
be lifted to cADHs as follows.



Proposition 7. Let O be an ontology, O′ ⊆ O and Σ = sig(O′). Let ' be the
mutual B-connectivity relation of the x-ADH for O and ≥B the B-connectivity
relation of the Σ-extension of the x-cADH for O, where x ∈ {⊥,>}. Then:
Mod xO(Σ) =

⋃
≥B({[α]' | α ∈ O′}). a

4 Implementation and Evaluation

For a collection of well-known biomedical ontologies from the NCBO Bioportal,
we observe that for many (if not all) axioms, the locality-based dependencies
to other axioms can be represented using only simple directed hyperedges (i.e.,
hyperedges with only one tail node) [9]. For instance, the ADH for ontologies
like CHEBI can be seen as a directed graph without complex hyperedges (i.e.,
hyperedges with more than one tail node). Computing strongly connected com-
ponents in a graph can be done in linear-time using standard algorithms from
graph theory [11, 13]. That is, for ontologies like CHEBI we compute the strongly
connected components of the respective ADH in linear time.

For ADHs of ontologies O like SNOMED CT that contain both, simple and
complex hyperedges, we compute the strongly connected components in four
steps. First, we build the axiom dependency graph GO, which is the fragment
of the ADH HO for O without complex hyperedges. Second, we compute the
strongly connected components of GO using a linear-time algorithm [11, 13]. Note
that the strongly connected components give rise to an equivalence relation 'GO
on the nodes in GO. In the third step, we reduce HO by computing the quotient
graph HO/'GO

of HO using 'GO (cf. Def. 4). Finally, in step four, we obtain
the strongly connected components of HO by determining for any two nodes
in HO/'GO

whether they are mutually reachable. Note that computing mutual
reachability this way is a quadratic process. However, using HO/'GO

instead of
HO it is usually more efficient as the number of nodes is typically reduced.

The number of hyperedges may be exponential in the size of the ontology,
which makes it impractical to represent the entire ADH explicitly. We implement
an ADH H = (V, E) as a directed labelled graph GH = (V, E ′,L) containing
the simple hyperedges of H and encoding the complex hyperedges in the node
labels as follows. A node vα in GH for an axiom α is labelled with the pair
L(vα) = (MLS⊥(α), sig(α)) consisting of the minimal non-⊥-locality signatures
of α and the signature of α. Reachable nodes in GH can be computed by walking
along the edges in E ′ and via signature containment checks. Condensed ADHs
are implemented in a similar way with the difference that nodes represent sets
of axioms. For a set S of axioms, we set MLS⊥(S) =

⋃
α∈SMLS⊥(α). We note

that when computing modules for an arbitrary signature Σ using GH, it is not
necessary to compute the Σ-extension of GH (cf. Prop. 4 and 7). Reachable nodes
in the Σ-extension of GH can be computed via a modified signature containment
check that accounts for Σ using the node labels in GH.

We have implemented a Java prototype that computes the atomic decomposi-
tion and locality-based modules of several prominent biomedical ontologies. The
implementation takes an EL++-ontology as an input and computes the atomic



decomposition wrt. ⊥-locality, and the ⊥-local module of an arbitrary input
signature. The current version of our prototype does not normalize the input
ontology. For the evaluation of our prototype, we have selected nine well-known
biomedical ontologies that are available (with the exception of Snomed CT)
in the NCBO Bioportal and in the ORE 2013 repository.5 We divide the on-
tologies into two groups. The first group of six ontologies only contains axioms
whose dependencies wrt. ⊥-locality can be represented using simple hyperedges,
whereas the second group of three ontologies requires both, simple and complex
hyperedges.

We compare the performance of our prototype against the performance of
two systems for computing the atomic decomposition of OWL2 ontologies which
implement the same algorithm [14]: FaCT++ v1.6.2 which is implemented in
C++ [14]6 and OWLAPITOOLS v1.0.0 which is implemented in Java [15]7 as
an extension of the OWLAPI.8 All experiments were conducted on an Intel
Xeon E5-2640 2.50GHz with 100GB RAM running Debian GNU/Linux 7.3. We
use Java 1.7.0 51 and the OWLAPI version 3.4.8. The following table lists the
results, where each time is the average of 10 executions.

Ontology O Properties of O AD time for O
|sig(O)| #axioms #axioms #role FaCT++ OWLAPI ADH

A v C C ≡ D axioms TOOLS

CHEBI 37 891 85 342 0 5 137 s 1 619 s 4 s
FMA-lite 75 168 119 558 0 3 18 481 s 13 258 s 17 s
Gazetteer 517 039 652 355 0 6 31 595 s – 24 s
GO 36 945 72 667 0 2 47 s 1 489 s 4 s
NCBI 847 796 847 755 0 0 49 228 s – 66 s
RH-Mesh 286 382 403 210 0 0 6 921 s 9 159 s 17 s

CPO 136 090 306 111 73 461 96 9 731 s 26 480 s 2 283 s
Full-Galen 24 088 25 563 9 968 2 165 640 s 781 s 115 s
Snomed CT 291 207 227 698 63 446 12 16 081 s 57 282 s 2 540 s

We applied a timeout of 24h, which aborted the executions of the OWLAPI-
TOOLS on the ontologies Gazetteer and NCBI.

Our prototype consistently outperforms FaCT++ which in turn (consider-
ably) outperforms the OWLAPITOOLS, with the exception of FMA-lite. In the
case of the first group of six ontologies, an over 1 000-fold speedup could be
achieved compared to the performance of FaCT++ on FMA-lite and Gazetteer.
For the smallest ontology in this group, which is GO, the prototype is 13 times
faster than FaCT++. The prototype also scales better than the other systems.
For the second group of three ontologies, the speedup is reduced but our proto-
type is still 4–7 times faster than FaCT++, and 11–23 faster than the OWLAPI-
TOOLS. Collapsing the strongly connected components of the graph fragment of

5 http://ore2013.cs.manchester.ac.uk/
6 http://code.google.com/p/factplusplus/
7 http://owlapitools.sourceforge.net/
8 http://owlapi.sourceforge.net/



the ADH helps reducing the number of nodes by nearly 50% in some cases. The
use of a tree datastructure to represent the set of reachable nodes computed for
each node of the ADH reduces the time needed to identify mutually reachable
nodes.

We also compare the performance of our prototype for extracting ⊥-locality
modules with the performance of FaCT++ and the OWLAPI. The following
table presents for every implementation the time needed to extract a module
from an ontology for a signature consisting of 500 symbols selected at random.

Ontology O Time to compute Mod⊥O(Σ) Speedup wrt.
FaCT++ OWLAPI cADH FaCT++ OWLAPI

CHEBI 38.6 ms 175.8 ms 2.1 ms 18.4 83.7
FMA-lite 326.9 ms 1 042.3 ms 3.4 ms 96.1 306.6
Gazetteer 177.9 ms 1 503.0 ms 15.9 ms 11.2 94.5
GO 512.2 ms 1 398.7 ms 6.1 ms 84.0 229.3
NCBI 236.2 ms 9 193.6 ms 16.3 ms 14.5 564.0
RH-Mesh 91.2 ms 1 811.3 ms 8.9 ms 10.2 203.5

CPO 564.7 ms 3 026.8 ms 51.6 ms 10.9 58.7
Full-Galen 75.2 ms 215.4 ms 2.9 ms 25.9 74.3
SNOMED CT 525.0 ms 2 841.3 ms 84.4 ms 6.2 33.7

Our prototype outperforms FaCT++ and the OWLAPI in all cases. For the
first group of six ontologies, the best speedup of over 95 times wrt. FaCT++
was achieved in the case of FMA-lite. For the second group of three ontologies,
the best performance improvement was realised in the case of Full-Galen with a
speedup of over 25-times. The speedup wrt. the OWLAPI is even higher.

5 Conclusion

We have introduced the notion of an axiom dependency hypergraph that repre-
sents explicitly the locality-based dependencies between axioms. We have shown
that locality-based modules of an ontology correspond to a set of connected
nodes in the hypergraph, and atoms of an ontology to strongly connected com-
ponents. We have implemented a prototype in Java that computes, based on
axiom dependency hypergraphs, the atomic decomposition of EL++-ontologies
wrt. ⊥-locality. Our prototype outperforms FaCT++ and the OWLAPITOOLS
in computing the atomic decomposition of all biomedical ontologies tested. In
some cases a staggering speedup of over 1 000 times could be realised. Moreover,
our prototype outperforms FaCT++ and the OWLAPI in extracting syntactic
⊥-locality modules. Here a speedup of over 95 times could be realised.

We plan to extend the prototype implementation to support both >-locality
and full SROIQ-ontologies. Moreover, it would be interesting to investigate the
possibility of computing strongly connected components in hypergraphs in less
than quadratic time. Such a result would improve the performance of computing
mutual reachability in the axiom dependency hypergraph for ontologies whose
locality-based dependencies can only be represented by complex hyperedges.
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