
Fast Modularisation and Atomic Decomposition
of Ontologies using

Axiom Dependency Hypergraphs

Francisco Mart́ın-Recuerda1 and Dirk Walther2

1 Universidad Politécnica de Madrid, Spain
fmartinrecuerda@fi.upm.es

2 TU Dresden, Theoretical Computer Science
Center for Advancing Electronics Dresden, Germany

Dirk.Walther@tu-dresden.de

Abstract. In this paper we define the notion of an axiom dependency
hypergraph, which explicitly represents how axioms are included into
a module by the algorithm for computing locality-based modules. A
locality-based module of an ontology corresponds to a set of connected
nodes in the hypergraph, and atoms of an ontology to strongly connected
components. Collapsing the strongly connected components into single
nodes yields a condensed hypergraph that comprises a representation of
the atomic decomposition of the ontology. To speed up the condensation
of the hypergraph, we first reduce its size by collapsing the strongly con-
nected components of its graph fragment employing a linear time graph
algorithm. This approach helps to significantly reduce the time needed
for computing the atomic decomposition of an ontology. We provide an
experimental evaluation for computing the atomic decomposition of large
biomedical ontologies. We also demonstrate a significant improvement in
the time needed to extract locality-based modules from an axiom depen-
dency hypergraph and its condensed version.

1 Introduction

A module is a subset of an ontology that includes all the axioms required to
define a set of terms and the relationships between them. Computing minimal
modules is very expensive (or even impossible) and cheap approximations have
been developed based on the notion of locality [7]. Module extraction facilitates
the reuse of existing ontologies. Moreover, some meta-reasoning systems such as
MORe1 and Chainsaw2 also exploit module extraction techniques for improving
the performance of some reasoning tasks.

The number of all possible modules of an ontology can be exponential wrt.
the number of terms or axioms of the ontology [7]. Atomic decomposition was

Partially supported by the German Research Foundation (DFG) via the Cluster of
Excellence ‘Center for Advancing Electronics Dresden’.

1 http://www.cs.ox.ac.uk/isg/tools/MORe/
2 http://sourceforge.net/projects/chainsaw/

2

introduced as a succinct representation of all possible modules of an ontology [5].
Tractable algorithms for computing the atomic decomposition for locality-based
modules have been defined [5], and subsequently improved further [14]. Moreover,
it has been suggested that the atomic decomposition of an ontology can help to
improve the performance of the locality-based module extraction algorithm [4].

In this paper we introduce the notion of an axiom dependency hypergraph
(ADH) for OWL ontologies, which explicitly represents how axioms are included
into a module by the locality-based module extraction algorithm [7]. This algo-
rithm first identifies the axioms that are non-local wrt. a given signature Σ,
and then it extends Σ with the symbols of the axioms selected. In this fashion,
the algorithm iteratively includes in the module more axioms of the ontology
that become non-local wrt. to the extended signature until no more axioms are
added. The hyperedges of an ADH indicate which axioms become non-local wrt.
a signature after one or more axioms of the ontology have been included in the
module [9]. Unlike other hypergraph representations of ontologies [12, 10], the
relationship between atoms of an ontology and the strongly connected compo-
nents (SCCs) of the ADH becomes apparent. This allows us to employ standard
algorithms from graph theory to compute atoms and locality-based modules.

To speed up the computation of SCCs in a directed hypergraph, we first
compute the SCCs of its graph fragment (only directed edges are considered),
and subsequently we collapse them into a single nodes. Note that in directed
graphs, the SCCs can be computed in linear time wrt. the size of the graph [13],
whereas in directed hypergraphs, this process is at least quadratic [1]. In this
way, we manage to reduce the size of the original hypergraph significantly, in
some cases, which then reduces the time needed for computing the SCCs in the
hypergraph. The result of computing and collapsing all SCCs of an axiom depen-
dency hypergraph yields its condensed version, a condensed axiom dependency
hypergraph. The graph fragment of this hypergraph corresponds to the atomic
decomposition of the ontology as introduced in [5]. From the condensed axiom
dependency hypergraph, it is also possible to compute locality-based modules
using an adapted version of the modularization algorithm discussed in [7]. In
this case, a module correspond to a connected component in the hypergraph.

We implemented our method in a Java prototype named HyS. We compared
our prototype against state-of-the-art implementations for computing locality-
based modules and atomic decomposition [14, 15]. We confirm a significant im-
provement in running time for a selection of large biomedical ontologies from
the NCBO Bioportal.3

The paper is organised as follows. In Section 2 we present relevant notions
on syntactic locality, atomic decomposition, and hypergraphs. In Section 3 we
introduce the notion of axiom dependency hypergraphs, and we use this notion to
characterise locality-based modules and the atomic decomposition of any OWL
ontology. We explain implementation details of HyS in Section 4, and we report
on the result of the evaluation of our Java prototype in Section 5. We conclude
this paper in a final section.

3 http://bioportal.bioontology.org/

3

2 Preliminaries

We consider ontologies formulated in the expressive description logic SROIQ [8]
which underlies the Web Ontology Language OWL 2.4 For the evaluation of our
algorithms for computing modules and the atomic decomposition as introduced
in this paper, we consider prominent biomedical ontologies formulated in the
light-weight description logic EL++ [2], which is at the core of the OWL 2 EL
profile.5 We refer to [3] for a detailed introduction to description logics.

2.1 Syntactic Locality-based Modules

For an ontology O and a signature Σ, a moduleM is a subset of O that preserves
all entailments formulated using symbols from Σ only. A signature Σ is a finite
set of symbols, and we denote with sig(X) the signature of X, where X ranges
over any syntactic object.

Definition 1 (Module). M ⊆ O is a module of O wrt. a signature Σ if for
all entailments α with sig(α) ⊆ Σ: M |= α iff O |= α. a

Computing a minimal module is hard (or even impossible) for expressive
fragments of OWL 2. The notion of syntactic locality was introduced to allow
for efficient computation of approximations of minimal modules [7]. Intuitively,
an axiom α is local wrt. Σ if it does not state anything about the symbols
in Σ. In this case, an ontology can safely be extended with α, or it can safely
import α, where ‘safe’ means not changing the meaning of terms in Σ. A locality-
based module wrt. Σ of an ontology consists of the axioms that are non-local
wrt. Σ and the axioms that become non-local wrt. Σ extended with the symbols
in other non-local axioms. Typically the notions ⊥-locality and >-locality are
considered [7]. We denote with Mod xO(Σ) the x-local module of an ontology O
wrt. Σ, where x ∈ {⊥,>}.

Checking for syntactic locality involves checking that an axiom is of a certain
form (syntax), no reasoning is needed, and it can be done in polynomial time [7].
However, the state of non-locality of an axiom can also be checked in terms of
signature containment [12]. To this end, we introduce the notion of minimal
non-locality signature for SROIQ axioms.

Definition 2 (Minimal non-Locality Signature). Let x ∈ {⊥,>} denote a
locality notion. A Minimal non-x-Locality Signature for an axiom α is a sig-
nature Σ ⊆ sig(α) such that α is not x-local wrt. Σ, and Σ is minimal (wrt.
set inclusion) with this property. The set of minimal non-x-locality signatures is
denoted by MLS x(α). a

The notion of minimal non-locality signature turns out to be equivalent to the
notion of minimal globalising signatures, which were introduced specifically for
computing modules from an atomic decomposition [4].

4 http://www.w3.org/TR/owl2-overview/
5 http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

4

The following example shows that there can be exponentially many minimal
non-locality signatures for an axiom using merely conjunction and disjunction
as logical operators.

Example 1. Let α = (X11tX12t· · ·tX1m)u· · ·u (Xn1tXn2t· · ·tXnm) v Y
be an axiom. The minimal non-⊥-locality signature MLS(α) of α is as follows:

MLS⊥(α) = {{X1i1 , X2i2 , . . . , Xnin} |
i1, i2, . . . , in ∈ {1, ...,m}}

Then: |MLS⊥(α)| = mn. �

However, exponentially many minimal non-locality signatures can be avoided
if the axiom is normalised. An ontology O (that is formulated in the description
logic SRIQ) is normalised by applying the normalisation rules presented in [10],
which are an extension of the normalisation for EL ontologies [12]. Axioms of
a normalised ontology have one of the following forms, where Ai ∈ NC ∪ {>},
Bi ∈ NC ∪ {⊥}, Ri ∈ NR ∪ inv(NR), X,Y ∈ {∃R.B, (≥nR.B),∃R.Self | B ∈
NC, R ∈ NR ∪ inv(NR), n ≥ 0} and `,m ≥ 0:

α1 : A1 u . . . uA` v B1 t . . . tBm α5 : X v Y
α2 : X v B1 t . . . tBm α6 : R1 v R2

α3 : A1 u . . . uA` v Y α7 : Dis(R1, R2)
α4 : R1 ◦ . . . ◦R` v R`+1

where inv(NR) is the set of inverse roles r−, for r ∈ NR, and ∃R.Self expresses
the local reflexivity of R. The normalisation of an ontology O runs in linear time
in the size of O. The normalised ontology preserves Σ-entailments of O [10].6

Notice that the normalisation rules can be applied backwards over normalised
axioms to compute the original axioms of the ontology. However, denormalisation
requires a careful application of the normalisation rules to ensure that we obtain
the original axioms.

There are at most two minimal non-locality signatures for a normalised ax-
iom.

Proposition 1. Let α be a normalised axiom. Then: |MLS⊥(α)| = 1 and
|MLS>(α)| ≤ 2. a

We can apply additional normalisation rules to reduce the number of symbols
on the left- and right-hand side of normalised axioms [9]. Bounding the number
of symbols in an axiom results in bounding the size of the minimal non-locality
signatures of the axiom.

We now give simple conditions under which normalised axioms are not syn-
tactic local. Similar non-locality conditions are presented in the notions of ⊥-
and >-reachability in [10].

6 The normalisation in [10] can straightforwardly be extended to SROIQ-ontologies.
Then a normalised axiom can be of the forms as described, where Ai and Bi addi-
tionally range over nominals. However, nominals are not contained in any minimal
non-locality signature of a normalised axiom.

5

Proposition 2 (Non-locality via Signature Containment). Let α be a
normalised axiom, and denote with LHS(α) and RHS(α) the left- and the right-
hand side of α, respectively. Let Σ be a signature. Then: α is not ⊥-local wrt. Σ
iff one of the following holds:

– sig(LHS(α)) ⊆ Σ if α is of the form α1, α2, α3, α4, α5, α6;
– sig(α) ⊆ Σ if α is of the form α7;

Then: α is not >-local wrt. Σ iff α is of the form α7 or one of the following
holds:

– sig(RHS(α)) ∩Σ 6= ∅ if α is of the form α3, α4, α5, α6;
– sig(RHS(α)) ⊆ Σ if α is of the form α1, α2. a

2.2 Atomic Decomposition

An atom is a set of highly related axioms of an ontology in the sense that they
always co-occur in modules [5].

Definition 3 (Atom). An atom a is a maximal set of axioms of an ontology
O such that for every module M of O either a ∩M = a or a ∩M = ∅. a

Consequently, we have that two axioms α and β are contained in an atom a
iff ModxO(sig(α)) = ModxO(sig(β)), where sig(α) (sig(β)) is the signature of the
axiom α (β). We denote with AtomsxO the set of all atoms of O wrt. syntactic x-
locality modules, for x ∈ {⊥,>}. The atoms of an ontology partition the ontology
into pairwise disjoint subsets. All axioms of the ontology are distributed over
atoms such that every axiom occurs in exactly one atom. A dependency relation
between atoms can be established as follows [5].

Definition 4 (Dependency relation between atoms). An atom a2 depends
on an atom a1 in an ontology O (written a1 <O a2) if a2 occurs in every module
of O containing a1. The binary relation <O is a partial order. a

In other words, an atom a2 depends on an atom a1 in an ontology O if the
module ModxO(sig(β)) is contained in the module ModxO(sig(α)), for some α, β
with α ∈ a1 and β ∈ a2. For a given ontology O, the poset 〈AtomsxO,<O〉
was introduced as the Atomic Decomposition (AD) of O, and it represents the
modular structure of the ontology [5].

2.3 Directed Hypergraphs

A directed hypergraph is a tuple H = (V, E), where V is a non-empty set of nodes
(vertices), and E is a set of hyperedges (hyperarcs) [6]. A hyperedge e is a pair
(T (e), H(e)), where T (e) and H(e) are non-empty disjoint subsets of V. H(e)
(T (e)) is known as the head (tail) and represents a set of nodes where the hyper-
edge ends (starts). A B-hyperedge is a directed hyperedge with only one node in
the head. We call a B-hyperedge e simple if |T (e)| = 1 (i.e., if e corresponds to a

6

directed edge); otherwise, if |T (e)| > 1, e is called complex. Directed hypergraphs
containing B-hyperedges only are called directed B-hypergraphs; these are the
only type of hypergraphs considered in this paper.

A node v is B-connected (or forward reachable) from a set of nodes V ′ (writ-
ten V ′ ≥B v) if (i) v ∈ V ′, or (ii) there is a B-hyperedge e such that v ∈ H(e)
and all tail nodes in T (e) are B-connected from V ′. For a set of nodes V ′ ⊆ V,
we denote with ≥B(V ′) the set ≥B(V ′) = {v ∈ V | V ′ ≥B v} of B-connected
nodes from V ′.

In a directed hypergraph H, two nodes v1 and v2 are strongly B-connected if
v2 is B-connected to v1 and vice versa. In other words, both nodes, v1 and v2, are
mutually reachable. A strongly B-connected component (SCC) is a set of nodes
from H that are all mutually reachable [1]. We allow an SCC to be a singleton set
since the reachability relation is reflexive, i.e., any axiom is mutually reachable
from itself.

3 Axiom Dependency Hypergraph

Directed B-hypergraphs can be used to explicitly represent the locality-based
dependencies between axioms. Axiom dependency hypergraphs for ontologies wrt.
the locality-based modularity notions are defined as follows.

Definition 5 (Axiom Dependency Hypergraph). Let O be an ontology.
Let x ∈ {⊥,>} denote a locality notion. The Axiom Dependency Hypergraph
HxO for O wrt. x-locality (x-ADH) is defined as the directed B-hypergraph HxO =
(Vx, Ex), where

– Vx = O; and
– e = (T (e), H(e)) ∈ Ex iff T (e) ⊆ Vx and H(e) = {β}, for some β ∈ Vx,

such that:
(i) β /∈ T (e), and

(ii) β is not x-local wrt. sig(T (e)). a

The nodes of the axiom dependency hypergraph are the axioms in the on-
tology. Hyperedges are directed and they might connect many tail nodes with
one head node. Note that a head node of a hyperedge is not allowed to occur in
its tail. Intuitively, the tail nodes of an hyperedge e correspond to axioms that
provide the signature symbols required by the axiom represented by the head
node of e to be non-local. We can think on reaching B-connected nodes as how
the module extraction algorithm computes a module by successively including
axioms into the module [9].

The notion of ADH for ontologies depends on the notion of syntactic locality.
Using Prop. 2, we can similarly define this notion using minimal non-locality
signatures by replacing Item (ii) of Def. 5 with:

(iib) Σ ⊆ sig(T (e)), for some Σ ∈ MLS(β).

An ADH HO contains all locality-based dependencies between different ax-
ioms of the ontology O. These dependencies are represented by the hyperedges in

7

HO. Note that HO may contain exponentially many hyperedges, many of which
can be considered redundant in the following sense.

Definition 6. A hyperedge e in a directed B-hypergraph H is called redundant
if there is a hyperedge e′ in H such that H(e) = H(e′) and T (e′) (T (e). a

A compact version of a directed B-hypergraphH is obtained fromH by removing
all redundant hyperedges while the B-connectivity relation between axioms is
preserved. In the remainder of the paper, we consider ADHs that are compact.
Notice that compact ADHs are unique and they may still contain exponentially
many hyperedges. The number of hyperedges can be reduced to polynomially
many by applying extra-normalisation rules that restrict the amount of signature
symbols in each side of the axiom up to 2 symbols.

Next, we characterise modules and atoms together with their dependencies
in terms of ADHs for which B-reachability is crucial.

3.1 Locality-based modules in an ADH

B-connectivity in an ADH can be used to specify locality-based modules in
the corresponding ontology. A locality-based module of an ontology O for the
signature of an axiom α (or a subset of axioms O′ ⊆ O) corresponds to the
B-connected component in the ADH for O from α (or O′) [9].

Proposition 3. Let O be an ontology, O′ ⊆ O and Σ = sig(O′). Let ≥B
be the B-connectivity relation of the x-ADH for O, where x ∈ {⊥,>}. Then:
Mod xO(Σ) = ≥B(O′). a

However, ADHs do not contain sufficient information for computing a module
for any signature as the following simple example shows.

Example 2. Let O = {α1 = A v C,α2 = C u B v D,α3 = D v A} and
Σ = {A,B}. We have that Mod⊥(Σ) = {α1, α2, α3}. The ⊥-ADH for O contains
no hyperedge e with H(e) = {α2} and, consequently, α2 cannot be reached via
a hyperedge. �

The problem can be solved by incorporating the signature Σ into the ADH.
The Σ-extension HxO,Σ of an x-ADH HxO for an ontology O wrt. x-locality,
x ∈ {⊥,>}, is defined as the ADH according to Def. 5 but with Item (ii) replaced
with:

(iii) β is not x-local wrt. Σ ∪ sig(T (e)).

Intuitively, no symbol in Σ contributes to the dependencies between axioms.
Consequently, less axioms in the tail are needed to provide the signature for
non-locality of β. Note that non-redundant hyperedges in the original ADH may
become redundant in the Σ-extended ADH. The remaining hyperedges represent
the dependencies between axioms modulo Σ.

Example 3. Let O and Σ as in Ex. 2. The Σ-extension of ⊥-ADH for O contains
the edge e = {{α1}, {α2}}. Hence, α2 can be reached via the hyperedge e. Axiom
α1 is the only axiom that is not-⊥ local wrt. Σ. The B-connected nodes from
α1 are the axioms in Mod⊥(Σ). �

8

Given the Σ-extension of an ADH for an ontology, B-connectivity can be
used to determine the axioms that are not local wrt. to Σ and to compute the
corresponding locality-based module.

Proposition 4. Let O be an ontology, Σ a signature and x ∈ {⊥,>}. Let OxΣ be
the set of axioms from O that are not x-local wrt. Σ. Let ≥B be the B-connectivity
relation of the Σ-extension of the x-ADH for O. Then: Mod xO(Σ) = ≥B(OxΣ). a

Proof. The algorithm for computing the locality-based module Mod xO(Σ) (see [9])
computes a sequence M0, ...,Mn such that M0 = ∅, Mi ⊆ Mi+1, for i ∈
{0, ..., n − 1}, and Mn = Mod xO(Σ). We show by induction on n > 0 that
M1 ≥B α, for every axiom α ∈Mn.

For the direction from right to left of the set inclusion, we show thatOxΣ ≥B β
implies β ∈ Mod xO(Σ) by induction on the maximal length n = distH(OxΣ , β) of
an acyclic hyperpath from an axiom α in OxΣ to β. a

3.2 ADH Atomic Decomposition

In the previous section, we have established that locality-based modules of an
ontology O correspond to sets of B-connected nodes in the axiom dependency
hypergraph for O. An atom of O consists of axioms α that share the same mod-
ules wrt. the signature of α. It holds that for every x-local atom a ⊆ O with
x ∈ {⊥,>}: α, β ∈ a if, and only if, Mod xO(sig(α)) = Mod xO(sig(β)) [5]. Together
with Proposition 3, we can now characterise the notion of an atom with a corre-
sponding notion in axiom dependency hypergraphs. We have that two nodes in
an ADH represent axioms that are contained in the same atom if, and only if,
the nodes agree on the set of nodes that are B-connected from them. Formally:
α, β ∈ a if, and only if, ≥B(α) = ≥B(β), where ≥B be the B-connectivity rela-
tion of the ADH HO for O. It follows that all axioms of an atom are mutually
B-connected in HO. Axioms that are mutually B-connected constitute strongly
B-connected components of HO. Consequently, the set of atoms for an ontol-
ogy O corresponds to the set of strongly B-connected components in the axiom
dependency hypergraph for O. Let SCCs(HxO) be the set of strongly connected
components of the hypergraph HxO, where x ∈ {⊥,>}.

Proposition 5. Let O be an ontology and let x ∈ {⊥,>} denote a locality no-
tion. Let HxO = (VxO, ExO) be the x-ADH for O. Then: Atoms xO = SCCs(HxO). a

The condensed ADH is formed by collapsing the strongly B-connected com-
ponents into single nodes and turning hyperedges between axioms into hyper-
edges between sets of axioms. The condensed ADH corresponds to the quotient
hypergraph HO/'B

of HO under the mutual B-connectivity relation 'B in HO.
The 'B-equivalence classes are the strongly B-connected components of HO.
The partition of a hypergraph under an equivalence relation is defined as fol-
lows.

9

Definition 7 (Quotient Hypergraph). Let H = (V, E) be a hypergraph. Let
' be an equivalence relation over V. The quotient of H under ', written H/',
is the graph H/' = (V/', E'), where

– V/' = {[x]' | x ∈ V}; and
– e = (T (e), H(e)) ∈ E' iff there is an e′ ∈ E such that T (e) = {[x]' | x ∈
T (e′)}, H(e) = {[x]' | x ∈ H(e′)} and T (e) ∩H(e) = ∅. a

We can now define the notion of a condensed ADH (cADH) as the partition
of the ADH under the mutual B-reachability relation. The cADH is formed by
collapsing the strongly B-connected components into single nodes and turning
hyperedges between axioms into hyperedges between the newly formed nodes.

Definition 8 (Condensed Axiom Dependency Hypergraph). Let HxO be
the x-ADH for an ontology O, where x ∈ {⊥,>}. Let 'B be the mutual B-
connectivity relation in HxO. The condensed axiom dependency hypergraph for
O wrt. x-locality (x-cADH) is defined as the quotient HxO/'B

of HxO under 'B.
a

Similarly, it is also possible to compute the partially condensed ADH (pcADH) of
an ADH. The idea is to identify and collapse the strongly connected components
of the graph fragment of the ADH (Axiom Dependency Graph) such that only
simple B-hyperedges are considered (|T (e)| = 1). The hyperedges of the ADH
are re-calculated to consider the newly formed nodes.

Definition 9 (Partially Condensed Axiom Dependency Hypergraph).
Let HxO = (VxO, ExO) be the x-ADH for an ontology O, where x ∈ {⊥,>}. Let
GHx
O

= (VHx
O
, EHx

O
) be a directed graph such that VHx

O
= VxO and EHx

O
=

{(T (e), H(e)) ∈ ExO | | T (e) |= 1}.
Let 'B be the mutual B-connectivity relation in GHx

O
. The partially con-

densed axiom dependency hypergraph for O wrt. x-locality (x-cADH) is defined
as the quotient HxO/'B

of HxO under 'B.
a

The dependency relation <xO between x-local atoms of O, for x ∈ {⊥,>}, is
defined as follows [5]. For atoms a, b ∈ Atoms xO and axioms α ∈ a and β ∈ b:
a <xO b if, and only if, b ⊆ Mod xO(α) if, and only if, Mod xO(β) ⊆ Mod xO(α).

Proposition 6. Let O be an ontology with α, β ∈ O. Let a, b ∈ Atoms xO such
that α ∈ a and β ∈ b, where x ∈ {⊥,>}. Let ' be the mutual B-connectivity
relation in the x-locality ADH H for O and ≥ the B-connectivity relation in the
x-cADH for O. Then: a <xO b iff [α]' ≥ [β]'. a

Example 4. Let O = {α1, ..., α5}, where α1 = A v B, α2 = B u C u D v E,
α3 = E v A uC uD, α4 = A v X, α5 = X v A. The ⊥-ADH H⊥O contains the
following hyperedges:

e1 = ({α1, α3}, {α2}) e2 = ({α1}, {α4}) e3 = ({α2}, {α3}) e4 = ({α3}, {α1})
e5 = ({α3}, {α4}) e6 = ({α4}, {α1}) e7 = ({α4}, {α5}) e8 = ({α5}, {α1})
e9 = ({α5}, {α4})

10

We obtain the following ⊥-local modules for the axioms:

Mod⊥O(α1) = {α1, α4, α5} Mod⊥O(α4) = {α1, α4, α5}
Mod⊥O(α2) = {α1, α2, α3, α4, α5} Mod⊥O(α5) = {α1, α4, α5}
Mod⊥O(α3) = {α1, α2, α3, α4, α5}

The resulting atoms in Atoms⊥O are a1 = {α2, α3} and a2 = {α1, α4, α5}, where
a1 < a2, i.e. a2 depends on a1. The ADH H⊥O with the SCCs and the condensed
ADH H⊥O/'B

is depicted in Figure 1.

α2

α3

α1

α4

α5

scc1

scc2

e2
e3 e4

e5

e6

e7

e8

e9

e1

SCC1 SCC2

(a) H⊥O

e10

(b) H⊥O/'B

Fig. 1. Example 4: From the ⊥-ADH to the condensed ⊥-ADH

Consider the strongly connected components ofH⊥O. Axiom α1 isB-connected
with the axioms α4 and α5, α4 is B-connected with α1 and α5, and α5 is B-
connected with α1 and α4. Axiom α2 is B-connected with α3 and vice versa.
Axioms α2, α3 are each B-connected with α1, α4 and α5, but not vice versa.
Hence, {α1, α4, α5} and {α2, α3} are the strongly connected components of H⊥O.
Moreover, we say that the former component depends on the latter as any two
axioms contained in them are unilaterally and not mutually B-connected. Note
that the atoms a1 and a2 of O and their dependency coincide with the strongly
connected components of H⊥O. �

Analogously to the previous section, we can characterise modules in terms of
B-reachability in condensed axiom dependency hypergraphs. Proposition 4 can
be lifted to cADHs as follows.

Proposition 7. Let O be an ontology, Σ a signature and x ∈ {⊥,>}. Let OxΣ
be the set of axioms from O that are not x-local wrt. Σ. Let ' be the mutual
B-connectivity relation of the x-ADH for O and ≥B the B-connectivity relation
of the Σ-extended x-cADH for O. Then: Mod xO(Σ) =

⋃
≥B({[α]' | α ∈ OxΣ}).

a

11

4 Implementation

The number of hyperedges of an ADH may be exponential in the size of the input
ontology [9], which makes it impractical to represent the entire ADH explicitly.
We implement an ADH H = (V, E) as a directed labelled graph GH = (V, E ′,L)
containing the simple hyperedges of H and encoding the complex hyperedges in
the node labels as follows. A node vα in G for an axiom α is labelled with the pair
L(vα) = (MLS x(α), sig(α)) consisting of the minimal non-x-locality signatures
of α and the signature of α, where x ∈ {⊥,>}. In fact, not all symbols of
sig(α) are needed in the second component, only those symbols that occur in the
minimal non-locality signature of some axiom in the ontology. Condensed axiom
dependency hypergraphs are implemented in a similar way with the difference
that nodes represent sets of axioms. A node vS for a set S of axioms is labelled
with the pair L(vS) = (MLS x(S), sig(S)), where MLS x(S) =

⋃
α∈SMLS x(α)

and sig(S) =
⋃
α∈S sig(α).

We introduce the notion of a graph representation of an axiom dependency
hypergraph that may be (partially) condensed.

Definition 10. Let H = (VH, EH) be an ADH, pcADH or cADH. Let x ∈ {⊥,>}
be a syntactic locality notion. The graph representation GH of H is the directed
labelled graph GH = (V, E ,L), where

– V := VH;
– E := {(v, v′) | Σv′ ⊆ sig(v), for some Σv′ ∈ MLS x(v′)};
– L(v) := (MLS x(v), sig(v)), for every v ∈ V. a

To define the graph representation GH of a hypergraph H, we assume that every
node v in H is associated with a set MLS x(v) of minimal non-locality signatures,
and a set sig(v) of signature symbols. Note that a node in H represents an axiom
if H is an ADH, and a set of axioms if H is a pcADH or a cADH.

4.1 Atomic Decomposition

For a collection of well-known biomedical ontologies from the NCBO Bioportal,
we observe that for many (if not all) axioms, the locality-based dependencies
to other axioms can be represented using only simple directed hyperedges. For
instance, the ADH for ontologies like CHEBI can be seen as a directed graph
without complex hyperedges. Computing strongly connected components in a
directed graph can be done in linear-time using standard algorithms from graph
theory [11, 13]. That is, for ontologies like CHEBI we compute the strongly
connected components of the respective ADH in linear time.

For ADHs of ontologies O like SNOMED CT that contain both, simple and
complex hyperedges, we compute the strongly connected components in four
steps. First, we build the axiom dependency graph GHx

O
, which is the fragment

of the ADH HxO for O without complex hyperedges. Second, we compute the
strongly connected components of GHx

O
using a linear-time algorithm [11, 13].

12

Note that the strongly connected components give rise to an equivalence rela-
tion 'BG on the nodes in GHx

O
. In the third step, we reduce the size of HxO by

computing the quotient graph HxO/'BG
of HxO using 'BG (cf. Def. 7). This cor-

responds to the computation of the pcADH, HxO/'BG
, for the ADH HxO. Finally,

in step four, we obtain the strongly connected components of HxO by determining
for any two nodes in HxO/'BG

whether they are mutually reachable. This last

step produces the cADH, HxO/'BH
, where 'BH is the mutual B-connectivity

relation in HxO/'BG
. Note that computing mutual reachability this way is a

quadratic process [1]. However, using HxO/'BG
instead of HxO it is usually more

efficient as the number of nodes is typically reduced.
The function compute condensed hypergraph(.) provides a more succinct de-

scription of the previous process.

function compute condensed hypergraph(G = (V, E ,L)) returns Gc
1: Gpc := collapse SCCs(G,Tarjan((V, E)))

2: if (contains complex Dependencies(Gpc) = false) then

3: return Gc := Gpc
4: end if

5: Gc := collapse SCCs(Gpc,mutual reach(Gpc))
6: return Gc

Given the graph representation G of an ADHHxO, the function compute condensed
hypergraph(G) computes the graph representation, denoted with Gc, of the cADH
ofHxO in two main steps. In the first step, the function computes the graph repre-
sentation of the pcADH, which we denote with Gpc (Line 1). Only simple directed
hyperedges (E) of G are considered. The strongly connected components are de-
termined in linear time using the Tarjan algorithm [13] (Line 2). The computa-
tion of the strongly connected components when complex directed hyperedges
are considered is done in Line 5. After the strongly connected components are
identified, the function collapse SCCs produces the graph representation Gc of
the cADH for HxO.

4.2 Module Extraction

Modules correspond to connected components in the axiom dependency hyper-
graph or its (partially) condensed version. We now present the algorithm for
computing the connected components in the graph representation of a directed
hypergraph that can encode an ADH, pcADH or cADH for the input ontology.

The function Mod x(G, Σ) computes all Σ-reachable nodes in the labelled
graph G and returns the axioms represented by these nodes. In Line 2, the
algorithm determines the set S1 of initial nodes in G. Every initial node S1
is associated with a minimal non-locality signature that is contained in Σ. In
Line 5, the set of nodes is determined that are reachable via simple B-hyperedges
that are explicitly given in E . Note that E(v) denotes the set of nodes that are
directly reachable in G from the node v using simple directed hyperedges.

13

function Mod x(GHx
O

= (V, E ,L), Σ) returns x-local module of O wrt. Σ
1: Σ0 := Σ, m := 1

2: S0 := ∅, S1 := {v ∈ V | Σv ⊆ Σ0 for some Σv ∈ MLS x(v)}
3: do

4: m := m+ 1

5: Sm :=
⋃
{ E(v) | v ∈ Sm−1\ Sm−2} ∪ Sm−1

6: Σm := (
⋃

s∈Sm\Sm−1
sig(s)) ∪Σm−1

7: Sm := Sm ∪ {v ∈ V | Σv ⊆ Σm for some Σv ∈ MLS x(v) with |Σv| > 1}
8: until Sm = Sm−1

9: return get axioms(Sm)

In Line 7, the input signature is extended with the symbols that are associated
to the nodes reached so far. Using the extended signature Σm, the function
Mod x(·, ·) computes the nodes that can be reached using complex B-hyperedges
implicitly represented by the labels L(v) of the nodes v in Sm. The algorithm
iterates until a fix point is reached and no more new nodes are added (Lines 3−8).
Finally, in Line 9, the function get axioms(·) computes the set of axioms that
correspond to the nodes in Sm.

5 Evaluation

The system HyS is a Java implementation of the approach described in the
previous section. HyS can compute syntactic locality-based modules for a given
input signature and the atomic decomposition of an ontology defined in EL++

extended with inverse and functional role axioms.7 In the current version of HyS
only syntactic ⊥-locality is supported. We plan to extend the implementation to
support both >-locality and full SROIQ-ontologies in the future.

For the evaluation, we have selected nine well-known biomedical ontologies.
Seven of them are available in the NCBO Bioportal. The version of Full-Galen
that we used is available in the Oxford ontology repository.8

We divide the ontologies into two groups: a group consisting of CHEBI, FMA-
lite, Gazetteer, GO, NCBI and RH-Mesh, and another group consisting of CPO,
Full-Galen and SNOMED CT. Every ontology in the former group consist of
axioms whose ⊥-locality dependencies between axioms can be represented using
simple directed hyperedges only. This means that the ADH can be represented
using a direct graph. On the other hand, each of the latter three ontologies
contain axioms that require complex hyperedges to represent the dependencies.

We compare HyS against two systems for computing the atomic decompo-
sition of OWL 2 ontologies which implement the same algorithm from [14]:

7 HyS supports all the constructors used in the ontology Full-Galen
8 http://www.cs.ox.ac.uk/isg/ontologies/

14

FaCT++ v1.6.2, which is implemented in C++ [14]9, and OWLAPITOOLS v1.0.0
which is implemented in Java [15]10 as an extension of the OWLAPI.11

Ontology O Properties of O Time for Atomic Dec. of O
Signature #axioms #axioms #role

size A v C C ≡ D axioms FaCT++ OWLAPI HyS

TOOLS

CHEBI 37 891 85 342 0 5 137 s 1 619 s 4 s
FMA-lite 75 168 119 558 0 3 18 481 s 13 258 s 17 s
Gazetteer 517 039 652 355 0 6 31 595 s – 24 s
GO 36 945 72 667 0 2 47 s 1 489 s 4 s
NCBI 847 796 847 755 0 0 49 228 s – 66 s
RH-Mesh 286 382 403 210 0 0 6 921 s 9 159 s 17 s

CPO 136 090 306 111 73 461 96 9 731 s 26 480 s 2 283 s
Full-Galen 24 088 25 563 9 968 2 165 640 s 781 s 115 s
SNOMED CT 291 207 227 698 63 446 12 16 081 s 57 282 s 2 540 s

All experiments were conducted on an Intel Xeon E5-2640 2.50GHz with 100GB
RAM running Debian GNU/Linux 7.3. We use Java 1.7.0 51 and the OWLAPI
version 3.5.0. The table lists the time needed for each system to compute the
atomic decomposition of the ontologies. The time values are the average of at
least 10 executions. We applied a timeout of 24h, which aborted the executions
of the OWLAPITOOLS on the ontologies Gazetteer and NCBI. Moreover, the
table contains, for each ontology, the size of the signature, the number of axioms
of the form A v C, where A is a concept name, the number of axioms of the
form C ≡ D, the number of role axioms contained in the ontology.

HyS consistently outperforms FaCT++ which in turn (considerably) outper-
forms the OWLAPITOOLS, with the exception of FMA-lite. In the case of the
first group of six ontologies, an over 1 000-fold speedup could be achieved com-
pared to the performance of FaCT++ on FMA-lite and Gazetteer. For the small-
est ontology in this group, which is GO, HyS is 13 times faster than FaCT++.
HyS also scales better than the other systems. For the second group of three on-
tologies, the speedup is reduced but HyS is still considerably faster. HyS is 4–7
times faster than FaCT++ and 11–23 faster than the OWLAPITOOLS. The
computation of the partially condensed ADH nearly decreases 50% the number
of nodes in the ADH. The use of a tree datastructure to represent the set of
reachable nodes computed for each node of the ADH reduces the time needed
to identify mutually reachable nodes.

We compare the performance of HyS for extracting ⊥-locality modules with
the performance of FaCT++ and the OWLAPI. The following table presents
for every method the time needed to extract a module from an ontology for a
signature consisting of 500 symbols selected at random.

9 http://code.google.com/p/factplusplus/
10 http://owlapitools.sourceforge.net/
11 http://owlapi.sourceforge.net/

15

Ontology O Time for Extraction of ⊥-local Modules from O
FacT++ OWLAPI HyS

ADH pcADH cADH

CHEBI 38.6 ms 175.8 ms 3.9 ms 2.4 ms 2.1 ms
FMA-lite 326.9 ms 1 042.3 ms 55.3 ms 3.9 ms 3.4 ms
Gazetteer 177.9 ms 1 503.0 ms 27.3 ms 16.1 ms 15.9 ms
GO 512.2 ms 1 398.7 ms 8.1 ms 6.2 ms 6.1 ms
NCBI 236.2 ms 9 193.6 ms 22.7 ms 15.8 ms 16.3 ms
RH-Mesh 91.2 ms 1 811.3 ms 10.6 ms 9.1 ms 8.9 ms

CPO 564.7 ms 3 026.8 ms 84.3 ms 53.4 ms 51.6 ms
Full-Galen 75.2 ms 215.4 ms 13.2 ms 3.7 ms 2.9 ms
SNOMED CT 525.0 ms 2 841.3 ms 93.6 ms 88.4 ms 84.4 ms

HyS outperforms FaCT++ and the OWLAPITOOLS in all cases. For the first
group of six ontologies, the best speedup of over 90 times was achieved in the
case of FMA-lite. Notice that module extraction times using the pcADH and the
cADH (last two columns) are nearly the same as the two graphs are equivalent.
The small variation in extraction time is due to noise in the execution environ-
ment. The differences in the times values in the third column and the last two
columns correspond to the differences in size of the ADH and the pcADH/cADH.
For the second group of three ontologies, the best performance improvement was
realised in the case of Full-Galen with a speedup of over 20-times. However, we
note that using the cADH instead of the pcADH does not yield a large per-
formance difference despite the fact that the cADH is slightly smaller than the
pcADH. In the particular case of Full-Galen, there appears to be a trade-off be-
tween condensation and increased time needed to perform signature containment
checks. Computing the partially condensed ADH (using a linear time algorithm)
is generally much faster than computing the condensed ADH (which is done in
quadratic time). Given that the module extraction times are similar when using
the pcADH and the cADH (cf. the times in the last two columns), it seems more
efficient to only compute modules using the partially condensed ADH.

6 Conclusion

We have introduced the notion of an axiom dependency hypergraph that repre-
sents explicitly the locality-based dependencies between axioms. We have shown
that locality-based modules of an ontology correspond to a set of connected
nodes in the hypergraph, and atoms of an ontology to strongly connected com-
ponents. We have implemented a prototype in Java that computes, based on
axiom dependency hypergraphs, the atomic decomposition of EL++-ontologies
wrt. ⊥-locality. Our prototype outperforms FaCT++ and the OWLAPITOOLS
in computing the atomic decomposition of all biomedical ontologies tested. In
some cases a staggering speedup of over 1 000 times could be realised. Moreover,
the prototype significantly outperforms FaCT++ and the OWLAPI in extract-
ing syntactic ⊥-locality modules.

16

We plan to extend the prototype implementation to support both >-locality
and full SROIQ-ontologies. Moreover, it would be interesting to investigate the
possibility to compute strongly connected components in hypergraphs in less
than quadratic time. Such a result would improve the performance of computing
mutual reachability in the axiom dependency hypergraph for ontologies whose
locality-based dependencies can only be represented by hyperedges with more
than one node in the tail.

References

1. X. Allamigeon. On the complexity of strongly connected components in directed
hypergraphs. Algorithmica, volume 69, issue 2, pages 335–369, June 2014.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In In Proc.
of the OWLED’08 DC Workshop on OWL: Experiences and Directions, 2008.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, 2007.

4. C. Del Vescovo, D. D. G. Gessler, P. Klinov, B. Parsia, U. Sattler, T. Schneider,
and A. Winget. Decomposition and modular structure of bioportal ontologies. In
Proc. of ISWC’11, pages 130–145. Springer-Verlag, 2011.

5. C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure of
an ontology: Atomic decomposition. In Proc. of IJCAI’11, pages 2232–2237, 2011.

6. G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and
applications. Discrete Applied Mathematics, volume 42, issue 2–3, pages 177–201,
1993.

7. B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies:
theory and practice. JAIR, volume 31, pages 273–318, 2008.

8. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc.
of KR’06, pages 57–67. AAAI Press, 2006.

9. F. Mart́ın-Recuerda and D. Walther. Towards fast atomic decomposition using ax-
iom dependency hypergraphs. In Proc. of WoMO’13, pages 61–72. CEUR-WS.org,
2013.

10. R. Nortje, A. Britz, and T. Meyer. Reachability modules for the description logic
SRIQ. In Proc. of LPAR-13, volume 8312, pages 636–652, 2013.

11. M. Sharir. A strong connectivity algorithm and its applications to data flow anal-
ysis. Computers & Mathematics with Applications, volume 7, issue 1, pages 67–72,
1981.

12. B. Suntisrivaraporn. Polynomial time reasoning support for design and mainte-
nance of large-scale biomedical ontologies. PhD thesis, TU Dresden, Germany,
2009.

13. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computa-
tion, volume 1, issue 2, pages 146–160, 1972.

14. D. Tsarkov. Improved algorithms for module extraction and atomic decomposition.
In Proc. of DL’12, volume 846. CEUR-WS.org, 2012.

15. D. Tsarkov, C. D. Vescovo, and I. Palmisano. Instrumenting atomic decomposition:
Software APIs for OWL. In Proc. of OWLED-13, volume 1080. CEUR-WS.org,
2013.

16. V. K. C. Turlapati and S. K. Puligundla. Efficient module extraction for large
ontologies. In Knowledge Engineering and the Semantic Web, volume 394, pages
162–176. Springer Berlin Heidelberg, 2013.

