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Abstract. In the context of Description Logics (DLs) concrete domains
allow to model concepts and facts by the use of concrete values and pred-
icates between them. For reasoning in the DL ALC with general TBoxes
concrete domains may cause undecidability. Under certain restrictions of
the concrete domains decidability can be regained. Typically, the con-
crete domain predicates are crisp, which is a limitation for some applica-
tions. In this paper we investigate crisp ALC in combination with fuzzy
concrete domains for general TBoxes, devise conditions for decidability,
and give a tableau-based reasoning algorithm.

1 Introduction

Concrete domains were introduced in [2] as an extension to DLs, which allows
to model DL concepts based on objects that come from a specified, i.e. concrete,
domain and by a set of predicates on that domain, which constrain the set of
objects. For example, the natural numbers could be used as a concrete domain
to model sizes, or regions together with the RCC relations can be used to model
geo-spatial domains.

In order to allow for reasoning a concrete domain D needs to satisfy some
conditions. A concrete domain is called admissible, if it contains a predicate for
domain membership, the set of predicates is finite and closed under negation,
and testing for finite conjunctions of predicates is decidable. In [2] these condi-
tions and a tableaux-based reasoning algorithm for testing concept satisfiability
w. r. t. terminologies were given. Concept satisfiability w. r. t. general TBoxes
easily becomes undecidable for admissible concrete domains [6]. In [7] Lutz and
Miličić give a condition for concrete domains under which decidability can be
regained. Essentially, these condition of ω-admissibility ensures that a model
for all constraints expressed in the DL knowledge base can be constructed from
locally consistent parts.

In this paper we consider fuzzy concrete domains (CDs), where objects from
the concrete domain can be related to one another to some degree. This allows for
a more fine-grained modelling for vague information as, for instance, in situation
recognition in context-aware systems or even to model fuzzy spatial relations for
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image recognition. The combination of DLs and fuzzy concrete domains has been
investigated already in a number of settings [11, 3, 9, 8]. However, fuzzy DLs can
easily turn out to be undecidable [4]. In our approach, we consider a crisp DL
language, with a fuzzy concrete domain. Since our underlying DL is crisp, while
the concrete domain is not, the fuzzy values from the fuzzy concrete domain need
to be discretized at some point. A natural question is whether the fuzzy CD can
be (easily) encoded in a crisp one. In principle this can be done, however, the
approach in [7] uses relational networks to represent a set of constraints imposed
on the concrete domain objects. The predicates used in relational networks are
required to be jointly exhaustive and pairwise disjoint. In a fuzzy setting, where
all tuples of concrete domain objects are related to each other via all predicates
(possibly by degree zero), this is no longer a natural requirement. Moreover,
a translation of the fuzzy constraints to crisp ones can lead to an exponential
blow-up of the knowledge base as shown in Section 4.

This finding motivates our direct reasoning algorithm for ALC (with func-
tional roles) and fuzzy concrete domains, since it allows for a more succinct rep-
resentation of the TBox. To this end we transfer the notion of ω-admissibility to
fuzzy concrete domains and give a tableaux-based reasoning procedure for con-
cept satisfiability in the presence of general TBoxes for the new DL ALC(D) in
Section 3. We show soundness, completeness and termination for our procedure.
For the full detail of the proofs, we refer the reader to [10].

We give the definition of the basic notions of DLs, (fuzzy) concrete domains
and the DL ALC(D) in Section 2. In Section 3 we devise a tableau algorithm
for ALC(D) with ω-admissible concrete domains. Afterwards we investigate the
translation-based approach to handle fuzzy concrete domains by crisp ones in
Section 4. We end the paper with conclusions and considerations for future work.

2 Preliminaries

We give only a short introduction to the basic notions of DLs—for a more thor-
ough presentation see [1]. Starting from countable and disjoint setsNC of concept
names and NR of role names, concept constructors are used to build complex
concepts. In the DL ALC complex concepts are formed using the concept con-
structors listed in Table 1.

The semantics of this logic is given by means of interpretations. An inter-
pretation I = (∆I , ·I) is a pair consisting of an interpretation domain ∆I and
a function ·I that maps concept names to subsets of ∆I and role names to bi-
nary relations on ∆I . This function is extended to complex ALC-concepts as
shown in the last column of Table 1. As usual in DLs, we use ⊥ to denote any
contradictory concept (e.g. A u ¬A) and > to denote a tautology (A t ¬A).

Concepts are related to each other by general concept inclusions (GCIs),
which are statements of the form C v D. The interpretation I satisfies the GCI
C v D, if CI ⊆ DI . A finite set of GCIs is called a TBox T . If a TBox T
contains only GCIs, with concept names as left-hand sides, each concept name
appears at most once on the left-hand side of a GCI and the concept names in



Table 1. Syntax and semantics of ALC-concepts.

g

Constructor Syntax Semantics

concept name A AI ⊆ ∆I

negation ¬C (¬C)I = ∆I \ CI

conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

existential restriction ∃r.C (∃r.C)I = {d | ∃e ∈ ∆I .(d, e) ∈ rI and e ∈ CI}
value restriction ∀r.C (∀r.C)I = {d | ∀e ∈ ∆I .(d, e) ∈ rI ⇒ e ∈ CI}

the left-hand sides of GCIs do neither directly nor indirectly refer to themselves,
then the TBox T is called a terminology. An interpretation is a model of a TBox
T , if it satisfies each GCI in T .

We consider here the reasoning task of testing satisfiability of concepts with
respect to the TBox. Given the concept C and a TBox T , C is satisfiable w. r. t.
T iff T has a model I such that CI 6= ∅.

2.1 Concrete Domains

We extend the approach of Lutz and Miličić in [7] to the fuzzy setting and thus
adopt their way of introducing concrete domains. They use constraint systems
as concrete domains that have binary predicates which are interpreted as jointly
exhaustive and pairwise disjoint (JEPD) relations. This does not limit the ex-
pressiveness of the concrete domain, since any concrete domain with a finite set
of predicates can be translated into one with binary JEPD relations, e.g. see
[10]. Before introducing constraint systems, we introduce the class of structures
they describe.

Definition 1. Let V be a countably infinite set of variables and Rel a finite
set of binary relations. A Rel-constraint is a tuple of the form (t, R), where t
is a pair over V and R ∈ Rel. A Rel-network N is a (possibly infinite) set of
Rel-constraints. For a given Rel-network N , the set of its variables is denoted
by VN and the set of its relations by RelN . A Rel-network N is in normal form,
if for all x, y ∈ VN , there is exactly one constraint ((x, y), R) ∈ N .

Let τ be a mapping from variables to variables, then τ is extended to pairs
by τ((v, w)) = (τ(v), τ(w)), to constraints by τ((t, R)) = (τ(t), R), and to Rel-
networks by τ(N) = {τ(c) | c ∈ N}. A Rel-network N ′ in normal form is
a model of network N , if there is a total mapping τ : VN → VN ′ such that
τ(N) ⊆ N ′.

Intuitively, a constraint system defines a set of Rel-networks that are satisfiable.

Definition 2. A constraint system D = (V,Rel,M) is a tuple consisting of
the sets of variables V , relations Rel and M, a set of models of D , which are
complete Rel-networks. A Rel-network N is satisfiable in D, if there is a model



M ∈ M and a total mapping τ : VN → VM from the variables of N to those of
M , such that τ(N) ⊆M .

The notion of ω-admissible constraint systems was introduced in [7]. We refer
the reader to this paper for the definition of this notion and only give its variant
for the case of fuzzy concrete domains here.

2.2 Fuzzy Concrete Domains

While in the classical notion of concrete domains a predicate for elements holds
completely or not at all, fuzzy concrete domains can express that a predicate
holds for elements to some extent, i.e., with a membership degree from the real
unit interval. The requirement to allow for a tuple of variables to be related
exclusively via a single relation is not well-defined for fuzzy concrete domains,
since variables are always related via all relations of the same arity—possibly
only by degree 0. For that reason, we drop the requirement of JEPD relations
in the fuzzy setting.

It is not hard to show that fuzzy relations of arbitrary arity can be represented
by binary ones, see [10]. Thus relations of higher arity can be handled by our
approach, but for the ease of presentation, we only use binary relations here. To
allow for a general notion of fuzzy constraints, we use membership degree sets
defined over a domain 1 ⊆ [0, 1]. We consider a class of membership degree sets
such that 1 is a membership degree set and for every two membership degree sets
σ, σ′, (i) σ has a finite representation, and (ii) σ ∩ σ′ and 1 \ σ are membership
degree sets, too.

Definition 3. Let V and Rel be as before and 1 ⊆ [0, 1]. A fuzzy Rel-constraint
is a triple (t, R, σ) with t ∈ V 2, R ∈ Rel, and σ ⊆ 1. A fuzzy Rel-network N is
a set of fuzzy Rel-constraints. For N the set of its variables is indicated by VN
and the one for its relations by RelN.

A fuzzy constraint system D = (V,Rel,1,M) consists of the sets of variables
V , of relations Rel, and of models M, a set of fuzzy Rel-networks.

Intuitively, a fuzzy concrete domain represents a set of Rel-networks that are
satisfiable in a fuzzy constraint system D.

Definition 4. Let N be a fuzzy Rel-network. An interpretation of N is a func-
tion I : V 2×Rel→ 1 that maps pairs of variables and relations to a fuzzy degree.
An interpretation I satisfies a constraint (t, R, σ) if I(t, R) ∈ σ. If I satisfies all
constraints in a fuzzy Rel-network N, then I satisfies N.

N is satisfiable in a fuzzy constraint system D = (V,Rel,1,M), if there exists
a model M ∈M, a mapping τ : VN → VM and an interpretation that satisfies M
and τ(N).

The idea is that the interpretation I assigns to each relation R a membership
degree function µR : V 2 → 1 such that µR(t) = d, if I(t, R) = d. In case the
elements in t are not related via R, the membership degree assigned is 0.



A fuzzy Rel-network is in normal form, if it contains exactly one fuzzy con-
straint for each pair of variables and relation R ∈ Rel. It is shown in [10] that
every fuzzy Rel-network N can be transformed into a normalized one that is sat-
isfied by the same interpretations. Essentially, the two constraints (t, R, σ) and
(t, R, σ′) can be equivalently replaced by the constraint (t, R, σ∩σ′), which is well
defined, since the class of membership degree sets is closed under intersection.

A fuzzy Rel-network N contains a Rel-clash, if for a relation R ∈ Rel and
a tuple t there is a subset of Rel-constraints {(t, R, σi) | i ∈ I} ⊆ N, such
that

⋂
i∈I σi = ∅, with an arbitrary index set I. In other words, this fuzzy Rel-

network contains a clash iff after transforming it into normal form, it contains a
constraint of the form (t, R, ∅). Otherwise it is clash-free.

It is well-known that extending ALC with concrete domains leads to unde-
cidability of reasoning w.r.t. TBoxes. To regain decidability of reasoning in the
presence of TBoxes, conditions need to be imposed on the concrete domain or
on a constraint system, respectively. In the crisp case, the concrete domain is
required to be ω-admissible by Lutz and Miličić in [7]. We transfer this condition
now to the case of fuzzy constraint systems.

Definition 5. Given a fuzzy constraint system D = (V,Rel,1,M). D has the

– patchwork property if for two finite, satisfiable fuzzy Rel-networks N1 and
N2 holds: if N1 ∪N2 is clash-free, then N1 ∪N2 is satisfiable in D.

– compactness property if it holds that any infinite fuzzy Rel-network N in
normal form is satisfiable iff for all finite U ⊆ V the fuzzy Rel-network
NU = {((x, y), R, σ) ∈ N | x, y ∈ U} is satisfiable.

D is ω-admissible if (1) satisfiability of finite fuzzy Rel-networks in D is decid-
able, (2) D has the patchwork property, and (3) D has the compactness property.

The condition of ω-admissibility ensures decidability of reasoning when combin-
ing ALC and fuzzy constraint systems.

2.3 A DL with Fuzzy Concrete Domains: ALC(D)

To define the DL ALC(D) we need to introduce features, which are functional
roles. Let NaF be an infinite countable set of abstract feature names and NcF

be an infinite countable set of concrete feature names and NaF ∩ NcF = ∅. A
feature path P is either a concrete feature f or a pair of an abstract and a
concrete feature: P = a f with a ∈ NaF and f ∈ NcF .

Definition 6. Let D = (V,Rel,1,M) be a fuzzy constraint system, r a role
in NR ∪ NaF , R ∈ Rel, and σ ⊆ 1. Complex ALC(D)-concepts are formed
using the concept constructors of ALC listed in Table 1, where in existential
or value restrictions abstract features can be used instead of roles. Additionally,
ALC(D) allows for fuzzy constraint restrictions, which are expressions of the
form ∃(P1, P2, R, σ) or ∀(P1, P2, R, σ), where R ∈ Rel, and σ ⊆ 1 and Pi are
feature paths.



For the semantics of ALC(D)-concepts, we need to extend the notion of an inter-
pretation to fuzzy constraint restrictions and thus accommodate Rel-networks.

Definition 7. An interpretation is a tuple II = (∆II , ·II ,NII) consisting of a
domain ∆II , a mapping ·II , and a fuzzy Rel-network in normal form NII . The
function ·II maps names from NC ∪NR as for ALC; abstract features a ∈ NaF

are interpreted as partial functions over ∆II , and concrete features f ∈ NcF are
partial functions from ∆II to NII . The interpretation of a feature path P = a f is
the function that maps d ∈ ∆II to P (d)II = fII(aII(d)), when this is well-defined.
The semantics of the new concept constructors are:(

∃(P1, P2, R, σ)
)II

=
{
d ∈ ∆II | ∃v, w ∈ VNII ,∃σ′ ⊆ 1 : P II

1 (d) = v ∧
P II
2 (d) = w ∧ (v, w,R, σ′) ∈ NII ∧ σ′ ⊆ σ

}(
∀(P1, P2, R, σ)

)II
=
{
d ∈ ∆II | ∀v, w ∈ VNII ,∀σ′ ⊆ 1 :

(
P II
1 (d) = v ∧

P II
2 (d) = w ∧ (v, w,R, σ′) ∈ NII

)
=⇒ σ′ ⊆ σ

}
.

The classical DL ALC(D) is a special case of ALC(D), where σ = {0, 1} and
only the constraint restrictions with σ = {1} are mentioned.

Let r ∈ NR ∪NaF . An ALC(D)-concept is in negation normal form (NNF),
if negation only appears in front of concept names. It is easy to see that every
ALC(D)-concept can be transformed into NNF by exhaustive application of the
following rules.

¬¬C → C

¬(∃r.C)→ (∀r.¬C)

¬(∀r.C)→ (∃r.¬C)

¬(C uD)→ (¬C t ¬D)

¬(C tD)→ (¬C u ¬D)

¬(∃(P1, P2, R, σ))→ (∀(P1, P2, R,1 \ σ))

¬(∀(P1, P2, R, σ))→ (∃(P1, P2, R,1 \ σ))

3 A Tableau Algorithm for Concept Satisfiability

We show that satisfiability of ALC(D)-concepts w.r.t. ALC(D)-TBoxes is decid-
able for any ω-admissible fuzzy constraint system D by describing a tableau-
based algorithm for this problem. For the rest of this section we consider a
fixed concept C in NNF and a TBox T containing exactly one GCI > v CT
with normalized Rel-networks. These assumptions are w.l.o.g., since every GCI
D v E can be equivalently rewritten as > v ¬D tE, and every concept can be
transformed into NNF in linear time using the rules introduced above.

The algorithm keeps as data structure a completion system S = (T,N, Σ),
where N is a finite fuzzy Rel-network, Σ is a finite set of subsets of 1 that
describes the membership degrees relevant for reasoning, and T is a labeled tree
T = (V,E,L) such that V is partitioned into two sets VA and VC , E ⊆ VA × V
and L labels every node v ∈ VA with a set of concepts L(v) ⊆ sub(C)∪sub(CT ),4

4 Here sub(C) denotes the set of subconcepts of a concept C, consider e.g. [1]



Table 2. Tableau rules for ALC(D)

Ru if D1 uD2 ∈ L(v) and {D1, D2} * L(v), then add D1, D2 to L(v)

Rt if D1 tD2 ∈ L(v) and {D1, D2} ∩ L(v) 6= ∅, then add D1 or D2 to L(v)

R∃
if ∃r.D ∈ L(v), v is not blocked, and there is no r-successor w of v such that
D ∈ L(w), then extend T with a fresh r-successor x of v and add D to L(x)

R∀
if ∀r.D ∈ L(v) and there is an r-successor w of v such that D /∈ L(w), then
add D to L(w)

R@

if ∃(P1, P2, R, σ) ∈ L(v), v is not blocked, and there are no c1, c2 ∈ VC , σ
′ ∈ Σ

with Pi(v) = ci, i ∈ {1, 2}, (c1, c2, R, σ
′) ∈ N and σ′ ⊆ σ, then extend T with

fresh Pi-successors xi of v, i ∈ {1, 2} and add (x1, x2, R, σ) to N and σ to Σ

R5

if ∀(P1, P2, R, σ) ∈ L(v) and there are c1, c2 ∈ VC , σ
′ ∈ Σ with Pi(v) = ci,

i ∈ {1, 2} and (c1, c2, R, σ
′) /∈ N for all σ′ ⊆ σ, then

add (c1, c2, R, σ) to N and σ to Σ

every edge (v, w) ∈ VA × VA with a role name L(v, w) ∈ NR ∪ NaF , and each
edge (v, c) ∈ VA × VC with a concrete feature L(v, c) ∈ NcF . T is called a
tableau tree, which intuitively describes a (partial) tree-shaped interpretation.
The nodes in VA correspond to the abstract domain elements, and VC contains
concrete domain elements. Each abstract element x ∈ VA is labeled with the set
of concepts that it satisfies. Similarly, edges are labeled with the role or feature
that associates its endpoints. The Rel-network N stores the set of constraints
that must be satisfied among the concrete domain elements appearing in T. For
each node v ∈ VA, we define the local network

N(v) := {((a, b), R, σ) ∈ N | (v, a) ∈ E or (v, b) ∈ E};

that is, N(v) contains all the fuzzy Rel-constraints that are related to the
abstract element v. We say that the local networks of two nodes v, w ∈ VA
are isomorphic, denoted as N(v) ∼ N(w), if there exists a bijective function
µ : VN(v) → VN(w) such that N(w) = µ(N(v)). Finally, the component Σ in a
completion system S = (T,N, Σ) keeps track of all relevant sets of fuzzy degrees
that may be used for satisfying N.

The completion system is initialized to the tuple S = (T0, ∅, {1}), where
T0 = ({v0}, ∅,L) is the tableau tree containing only one node v0 labeled as
L(v0) = {C,CT }. The idea is to try to build a model for T that makes the
interpretation of C non-empty. Thus, we start with one single domain element,
namely v0, that is considered to belong to this concept C. Since the interpretation
must be a model of T , v0 must also belong to CT .

The completion system is then extended by application of the rules from
Table 2. Each rule application extends the system and never removes infor-
mation from it. Only the rule Rt allows for a non-deterministic choice, which
corresponds to deciding which disjunct is used to satisfy the concept D1 tD2.
Additionally, the two rules for handling existential restrictions R∃ and R@ have



a special pre-condition as they are the only ones that add new nodes to the tree
T. Specifically, these rules are only applicable if the node v is not blocked, and
their application extends T with either a new r-successor, for r a role or feature
name, or P -successor, for P a feature path.

Since the GCIs in the TBox may contain cycles, termination needs to be
ensured by detecting cycles in the construction of the model. This can be done by
the well-known blocking technique, which is a detection of repetitions in partially
constructed models. In anywhere blocking [5] an element v in T is blocked, if there
is another node w that has been introduced before v and that requires the same
conditions in the model as v does—in case of ALC(D) additionally isomorphism
of their local Rel-networks is required. In that case, it suffices to use the node
w as a template to extend v into a model. Hence, there is no need to explicitly
extend v during the execution of the tableau algorithm.

The extension of the tree depends on the kind of roles used. Essentially, the
idea is that one or more new nodes are added to the tree in order to satisfy the
existential restriction. However, recall that abstract and concrete features are
restricted to be functional; that is, if g is a feature, then there is at most one
g-successor of any given node v. When extending the tree T, we need to ensure
that this functionality is preserved. If there exists already a g-successor, then it
must be reused. Formally, let T be a tableau tree. For r ∈ NR, the extension of
T with a fresh r-successor x of v is the tree T′ obtained from T such that:

– if r ∈ NR or r ∈ NaF , but v has no r-successors, then T′ contains a new
abstract node x ∈ VA and the edge (v, x) ∈ E with L(x) = {CT } and
L(v, x) = r;

– otherwise, i.e., if r ∈ NaF and v has an r-successor w, rename w to x.

Similarly, for a concrete feature f , the extension of T with a fresh f -successor x
is the tree where:

– if v has no f -successors, then T′ contains a new concrete node x ∈ VC and
the edge (v, x) ∈ E with L(v, x) = f ;

– otherwise, i.e., if v has an f -successor w, rename w to x.

Given a feature path P = a f , the extension of T with a fresh P -successor of
v is obtained by extending T with an a-successor x of v, and an f -successor
of x. If at some point the completion system is saturated, i.e., no tableau rule
is applicable to it, then the algorithm decides satisfiability of C by searching
for an obvious contradiction, or clash. The completion system S = (T,N, Σ)
contains a clash if N is unsatisfiable or there exist a node v ∈ VA and a concept
D ∈ sub(C) ∪ sub(CT ) such that {D,¬D} ⊆ L(v). Starting from the initial
completion system (T0, ∅, {1}), the algorithm applies the completion rules in
any order until a saturated system S is found. If S contains a clash, then the
algorithm answers that the concept C is unsatisfiable w.r.t. T ; otherwise, i.e., if
there is no clash in S, then C is satisfiable. We show that this tableau algorithm
is indeed a decision procedure for concept satisfiability, i.e., we show that it is
sound, complete, and terminating.



We first show that the algorithm is sound. To show this, we will construct,
given a finite completion system S = (T,N, Σ), a model IIS of T that satisfies
C. The idea is to use T as a template for building this model, and when a blocked
node is reached, iterate using copies of the blocking node and its successors. A
T-chain is a sequence χ = v1

w1
· · · vnwn

such that for every i, 1 ≤ i < n, vi, wi ∈ VA,
(vi, wi+1) ∈ E, and either (i) vi+1 is not blocked and wi+1 = vi+1, or (ii) vi+1 is
blocked by wi+1. In this case, we say that vn

wn
is the tail of χ, written tl(χ). We

also express as f(χ), for a concrete feature f , the concrete element f(w) where
tl(χ) = v

w . We denote as chains the set of all chains in T that start with v0
v0

.

Let IIS = (∆IIS , ·IIS ,NIIS ) be the interpretation where ∆IIS = chains, for
every A ∈ NC , AIIS = {χ | tl(χ) = v

w , A ∈ L(v)}, and for every role name

r ∈ NR, rIIS = {(χ, χ v′

w′ ) | tl(χ) = v
w , (v, w

′) ∈ E,L(v, w′) = r, v′ ∈ VA}.
The network NIIS is defined over the variables VIIS = {f(χ) | χ ∈ chains} and
contains all constraints

((f1(χ1), f2(χ2)), R, σ)

where for i ∈ {1, 2}:

tl(χi) =
vi
wi
, (f1(w1), f2(w2), R, σ) ∈ N, vi ∈ VA.

Notice that IIS is infinite, and also contains an infinite fuzzy Rel-network NIIS .
However, this network is built using copies of a satisfiable Rel-network N. The
patchwork property guarantees that each finite union of these copies remains
satisfiable, and hence, by compactness, the whole system is satisfiable. It can
thus be shown by induction on the structure of the concepts, and using the
properties of ω-admissibility that if S does not contain a clash, then IIS is a
model of T and v0 ∈ CIIS .

Lemma 8. Let S be a saturated completion system obtained by application of
the tableau rules to (T0, ∅, {1}) where L(v0) = {C,CT }. If S contains no clash
then C is satisfiable w.r.t. T .

Suppose now that C is satisfiable w.r.t. T . To prove that the algorithm is com-
plete, we need to show that it can produce a clash-free completion system S.
Since C is satisfiable, there exists a model II of T such that CII 6= ∅. We use
this model to guide the construction of the completion system through rule ap-
plications. The idea is to identify, for each node of the tree T, an element in ∆II

that will serve as its pattern. The root node is associated to an arbitrary element
in CII . When the rule requires a non-deterministic choice (Rt) or the insertion
of new elements (R∃, R@), the choice is made based on the properties of the
associated node from II. Since II is a model, the completion system built this
way is guaranteed to be clash-free. This is shown using a variant of relatively
standard proof techniques for tableau algorithms, see [7, 10] for full details.

Lemma 9. If every saturated completion system obtained by the application of
tableau rules to (T0, ∅, {1}) contains a clash, then C is not satisfiable w.r.t. T .



These two lemmas show that the tableau algorithm is sound and complete. The
only remaining issue is to show that it terminates on every input, which is
a consequence of the following observations. First, every concrete node in the
tree T is labeled with a set L(v) ⊆ sub(C) ∪ sub(CT ). Similarly, every edge is
labeled with a role name appearing in C or CT . Since sub(C) and sub(CT ) are
both finite, there are finitely many different such labels. Second, the fuzzy Rel-
network N only contains constraints of the form ((c1, c2), R, σ) where R and σ
appear explicitly in C or T . Hence, there are finitely many pairs (R, σ) appearing
in N. Third, every rule application adds at least one concept to the label of a
node, or a constraint to N, but never deletes any previous assertions. Thus, to
prove termination it suffices to show that the tree T has finitely many nodes.

Notice that new nodes are introduced to the tree T only through applications
of the rules R∃ and R@. Each application of any of these rules adds at most
two abstract and at most two concrete nodes. Thus, the number of successors
of any node is bounded linearly by the number of existential restrictions in
sub(C) ∪ sub(CT ), which is finite. In other words, T has finite branching. As
described before, the number of different node labels L(v) is bounded by the
number of sets of subconcepts of C and CT ; call this number nC . Similarly,
each local network N(v) is finite, bounded by the number nN of combinations
of concrete features f , relations R and membership degrees Σ allowed. It thus
follows that every path of length greater than nC · nN must contain at least one
directly blocked node. Since the rules R∃ and R@ are only applicable to nodes
that are not blocked, the depth of the tree T is also finite. Overall, this implies
that T must be finite, which yields the following result.

Lemma 10. The tableau algorithm terminates.

Summarizing, we showed that our tableau algorithm always terminates, is sound
and complete for testing whether a concept C is satisfiable w.r.t. a TBox T .

Theorem 11. The tableau algorithm is a decision procedure for ALC(D) con-
cept satisfiability.

Thus, the problem is decidable. A more fine-grained analysis of the bounds used
to prove termination reveals that this algorithm applies exponentially many
rules, in the worst case, until the completion system is saturated. At this point,
the Rel-network N contains exponentially many constraints and needs to be
checked for satisfiability. This satisfiability check for the Rel-network is only
sufficient for concrete domains that are ω-admissible. Assuming a constant-time
oracle for testing N and since the algorithm is non-deterministic, due to Rt,
overall we obtain that concept satisfiability in ALC(D) is in NExpTime, with
an oracle for D. Next, we show that reasoning in ALC(D) can be reduced to
reasoning in ALC(D) for some, well-chosen (crisp) constraint system D.

4 Translating Fuzzy to Crisp Constraints

The extension of ALC with fuzzy concrete domains with membership degree sets,
which are closed under intersection and negation, is not more expressive than



ALC with (crisp) concrete domains. To be more precise, for any fuzzy constraint
system D and ALC(D)-TBox T, we can effectively construct a constraint system
DT and an ALC(DT)-TBox T that preserves the consequences of T. In this sec-
tion, we assume that D is an arbitrary, but fixed, fuzzy constraint system. Given
an ALC(D)-TBox T, let ΣT be the set of all sets σ ⊆ 1 such that σ appears in
T, extended with 1. Since T is finite, so is ΣT, and its closure under comple-
mentation and intersection ΛT. Moreover, the |ΛT| is bounded exponentially by
ΣT and is in the worst case exponential on the size of T.

Let ΠT be the set of all relation names appearing in T. Obviously, |ΠT| is
linear in |T|. Finally, let R1, . . . , Rm be an arbitrary, but fixed, enumeration
of the elements of ΠT. We define the set of binary relations containing every
sequence of length m of elements of ΛT as Rel := {λ1 · · ·λm | λi ∈ ΛT, 1 ≤ i ≤
m}. Clearly, Rel has |ΛT|m relation names.

Intuitively, the relation λ1 · · ·λm is interpreted to include all the pairs (a, b)
of elements of the constraint model such that Ri(a, b) ∈ λi, for all i, 1 ≤ i ≤ m.
That is, each of these relations describes, in a crisp manner, the degrees to which
the pair belongs to all the relevant fuzzy relations. Following this intuition, we
denote as σ(i) the relation in Rel that has σ in its i-th position, and 1 in all other
positions. It is interpreted as all pairs of individuals that are related via Ri with
a degree in σ, regardless of the degrees associated with the other fuzzy relations.

Our translation function ν mapsALC(D) concepts toALC(D) concepts, such
that all consequences from T are preserved by ν(T). This translation is defined
inductively over the structure of concepts. Let C,D be ALC(D)-concepts and
r ∈ NR ∪NaF , Ri ∈ ΠT, σ ∈ ΛT, and P1, P2 two feature paths, the translation
ν of the fuzzy constraint restrictions is defined by:

ν(A) := A for A ∈ NC ∪ {>,⊥},
ν(¬C) := ¬ν(C),

ν(C uD) := ν(C) u ν(D),

ν(C tD) := ν(C) t ν(D) and

ν(∃r.C) := ∃r.ν(C),

ν(∀r.C) := ∀r.ν(C),

ν(∃(P1, P2, Ri, σ)) := ∃(P1, P2, σ
(i)),

ν(∀(P1, P2, Ri, σ)) := ∀(P1, P2, σ
(i)).

We define ν(T) := {ν(C) v ν(D) | C v D ∈ T}. Obviously, this construction
preserves all consequences of the original TBox. Additionally, |ν(T)| is linear
in |T|. The main difference is that the crisp constraint system D obtained has
exponentially many more relation functions than D. This is not problematic for
reasoning, since the system of constraints is solved by an external oracle. How-
ever, it must be noted that these relations are not JEPD as assumed in [7]. To
obtain a constraint system satisfying this condition, a rewriting of each con-
crete domain restriction into a possibly exponential disjunction of restrictions is
needed, which causes a blow-up in |T|.

Observe, that the translation presented depends on the specific sets of degrees
σ that appear in T. Indeed, to produce one constraint system that can be used
for any arbitrary ALC(D)-TBox, we would need to be able to handle arbitrary
subsets of 1.



5 Conclusions

We introduced the DL ALC(D) that extends ALC with fuzzy concrete domain
restrictions. These in turn introduce fuzzy relations between elements of the con-
crete domain, i.e., functions that map tuples of concrete elements to a member-
ship degree in [0, 1]. We extended the approach from [7] for regaining decidability
of reasoning in the presence of general TBoxes, to the fuzzy setting. The required
conditions on the concrete domain are the patchwork property and compactness,
which together yield ω-admissibility. Decidability of concept satisfiability w.r.t.
TBoxes is proven by a sound, complete and terminating tableau-based algorithm
which builds a finite representation of an infinite tree-like model of the TBox and
the concept. We show that this algorithm requires (non-deterministic) exponen-
tial time, if the constraint systems can be solved in constant time. Our proofs of
correctness depend strongly on the notion of ω-admissibility. Thus, it is an open
question whether relaxed conditions would still guarantee decidability.
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4. S. Borgwardt and R. Peñaloza. Undecidability of fuzzy description logics. In
Proceedings of the 13th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012), pages 232–242. AAAI Press, 2012.

5. B. Glimm, I. Horrocks, and B. Motik. Optimized description logic reasoning
via core blocking. In Proc. of the 5th Int. Joint Conf. on Automated Reasoning
(IJCAR-10), volume 6173 of LNCS, pages 457–471. Springer, 2010.

6. C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal
Logic 2002 (AiML 2002), Toulouse, France, 2002.
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