
Automata-based Reasoning in Fuzzy Description
Logics

Rafael Peñaloza
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Description logics (DLs) are a family of well-studied knowledge representa-
tion formalisms designed to express and reason with the conceptual knowledge of
application domains in a clear and well-understood manner. They have been suc-
cessfully applied for representing large application domains, most prominently
from the biological and medical fields. In their classical form, DLs are not ade-
quate for handling vague or imprecise knowledge, which is a common staple in
bio-medical knowlege. To alleviate this problem, fuzzy extensions of DLs have
been introduced. As a prototypical example, we consider here the smallest propo-
sitionally closed fuzzy DL, which we call ⊗-ALC.1

The fuzzy DL ⊗-ALC is based on concepts and roles, which are interpreted as
(fuzzy) unary and binary relations, respectively. Given the disjoint sets NR, and
NC of role, and concept names, respectively, ⊗-ALC concepts are built through
the grammar rule

C ::= A | ⊥ | C u C | C → C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR. The concept > is often used as an abbreviation
of ⊥ → ⊥. The terminological knowledge of a domain is represented through a
TBox : a finite set of general concept inclusions (GCIs) of the form 〈C v D ≥ q〉,
where C,D are ⊗-ALC-concepts, and q ∈ [0, 1].

The semantics of this logic is given through interpretations, which are pairs
I = (∆I , ·I) where ∆I is a non-empty set called the domain, and ·I is a function
that maps every A ∈ NC to a function AI : ∆I → [0, 1], and every r ∈ NR to a
function rI : ∆I ×∆I → [0, 1]. Intuitively, for every domain element x ∈ ∆I the
value AI(x) represents the degree to which x is a member of A. The interpreta-
tion function is extended to arbitrary concepts using the continuous t-norm ⊗
and its (unique) residuum⇒. In the case of G-ALC, where the semantics is based
on the Gödel t-norm, complex concepts are interpreted as shown in Table 1.

The interpretation I is a model of the TBox T if for every GCI of the form
〈C v D ≥ q〉 ∈ T and every x ∈ ∆I , CI(x) ⇒ DI(x) ≥ q holds. Reasoning
tasks in fuzzy DLs are based on the class of models of a TBox. However, it is
customary to further restrict this class allow only so-called witnessed models,
where the suprema and infima stated by the semantics of the existential and
value restrictions, respectively, are in fact maxima and minima. We keep this

1 Unfortunately, there is no agreed naming for fuzzy DLs. We use this name to em-
phasize the relationship with ALC, the smallest propositionally closed classical DL.



Table 1: Semantics of G-ALC

constructor syntax semantics

bottom concept ⊥ 0
conjunction C uD min(CI(x), DI(x))
implication C → D CI(x)⇒ DI(x)
existential restriction ∃r.C supy∈∆I min(rI(x, y), CI(y))

value restriction ∀r.C infy∈∆I rI(x, y)⇒ CI(y)

restriction, and for the rest of this paper call witnessed models simply models
for brevity.

Most reasoning tasks in fuzzy DLs can be reduced to deciding the existence of
a model that satisfies an additional set of restrictions, or restricted consistency.
A restriction is an expression of the form 〈C . q〉, where C is a concept, q ∈ [0, 1],
and . ∈ {≤,≥}. A finite set of restrictions R is consistent w.r.t. the TBox T if
there is a model I of T and an element x ∈ ∆I such that CI(x) . q holds for
every restriction 〈C . q〉 ∈ R.

Restricted consistency and other associated reasoning tasks have been re-
cently shown to be hard (even undecidable) for non-idempotent t-norms; i.e.,
any continuous t-norm that is not Gödel [5]. One culprit for this hardness is
the fact that, for those t-norms, ⊗-ALC does not have the finite model property
nor the finitely-valued model property. That is, there exist consistent restrictions
that are only satisfied by infinite models that use infinitely many different mem-
bership degrees [3]. This fact is used to prove that the existence of such a model
cannot be decided in finite time. Given the simplicity of the operators associated
to the Gödel t-norm, it was generally believed that G-ALC has the finite model
property. Moreover, it is often claimed that all reasoning tasks in this logic can
be restricted to only a finite set of truth degrees, which can be computed a priori,
depending only on the values explicitly provided in the input. This belief seems
to arise from the results in [6] which, however, depend on different semantics.

Consider the set of restrictions R = {〈A ≤ 0.6〉} and the TBox

T = {〈∀r.A v A ≥ 1〉 , 〈∃r.> v A ≥ 1〉}.

It is easy to see that R is consistent w.r.t. T . For any model I of T that
satisfies R there must exist an element x1 ∈ ∆I such that AI(x1) < 0.6. As I is

witnessed, there exists a x2 ∈ ∆I with (∀r.A)
I
(x1) = rI(x1, x2)⇒ AI(x2). The

first axiom of T entails rI(x1, x2) ⇒ AI(x2) ≤ AI(x1) < 1, and in particular
rI(x1, x2) > AI(x2). The second axiom of the TBox T implies that

rI(x1, x2) = min(rI(x1, x2), 1) ≤ (∃r.>)
I
(x1) ≤ AI(x1),

and thus AI(x1) > AI(x2). Repeating the same argument, there must exist
elements x3, x4, . . . ∈ ∆I such that AI(xi) > AI(xi+1) for all i ≥ 1. This means



x1 x2 x3 x4

0 < A < 0.6

0 < A < r ≤ A↑ < 1

0 < A < r ≤ A↑ < 1

0 < A < r ≤ A↑ < 1

Fig. 1: An abstract description of models of T satisfying R

that any model of T satisfying the restriction R must have infinitely many
elements that belong to the concept A to a different degree.

While it is not possible to explicitly construct a model that uses infinitely
many membership degrees in finite time, we can still decide its existence by
considering the local ordering relations between the membership degrees of all
relevant concepts, at every node and its parents. As seen in the example above, it
is possible to provide an abstract description of the models of interest through a
preorder over all subconcepts and membership degrees explicitly appearing in the
input TBox and set of restrictions. Figure 1 provides an abstract representation
of all models of T that satisfy the restriction R. In the figure, A↑ represents the
membership degree of the parent node to A. As it can be seen, although the
models of this TBox satisfying the restriction can be arbitrarily complex, they
can all be represented using a very simple recurrent structure. In general, the
existence of a model satisfying a set of restrictions can be characterised through
Hintikka trees.

Consider the set U := VT ,R ∪ sub(T ,R) ∪ sub↑(T ,R) ∪ {λ}, where VT ,R
represents the set of all constants appearing in the input extended with 0, 1,
sub(T ,R) is the set of all subconcepts from T ,R, and λ is an arbitrary new
symbol. A Hintikka order is a total preorder . over U that preserves the standard
ordering of real numbers over VT ,R and is consistent with the semantics of the
propositional constructors. For example, if X,CuD ∈ U and X . CuD, then it
must also hold that X . C and X . D. All other cases can be treated similarly.
Intuitively, a Hintikka ordering represents the relation between the membership
degrees at a specific element of the domain of an interpretation. To ensure that
it is a model, this ordering must also be compatible with the GCIs in the TBox;
that is, for every 〈C v D ≥ q〉 ∈ T , either C . D or q . D.

Existential and value restrictions are verified producing a sequence of succes-
sors that witness them. For each existential restriction E = ∃r.C in the input,
every node in the Hintikka tree has a distinguished successor φ(E). The Hintikka
ordering associated with this node is required to satisfy (∃r.C)↑ ≡ min(λ,C),
thus serving as a witness for the concept at the parent node. Moreover, for all
other successors associated to a concept quantified over the same role r, the
ordering must satisfy min(λ,C) . (∃r.C)↑. These conditions ensure that the se-
mantics of existential restrictions are satisfied. Similar conditions guarantee the
satisfaction of value restrictions ∀r.C.

A Hintikka tree for T ,R is an infinite tree of constant arity where every node
is labelled with a Hintikka ordering compatible with the TBox T , the successors
satisfy the transition conditions, and the root node satisfies the restrictions in R.



It can be shown thatR is consistent w.r.t. T if and only if there is a Hintikka tree
for T ,R. Notice moreover that there are only finitely many partial orderings over
the set U , and hence also finitely many Hintikka orderings. In fact, the number
of Hintikka orderings is bounded exponentially by the size of the input.

To decide the existence of a Hintikka tree, we construct a simple looping
automaton on (unlabeled) infinite trees. The set of Hintikka orderings defines the
states of the automaton; the transition relation is determined by the transition
conditions for quantified concepts; and the initial states are those that satisfy the
input restrictions. Essentially, the successful runs of this automaton correspond
to the Hintikka trees sought. Thus, the automaton has a successful run iff a
Hintikka tree for T ,R exists iff R is consistent w.r.t. T . For further details
see [4].

This automata-based decision procedure not only provides a tight complexity
bound for reasoning in the fuzzy DL G-ALC. It also opens the door to the
application of other automata-based techniques, originally developed for classical
DLs (e.g. [1, 2]), to this and other fuzzy DLs based on the Gödel t-norm.
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