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The description logic (DL) EL, in which concepts can be built using concept
names as well as the concept constructors conjunction (u), existential restric-
tion (∃r.C), and the top concept (>), has drawn considerable attention in the
last decade since, on the one hand, important inference problems such as the
subsumption problem are polynomial in EL, even with respect to expressive
terminological axioms [6]. On the other hand, though quite inexpressive, EL
can be used to de�ne biomedical ontologies, such as the large medical ontology
SNOMEDCT.3 In EL we can, for example, de�ne the concept of a happy man

as a male human that is healthy and handsome, has a rich and intelligent wife,
a son and a daughter, and a friend:

Human uMale u Healthy u Handsome u

∃spouse.(Rich u Intelligent u Female) u (1)

∃child.Male u ∃child.Female u ∃friend.>

For an individual to belong to this concept, all the stated properties need to
be satis�ed. However, maybe we would still want to call a man happy if most,
though not all, of the properties hold. It might be su�cient to have just a
daughter without a son, or a wife that is only intelligent but not rich, or maybe
an intelligent and rich spouse of a di�erent gender. But still, not too many of
the properties should be violated.

In this paper, we introduce a DL extending EL that allows us to de�ne con-
cepts in such an approximate way. The main idea is to use a graded membership

function, which instead of a Boolean membership value 0 or 1 yields a member-
ship degree from the interval [0, 1]. We can then require a happy man to belong
to the EL concept (1) with degree at least .8. More generally, if C is an EL
concept, then the threshold concept C≥t for t ∈ [0, 1] collects all the individuals
that belong to C with degree at least t. In addition to such upper threshold
concepts, we will also consider lower threshold concepts C≤t and allow the use
of strict inequalities in both. For example, an unhappy man could be required
to belong to the EL concept (1) with a degree less than .2.
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The use of membership degree functions with values in the interval [0, 1]
may remind the reader of fuzzy logics. However, there is no strong relationship
between this work and the work on fuzzy DLs [5] for two reasons. First, in fuzzy
DLs the semantics is extended to fuzzy interpretations where concept and role
names are interpreted as fuzzy sets and relations, respectively. The membership
degree of an individual to belong to a complex concept is then computed using
fuzzy interpretations of the concept constructors. In our setting, we consider
crisp interpretations of concept and role names, and directly de�ne membership
degrees for complex concepts based on them. Second, we use membership degrees
to obtain new concept constructors, but the threshold concepts obtained by
applying these constructors are again crisp rather than fuzzy.

We name our new logic τEL(m), where the membership degree function m
is a parameter in de�ning the logic. In [2], we propose one speci�c such function
deg , but we do not claim this is the only reasonable way to de�ne such a function.
Nevertheless, membership functions are not arbitrary. There are two properties
we require such functions to satisfy:

De�nition 1. A graded membership function m is a family of functions that

contains for every interpretation I a function mI : ∆I → [0, 1] satisfying the

following conditions:

M1 : d ∈ CI ⇔ mI(d,C) = 1

M2 : C ≡ D ⇔ for all d ∈ ∆I : mI(d,C) = mI(d,D).

Property M2 expresses the intuition that the membership value should not de-
pend on the syntactic form of a concept, but only on its semantics.

The set of τEL(m) concept descriptions is de�ned inductively, starting from
�nite sets of concept names NC and role names NR, as follows:

Ĉ, D̂ ::= > | A | Ĉ u D̂ | ∃r.Ĉ | E∼q
where A ∈ NC, r ∈ NR, ∼ ∈ {<,≤, >,≥}, q ∈ [0, 1] ∩Q, E is an EL concept de-

scription, and Ĉ, D̂ are τEL(m) concept descriptions. For a given interpretation
I = (∆I , .I), the semantics of the new threshold concepts is de�ned as follows:

[E∼q]
I := {d ∈ ∆I | mI(d,E) ∼ q}.

The extension of .I to more complex concepts is de�ned as for EL by additionally
considering the semantics of the newly introduced threshold concepts.

To make things more concrete, we introduce in [2] a speci�c membership
function, denoted deg , which satis�es properties M1 and M2. Given an interpre-
tation I, an element d ∈ ∆I , and an EL concept description C, this function
measures to which degree d satis�es the conditions for membership expressed by
C. To come up with such a function, we use the homomorphism characterization
of crisp membership in EL. In EL, concept descriptions and interpretations can
be translated into EL description trees and EL description graphs, respectively
(see [4,1]). Then, homomorphisms between EL description trees can be used
to characterized subsumption in EL [4]. The proof of this result can be easily
adapted to obtain the following characterization of element-hood in EL.



Theorem 1. Let I be an interpretation, d ∈ ∆I and C an EL concept descrip-

tion. Then, d ∈ CI i� there exists a homomorphism ϕ from TC to GI such that

ϕ(v0) = d.

Using Theorem 1 as a starting point, we consider all partial mappings h from
TC to GI that map the root of TC to d and respect the edge structure of TC .
For each of these mappings we then calculate to which degree it satis�es the
homomorphism conditions, and take the degree of the best such mapping as the
membership degree degI(d,C). Intuitively, to compute the degree associated to
a partial mapping h, we de�ne the weighted homomorphism induced by h as a
function hw : dom(h) → [0, 1]. Basically, in the de�nition of this function, the
individual d is punished (in the sense that its membership degree is lowered)
for each missing property (i.e., required element-hood in a concept name or an
existential restriction) in a uniform way (see [2] for the precise de�nition).

In [2], we describe an algorithm that, given a �nite interpretation I, computes
degI(d,C) in polynomial time. This polynomial time algorithm is inspired by
the polynomial time algorithm for checking the existence of a homomorphism
between EL description trees [3,4], and similar to the algorithm for computing
the similarity degree between EL concept descriptions introduced in [9].

The main technical contribution of this work is, however, the investigation
of the complexity of terminological (subsumption, satis�ability) and assertional
(consistency, instance) reasoning in τEL(deg). To provide lower bounds, we show
NP-hardness of the satis�ability problem by a simple reduction from the well-
known NP-complete problem ALL-POS ONE-IN-THREE 3SAT [8]. The corre-
sponding NP upper bound for satis�ability is an immediate consequence of the
following polynomial bounded model property.

Lemma 1. Let Ĉ be a τEL(deg) concept description of size m. If Ĉ is satis�-

able, then there exists an interpretation J such that ĈJ 6= ∅ and |∆J | ≤ m.

A coNP-upper bound for subsumption cannot directly be obtained from the
fact that satis�ability is in NP. In fact, though we have Ĉ v D̂ i� Ĉ u ¬D̂ is
unsatis�able, this equivalence cannot be used directly since ¬D̂ need not be a
τEL(deg) concept description. Nevertheless, we can extend the ideas used in the
proof of Lemma 1 to obtain a polynomial bounded model property for satis�a-
bility of concepts of the form Ĉ u ¬D̂. The same is true for ABox consistency.
Regarding instance checking, the bound on the size of counter models is expo-
nential w.r.t. combined complexity, but fortunately still polynomial w.r.t. data
complexity (in the sense of [7]).

Overall, we thus obtain the following complexity results for reasoning in
τEL(deg).

Theorem 2. In the DL τEL(deg), satis�ability is NP-complete, subsumption

is coNP-complete, and ABox consistency is NP-complete. Moreover, instance

checking is coNP-complete w.r.t. data complexity.

Due to the space constraints, we could not provide technical details and
proofs in this extended abstract. They can be found in the technical report [2].
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