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Abstract. In Ontology-Based Data Access (OBDA), user queries are
evaluated over a set of facts under the open world assumption, while
taking into account background knowledge given in the form of a De-
scription Logic (DL) ontology. In order to deal with dynamically chang-
ing data sources, temporal conjunctive queries (TCQs) have recently
been proposed as a useful extension of OBDA to support the processing
of temporal information. We extend the existing complexity analysis of
TCQ entailment to very expressive DLs underlying the OWL 2 stan-
dard, and in contrast to previous work also allow for queries containing
transitive roles.

1 Introduction

Given a (man-made or natural) dynamical system that changes its states over
time, it is sometimes useful to monitor the behavior of the system in order to
detect and then react to critical situations [2]. To achieve this, one can monitor
the running system using sensors (e.g., heart rate and blood pressure sensors
for a patient) and store the (possibly aggregated and preprocessed) values in
a database. Critical situations (such as “blood pressure too high”) can then be
described by database queries, and detecting them can be realized through query
answering. However, such a pure database solution is unsatisfactory for several
reasons. First, one cannot assume that the sensors provide a complete description
of the current state of the system, which clashes with the closed world assumption
used by database systems. Second, though one usually does not have a complete
specification of the system’s behavior, one may have some background knowledge
restricting the possible states of the system, which can help to detect more
situations.

These two problems are addressed by so-called ontology-based data access
(OBDA) [14,27], where (i) the preprocessed and aggregated data are stored in a
Description Logic (DL) ABox, which is interpreted with open world assumption,
and (ii) the background knowledge is represented in a TBox (ontology) expressed
in an appropriate DL. DLs [5] can be used to formalize knowledge using concepts,
which represent sets of elements of an application domain, and roles, which de-
scribe binary relations between elements. For example, the concept Patient can
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be used to model the set of all patients in a hospital, while isTreatedWith repre-
sents a relationship between patients and treatments. Concept constructors can
then be used to build complex concepts out of atomic concepts and roles. For
example, Patientu∃isTreatedWith.Antibiotics describes patients treated with an-
tibiotics. In the TBox, one can state subconcept-superconcept relationships, such
a ∃isTreatedWith.Antibiotics v ∃finding.BacterialInfection, which says that antibi-
otics treatment is given only if there is a bacterial infection. In the ABox, one can
state specific facts about individuals, such as isTreatedWith(BOB,PENICILLIN).

When monitoring a dynamical system, the situation to be recognized may
also depend on states of the system at different points in time (such as “fluctu-
ating heart rate”). For this reason, OBDA was extended to the temporal case
in [1,4]. In [4] the complexity of answering temporal conjunctive queries (TCQs)
w.r.t. TBoxes was investigated for TBoxes expressed in DLs between ALC and
SHQ. The results are concerned both with data complexity (which is measured
only in the size of the data) and with combined complexity (which additionally
takes the size of the query and the TBox into account). In addition, the paper
considers rigid concepts and roles, whose interpretations must not change over
time.

We extend the results of [4] in two directions. First, while being quite expres-
sive, SHQ does not contain the constructors nominals and inverse roles, which
are quite useful in many applications. Here, we also consider logics that have
these two constructors. However, the main difference is that, though SHQ can
express transitivity of roles and sub-role relationships, transitive roles and roles
with transitive subroles must not occur in queries in [4]. In the present paper,
we dispense with this restriction, which unfortunately leads to a dramatic in-
crease in complexity that reflects the results for standard (atemporal) queries
(see [15,21] and Table 2).

As an example that illustrates the benefit of transitive roles in queries, assume
that we want to recognize patients who have previously had myocarditis, i.e., an
inflammation of the heart muscle. This can be expressed using the TCQ

Patient(x) ∧
#− 3−

(
∃y, z.partOf(y, x) ∧ Heart(y) ∧ partOf(z, y) ∧Muscle(z) ∧ Inflamed(z)

)
This query is looking for a patient that, at some past time point, had (as part)
a heart that itself had as part a muscle that was inflamed. In this example, we
assume that the role partOf is transitive and rigid. Transitivity implies that the
inflamed muscle was also part of the patient and rigidity ensures that the heart
is not part of different patients at different points in time. In addition, we assume
that Heart and Muscle are rigid (hearts and muscles stay hearts and muscles over
time), but Patient and Inflamed are non-rigid (the muscle may, e.g., cease to be
inflamed and the patient may be discharged).

In the next section, we introduce the DLs investigated in this paper, as well as
TCQs and their semantics. We also give an overview over the already known and
the new complexity results (see Table 2). Section 3 investigates the complexity
of answering certain atemporal queries in a fine-grained way. The reason is that,



Table 1. Syntax and Semantics of DLs

syntax semantics

inverse role r− {(e, d) | (d, e) ∈ rI}

negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
existential restriction ∃r.C {d ∈ ∆I | there is e ∈ CI with (d, e) ∈ rI}
nominal {a} {aI}
at-most restriction 6n r.C {d ∈ ∆I | ]{e ∈ CI | (d, e) ∈ rI} ≤ n}

general concept inclusion C v D CI ⊆ DI
concept assertion C(a) aI ∈ CI
role assertion r(a, b) (aI , bI) ∈ rI
role inclusion r v s rI ⊆ sI
transitivity axiom trans(r) rI = (rI)+

similar to [4], we split the task of answering TCQs into propositional temporal
reasoning on the one hand, and answering atemporal queries on the other hand.
In Section 4, we then determine the combined complexity of answering TCQs
whereas in Section 5 we deal with the data complexity. Full proofs of our results
can be found in an accompanying technical report [3].

2 Preliminaries

In this section, we recall the basic notions of DLs and TCQs. Throughout the
paper, let NC, NR, and NI be non-empty, pairwise disjoint sets of concept names,
role names, and individual names, respectively.

Definition 1 (Syntax of DLs). A role is either a role name r ∈ NR or an
inverse role r−. The set of concepts is inductively defined starting from concept
names A ∈ NC using the constructors in the second part of Table 1, where r, s are
roles, a, b ∈ NI, n ∈ N, and C,D are concepts. The third part of Table 1 shows
how axioms are defined. A TBox is a finite set of general concept inclusions
(GCIs), an RBox is a finite set of role inclusions and transitivity axioms, and
an ABox is a finite set of concept and role assertions. A knowledge base (KB)
K = (A, T ,R) consists of an ABox A, a TBox T , and an RBox R.

In the DL ALC, negation, conjunction, and existential restriction are the only al-
lowed constructors. Also, no inverse roles, role inclusions and transitivity axioms
are allowed in ALC. Additional letters denote different concept constructors or
types of axioms: I means inverse roles, O means nominals, Q means at-most
restrictions, and H means role inclusions. For example, the DL ALCHI extends
ALC by role inclusions and inverse roles. The extension of ALC with transi-
tivity axioms is denoted by S. Hence, the DL allowing for all the constructors
and types of axioms introduced here is called SHOIQ. We sometimes write
L-concept (L-KB, . . . ) for some DL L to make clear which DL is used.



Definition 2 (Semantics of DLs). An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty domain, and ·I is a mapping assigning a set AI ⊆ ∆I

to every A ∈ NC, a binary relation rI ⊆ ∆I×∆I to every r ∈ NR, and a domain
element aI ∈ ∆I to every a ∈ NI, such that aI 6= bI for all a, b ∈ NI with
a 6= b (unique name assumption (UNA)). This function is extended to roles and
concepts as shown in Table 1, where ]S denotes the cardinality of the set S.

Moreover, I is a model of the axiom α (written I |= α) if the condition
in the third part of Table 1 is satisfied, where ·+ denotes the transitive closure.
Furthermore, I is a model of a set of axioms X (written I |= X ) if it is a model
of all axioms α ∈ X , and I is a model of a KB K = (A, T ,R) (written I |= K)
if is is a model of A, T , and R. We call K consistent if it has a model.

For an RBox R, we call a role name r ∈ NR transitive (w.r.t. R) if every model
of R is a model of trans(r). Moreover, r is a subrole of a role name s ∈ NR

(w.r.t. R) if every model of R is a model of r v s. Finally, r is simple w.r.t. R
if it has no transitive subrole. Deciding whether r ∈ NR is simple can be done
in time polynomial in the size of R by a simple reachability test. Unfortunately,
the problem of deciding whether a given SHQ-KB K = (A, T ,R) is consistent is
undecidable in general [19]. To regain decidability, we need to make the following
syntactic restriction: if 6n r.C occurs in K, then r must be simple w.r.t. R.

To better separate the influence the ABox has on the complexity of reasoning,
we assume in the following that assertions use only names that must also occur
in the TBox or the RBox. One can still simulate a complex concept assertion
C(a) using A(a) and A ≡ C, where the latter stands for A v C and C v A.

Before we can define temporal queries, we need to lift the notions of knowl-
edge bases and interpretations to a temporal setting. We assume that there are
designated sets NRC ⊆ NC of rigid concept names and NRR ⊆ NR of rigid role
names, whose interpretation does not change over time. All individual names
are implicitly rigid. A concept or role name that is not rigid is called flexible.

Definition 3 (TKB). A tuple K = ((Ai)0≤i≤n, T ,R), consisting of a finite
sequence of ABoxes Ai, a TBox T , and an RBox R, is called a temporal knowl-
edge base (TKB). Let I = (Ii)i≥0 be an infinite sequence of interpretations
Ii = (∆, ·Ii) over a fixed domain ∆. Then I is a model of K (written I |= K) if
– Ii |= Ai for all i, 0 ≤ i ≤ n,
– Ii |= T and Ii |= R for all i ≥ 0, and
– I respects rigid names, i.e., xIi = xIj for all x ∈ NI∪NRC∪NRR and i, j ≥ 0.

We denote the set of all individual names occurring in a TKB K by Ind(K). TCQs
are defined by combining conjunctive queries via the operators of LTL [4,26].

Definition 4 (Syntax of TCQs). Let NV be a set of variables. A conjunctive
query (CQ) is of the form ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a finite
conjunction of atoms of the form A(z1) ( concept atom), r(z1, z2) ( role atom),
or z1 ≈ z2 ( equality atom), where A ∈ NC, r ∈ NR, and z1, z2 ∈ NV ∪ NI.

Temporal conjunctive queries (TCQs) are built inductively from CQs, us-
ing the constructors ¬φ1 (negation), φ1 ∧ φ2 (conjunction), #φ1 (next), #−φ1
(previous), φ1 Uφ2 (until), and φ1 Sφ2 (since), where φ1 and φ2 are TCQs.



In contrast to [4], we allow non-simple roles to occur in CQs. A union of conjunc-
tive queries (UCQ) is a disjunction of CQs, defined as φ1∨φ2 := ¬(¬φ1∧¬φ2). A
CQ-literal is either a CQ or a negated CQ. We denote the set of individual names
occurring in a TCQ φ by Ind(φ), the set of variables occurring in φ by Var(φ),
and the set of free variables of φ by FVar(φ). If FVar(φ) = ∅, we call φ Boolean.
As in [4], we assume without loss of generality that all CQs are connected, i.e.,
all variables and individual names are related (transitively) by roles.

Definition 5 (Semantics of TCQs). An interpretation I = (∆, ·I) is a model
of a Boolean CQ φ (written I |= φ) if there is a homomorphism of φ into I,
which is a mapping π : Var(φ) ∪ Ind(φ) → ∆ with π(a) = aI for all a ∈ Ind(φ);
π(z) ∈ AI for all concept atoms A(z) in φ; (π(z1), π(z2)) ∈ rI for all role atoms
r(z1, z2) in φ; and π(z1) = π(z2) for all equality atoms z1 ≈ z2 in φ.

An infinite sequence of interpretations I = (Ii)i≥0 over a common domain ∆
is a model of a Boolean TCQ φ at time point i ≥ 0 iff I, i |= φ holds, where

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= ¬φ1 iff I, i 6|= φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= φ1 Uφ2 iff there is k ≥ i with I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is k, 0 ≤ k ≤ i with I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i

Given a TKB K = ((Ai)0≤i≤n, T ,R), we say that I is a model of φ w.r.t. K if
I |= K and I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K,
and it is entailed by K (written K |= φ) if every model I of K satisfies I, n |= φ.

For a TCQ φ, a : FVar(φ) → Ind(K) is a certain answer to φ w.r.t. K if
K |= a(φ), where a(φ) is obtained from φ by replacing the free variables using a.

As usual [4], in the following we consider only the TCQ entailment problem,
which can be used to compute all certain answers. For this purpose, we analyze
the satisfiability problem, which has the same complexity as non-entailment. We
examine both the combined complexity where the whole TKB and the TCQ are
considered as the input, and the data complexity, where TBox, RBox, and TCQ
are fixed, i.e., the complexity is measured only w.r.t. the sequence of ABoxes.

In the remainder of this section, we recall the basic approach from [4] to de-
cide satisfiability by splitting it into two separate satisfiability problems, one
for the temporal component and one for the DL component. In the follow-
ing, let K = ((Ai)0≤i≤n, T ,R) be a TKB and φ be a TCQ to be checked for
satisfiability. The propositional abstraction φp of φ is the propositional LTL-
formula obtained from φ by replacing all CQs by propositional variables. We
assume that α1, . . . , αm are the CQs occurring in φ, and that each αi is re-
placed by the propositional variable pi, 1 ≤ i ≤ m. We now consider a set
S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, which intuitively specifies the worlds that are



Table 2. Summary of known and new complexity results for TCQ entailment, where
contributions of this paper are highlighted in boldface. Settings: (i) no rigid names are
allowed, (ii) only rigid concept names are allowed, and (iii) arbitrary rigid names are
allowed.

data complexity combined complexity
(i) (ii) (iii) (i) (ii) (iii)

ALC – ALCHQ [4] co-NP co-NP ≤Exp Exp co-NExp 2-Exp

ALCO – ALCHOQ/ALCHOI co-NP co-NP ≤Exp ≥co-NExp ? 2-Exp
S – SQ co-NP co-NP ≤Exp ≥co-NExp ? 2-Exp
SO – SOQ ≥co-NP ? ≤Exp ≥co-NExp ? 2-Exp

SH/ALCI – SHIQ co-NP co-NP ≤Exp 2-Exp 2-Exp 2-Exp
SHO – SHOQ/SHOI ≥co-NP ? ≤Exp 2-Exp 2-Exp 2-Exp
ALCOIQ – ALCHOIQ ≥co-NP ? decidable ≥co-2-NExp ? decidable
SOIQ – SHOIQ ≥co-NP ? ? ≥co-2-NExp ? ?

allowed to occur in an LTL-structure satisfying φp at time point n, and a mapping
ι : {0, . . . , n} → {1, . . . , k}, which assigns a world Xι(i) to each input ABox Ai.
Definition 6 (t-satisfiability). The LTL-formula φp is t-satisfiable w.r.t. S
and ι if there exists an LTL-structure J = (wi)i≥0 such that J, n |= φp, wi ∈ S
for all i ≥ 0, and wi = Xι(i) for all i, 0 ≤ i ≤ n.
However, finding S and ι and then testing t-satisfiability is not sufficient for
checking whether φ has a model w.r.t. K. We must also check whether S can
indeed be induced by some sequence of interpretations that is a model of K, in
the following sense.

Definition 7 (r-satisfiability). The set S is r-satisfiable w.r.t. ι and K if there
exist interpretations J1, . . . ,Jk, I0, . . . , In that share the same domain, respect
rigid names, are models of T and R, and additionally each Ji, 1 ≤ i ≤ k, is a
model of χi :=

∧
pj∈Xi αj ∧

∧
pj /∈Xi ¬αj, and each Ii, 0 ≤ i ≤ n, is a model of

Ai and χι(i).
The following was shown in [4] for SHQ, but is actually independent of any
specific DL.

Proposition 8. φ is satisfiable w.r.t. K iff there are a set S and a mapping ι
such that S is r-satisfiable w.r.t. ι and K, and φp is t-satisfiable w.r.t. S and ι.

The complexity of the t-satisfiability problem is obviously also DL-agnostic, and
hence we can reuse another result from [4].

Proposition 9. Deciding t-satisfiability of φp w.r.t. S and ι can be done in Exp
w.r.t. combined complexity, and in P w.r.t. data complexity.

Table 2 gives an overview over all known complexity results for TCQ entailment.
We distinguish the cases that (i) no rigid names are allowed (NRC = NRR = ∅);
(ii) only rigid concept names are allowed, but no rigid role names (NRR = ∅);
and (iii) arbitrary rigid names are allowed. The first row of the table contains
the known results for ALC/ALCHQ [4]1, and in this paper we derive the upper
1 Actually, that paper considers SHQ, but restricts the roles in CQs to be simple.



bounds for cases (ii) and (iii) marked in bold font. Unfortunately, we leave open
the precise data complexity for case (iii), as was the case in [4]. A question mark
indicates that the precise complexity is unknown even for the atemporal CQ
entailment problem. For SHOIQ, it is not even known whether this problem is
decidable, while for ALCHOIQ it is only known to be decidable, but no better
upper bound has been found so far [25,28]. The shown lower bounds follow from
the complexity of satisfiability of ALC-LTL formulae [4, 6] and the complexity
of atemporal CQ entailment. More precisely, the latter problem is co-NP-hard
in data complexity already for ALE [29]. Under combined complexity, it is co-
NExp-hard for ALCO [23] and S [15], 2-Exp-hard for SH [15] and ALCI [21],
and co-2-NExp-hard for ALCOIQ [18].

3 Atemporal Queries in SHIQ, SHOQ, and SHOI

Since our results about TCQ entailment are based on reductions to conjunctions
of CQ-literals, we first analyze in more detail the case of such atemporal queries.
In a nutshell, we reduce the satisfiability of such a conjunction to UCQ non-
entailment and exploit existing algorithms for this problem. We consider only the
logics SHIQ, SHOQ, and SHOI that have the quasi-forest model property [12],
which means that every consistent KB formulated in one of these logics has a
model that basically consists of several tree-shaped structures whose roots are
arbitrarily interconnected by roles (disregarding role connections due to nominals
or transitive roles).

To show the results in the following sections, however, we need to conduct
a more fine-grained analysis of the complexity of the atemporal query entail-
ment algorithms. The main insight is that, while UCQ entailment in SHIQ,
SHOQ, and SHOI is in 2-Exp w.r.t. combined complexity, the number of CQs
in the UCQ only has an exponential influence on the complexity of this decision
problem. Likewise, for data complexity, assuming that the number of CQs in
the UCQ is linear instead of constant usually has no influence on the complex-
ity. Unfortunately, to the best of our knowledge, the precise data complexity of
UCQ entailment is known only for SHIQ, ALCHOQ, and ALCHOI, while for
SHOQ and SHOI it is still open [25].

In the following, we consider the size of a CQ ψ (written |ψ|) to be the number
of symbols in ψ, ignoring constant expressions like ‘(’ and ‘∧’, considering each
name and variable to be of size 1, and further ignoring the prefix ∃y1, . . . , ym since
these variables also occur in the atoms of ψ. For example, ∃x, y.r(x, y) ∧ A(x)
has size 5. We could also assume that each name or variable is represented by a
binary string denoting its name, and hence of size logarithmic in the size of ψ, but
this would not affect our complexity results. Similarly, the size of a knowledge
base is computed by ignoring the concept constructors, and hence considers only
the number of occurrences of names in the axioms.

Lemma 10. Let ψ = ρ1 ∧ · · · ∧ ρ` ∧ ¬σ1 · · · ∧ ¬σo be a Boolean conjunction of
CQ-literals, K = (A, T ,R) be a KB formulated in SHIQ, SHOQ, or SHOI,



and ‖ψ‖ := max{|ρ1|, . . . , |ρ`|, |σ1|, . . . , |σo|}. Then the satisfiability of ψ w.r.t. K
can be decided by a deterministic algorithm in time bounded by 2p(`,o,|K|)

p′(‖ψ‖)
,

for two polynomials p and p′.
In the case of SHIQ, ALCHOQ, or ALCHOI, if T , R, and ‖ψ‖ are fixed,

then satisfiability of ψ w.r.t. K can be decided by a nondeterministic algorithm
in time bounded by p(`, o, |A|) for some polynomial p.

Proof. As in [4], we reduce the decision whether ψ has a model w.r.t. K to a UCQ
non-entailment problem. We instantiate the positive CQs ρ1, . . . , ρ` by omitting
the existential quantifiers and replacing all variables by fresh individual names.
The set Aρ of all resulting assertions can be viewed as an additional ABox. To
ensure that the UNA is satisfied, we additionally consider equivalence relations ≈
on Ind(A ∪ Aρ) with the additional restriction that no two names from Ind(A)
may be equivalent. We denote by A≈ the ABox resulting from Aρ by replacing
each new individual name by a fixed representative of its equivalence class, where
this representative is an element of Ind(A) whenever possible. It can be shown
as in [4] that ψ is satisfiable w.r.t. K iff there is an equivalence relation ≈ with

(A ∪A≈, T ,R) 6|= σ1 ∨ · · · ∨ σo. (1)

Note that the number of equivalence relations ≈ is exponential in the total
number of variables in ρ1, . . . , ρ`, which is bounded by ` · ‖ψ‖, but each is of size
polynomial in ` · ‖ψ‖. Hence, one can either enumerate all such equivalences in
time exponential in ` · ‖ψ‖, or guess one of them in time polynomial in ` · ‖ψ‖.

We now consider the case that K is formulated in SHIQ. By [16, Lemma 23],
for the non-entailment test (1), it suffices to find a so-called extended knowl-
edge base K′ = (A ∪ A≈ ∪ A′, T ∪ T ′,R), where A′ and T ′ are formulated in
SHIQu, i.e., SHIQ extended by role conjunctions, such that K′ is consistent.
By [16, Lemma 20 and Definition 21], the size of each (A′, T ′) is bounded by
p(o ·(|K|+` ·‖ψ‖))p(‖ψ‖) for some polynomial p, where the term ` ·‖ψ‖ represents
the size of the additional ABox A≈. The bound given in [16] is exponential in
the total size of the UCQ, i.e., o · ‖ψ‖, but the exponential blowup comes only
from the rewriting of each individual CQ σi. Moreover, all pairs (A′, T ′) can
be enumerated in time bounded by 2p(o·(|K|+`·‖ψ‖))

p(‖ψ‖)
. It is important to note

that the size of the longest role conjunction occurring in (A′, T ′) is bounded by
a polynomial in ‖ψ‖. Hence, by [16, Lemma 28], one can check the consistency
of K′ in time 2p

′(o·(|K|+`·‖ψ‖))p
′(‖ψ‖)

for some polynomial p′. Thus, we can decide
satisfiability of ψ w.r.t. K by enumerating all relations ≈ and extended KBs as
above and testing each of them for consistency within the claimed time bound.

If T , R, and ‖ψ‖ are fixed, then one can guess ≈ in time polynomial in `. Fol-
lowing the proof of [16, Theorem 35], one can also guess K′ in time p(o·(|A|+`)),
and the following consistency test can be done in (deterministic) polynomial time
in the size of the ABox A ∪ A≈ ∪ A′, which is polynomial in o · (|A| + `). This
establishes the second bound for the case of SHIQ.

The proof of the remaining cases can be found in the technical report. For
SHOQ, we use algorithms developed in [17, 20]. For SHOI, we analyze the



automata-based construction from [12,13] based on fully enriched automata [9].
For ALCHOQ and ALCHOI under the assumption that T , R, and ‖ψ‖ are
fixed, we obtain the claimed results using a tableaux algorithm introduced in [24].

ut

4 Combined Complexity of TCQ Entailment

Let K = ((Ai)0≤i≤n, T ,R) be a TKB, φ be a TCQ, and assume for now that
a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} → {1, . . . , k}
are given. For our complexity results, we employ the copying technique from [4,6]
for deciding whether S is r-satisfiable w.r.t. ι and K. The idea is to introduce
enough copies of all flexible names in order to combine the separate satisfiability
tests of Def. 7 into one big atemporal satisfiability test.

Formally, for all i, 1 ≤ i ≤ k+n+1, and every flexible concept name A (every
flexible role name r) occurring in T or R, we introduce a copy A(i) (r(i)). We
call A(i) (r(i)) the i-th copy of A (r). The conjunctive query α(i) (the axiom β(i))
is obtained from a CQ α (an axiom β) by replacing every flexible name by its
i-th copy. Similarly, for 1 ≤ ` ≤ k, the conjunction of CQ-literals χ(i)

` is obtained
from χ` (see Definition 7) by replacing each CQ αj by α

(i)
j . Finally, we define

χS,ι :=
∧

1≤i≤k

χ
(i)
i ∧

∧
0≤i≤n

(
χ
(k+i+1)
ι(i) ∧

∧
α∈Ai

α(k+i+1)

)
,

TS,ι := {β(i) | β ∈ T and 1 ≤ i ≤ k + n+ 1},
RS,ι := {γ(i) | γ ∈ R and 1 ≤ i ≤ k + n+ 1}.

The following result, which reduces r-satisfiability to an atemporal satisfiability
problem, was shown in [4] for SHQ with simple roles in queries, but it remains
valid in our setting since it does not depend on the DL under consideration.

Proposition 11. The set S is r-satisfiable w.r.t. ι and K iff χS,ι is satisfiable
w.r.t. (TS,ι,RS,ι).

Together with Lemma 10, this allows us to show our first complexity results.

Theorem 12. Let L be a DL that contains ALCI or SH and is contained in
SHIQ, SHOQ, or SHOI. Then TCQ entailment in L is 2-Exp-complete w.r.t.
combined complexity, and in Exp w.r.t. data complexity.

Proof. The lower bound directly follows from 2-Exp-hardness of CQ entailment
in SH [15] and ALCI [21]. To check a TCQ φ for satisfiability w.r.t. a TKB K,
we first enumerate all possible sets S and mappings ι, which can be done in
2-Exp. For each of these double exponentially many pairs (S, ι), we then check
t-satisfiability of φp w.r.t. S and ι in exponential time (see Proposition 9) and
test S for r-satisfiability w.r.t. ι and K (using Proposition 11). By Proposition 8,
φ has a model w.r.t. K iff at least one pair passes both tests.



For the r-satisfiability test, observe that the conjunction of CQ-literals χS,ι
contains exponentially many (negated) CQs, each of size polynomial in the size
of φ, and that TS,ι andRS,ι are of exponential size in the size of K. By Lemma 10,
the satisfiability of χS,ι w.r.t. (TS,ι,RS,ι) can thus be checked in double expo-
nential time in the size of φ and K. For the data complexity, observe that the
number of CQs in χS,ι is linear in the size of the input ABoxes, and their size
only depends on φ (the size of a single assertion is constant). Moreover, TS,ι and
RS,ι are of size linear in n. Lemma 10 thus yields the claimed upper bound. ut
By the same arguments, it is easy to see that TCQ entailment in ALCHOIQ is
decidable since this is the case for UCQ (non-)entailment [28].

5 Data Complexity without Rigid Roles

To obtain a tight bound on the data complexity if we disallow rigid role names,
we follow a different approach from [4]. Similarly to the previous section, we
decide r-satisfiability of S w.r.t. ι and K by constructing conjunctions of CQ-
literals of which we want to check satisfiability. However, we do not compile the
whole r-satisfiability check into just one conjunction. More precisely, we define
the conjunctions of CQ-literals γi ∧ χS , 0 ≤ i ≤ n, w.r.t. (TS ,RS), where

γi :=
∧
α∈Ai

α(ι(i)), χS :=
∧

1≤i≤k

χ
(i)
i ,

TS := {β(i) | β ∈ T and 1 ≤ i ≤ k},
RS := {γ(i) | γ ∈ R and 1 ≤ i ≤ k}.

This separates the consistency checks for the individual ABoxes Ai, 1 ≤ i ≤ n,
from each other. For r-satisfiability, we additionally have to make sure that
rigid consequences of the form A(a) for a rigid concept name A ∈ NRC and an
individual name a ∈ NI are shared between all the conjunctions γi∧χS . It suffices
to do this for the set RCon(T ) of rigid concept names occurring in T since those
that occur only in ABox assertions cannot affect the entailment of the TCQ φ.

For this purpose, we guess a set D ⊆ 2RCon(T ) that fixes the combinations of
rigid concept names that are allowed to occur in the models of γi ∧ χS , and a
function τ : Ind(φ) ∪ Ind(K)→ D that assigns to each individual name one such
combination. To express this formally, we extend the TBox by the axioms in

TD := {AY ≡ CY | Y ∈ D},

where AY are fresh rigid concept names and, for every Y ⊆ RCon(T ),

CY :=
l

A∈Y
A u

l

A∈RCon(T )\Y

¬A.

The size of Tτ is bounded polynomially in the sizes of D and RCon(T ), which
are constant w.r.t. data complexity. We now extend the conjunctions γi ∧χS by

ρτ :=
∧

a∈Ind(φ)∪Ind(K)

Aτ(a)(a)



in order to fix the behavior of the rigid concept names on the named individuals.
We need one more definition to formulate the main lemma of this section.

We say that an interpretation I respects D if

D = {Y ⊆ RCon(T ) | there is a d ∈ ∆I with d ∈ (CY )I},

which means that every combination of rigid concept names in D is realized by a
domain element of I, and conversely, the domain elements of I may only realize
those combinations that occur in D.

Lemma 13. Let the DL L be contained in SHIQ, ALCHOQ, or ALCHOI. If
NRR = ∅, then S is r-satisfiable w.r.t. ι and K iff there exist D ⊆ 2RCon(T ) and
τ : Ind(φ)∪ Ind(K)→ D such that each γi∧χS ∧ρτ , 0 ≤ i ≤ n, has a model w.r.t.
(TS ∪ TD,RS) that respects D. ut

The restriction imposed by D can be expressed as the conjunction of CQ-literals

σD := (¬∃x.AD(x)) ∧
∧
Y ∈D
∃x.AY (x),

where AD is a fresh concept names that is restricted by adding the axiom
AD ≡

d
Y ∈D ¬AY to the TBox. We denote by T ′S the resulting extension of

TS ∪ TD, and have now reduced the r-satisfiability of S w.r.t. ι and K to the
consistency of γi ∧ χS ∧ ρτ ∧ σD w.r.t. (T ′S ,RS).

Theorem 14. Let L be a DL that contains ALE and is contained in SHIQ,
ALCHOQ, or ALCHOI. Then TCQ entailment in L is co-NP-complete w.r.t.
data complexity.

Proof. The lower bound follows from co-NP-hardness of instance checking in
ALE [29]. To test satisfiability of a TCQ φ w.r.t. a TKB K, we employ the same
approach as before, but instead guess S and ι. Since S is of constant size in the
size of the ABoxes and ι is of linear size, this can be done in nondeterministic
polynomial time. The t-satisfiability test for Proposition 8 can be done in poly-
nomial time by Proposition 9, and for the r-satisfiability test, we use Lemma 13.

Following the reduction described above, we guess a set D ⊆ 2RCon(T ) and
a function τ : Ind(φ) ∪ Ind(K) → D, which can be done in nondeterministic
polynomial time since D only depends on T and τ is of size linear in the size
of the input ABoxes. Next, we check the satisfiability of the polynomially many
conjunctions γi ∧ χS ∧ ρτ ∧ σD w.r.t. (T ′S ,RS). Note that χS , σD, T ′S , and RS
do not depend on the input ABoxes, while γi and ρτ are of polynomial size.
Furthermore, the size of the CQs in γi and ρτ is constant. Hence, Lemma 10
yields the desired NP upper bound for these satisfiability tests. ut

6 Conclusions

Query answering w.r.t. DL ontologies is currently a very active research area.
We have extended complexity results for very expressive DLs underlying the



web ontology language OWL2 to the case of temporal queries. Our results show
that, w.r.t. worst-case complexity, adding a temporal dimension often comes for
free. In fact, in all sublogics of SHOIQ, the upper bounds for the combined
complexity of TCQ entailment obtained in this paper for the temporal case
coincide with the best known upper bounds for atemporal query entailment
(even in the presence of rigid roles). From the application point of view, data
complexity is more important since the amount of data is often very large, and in
comparison the size of the background knowledge and the user query is small. We
have shown that, in many cases, the atemporal data complexity of co-NP does
not increase if we consider TCQs with rigid concepts (specifically, in ALCHOQ,
ALCHOI, SHIQ, and sublogics). For the remaining logics of Table 2, it is an
open problem to find a co-NP algorithm even in the atemporal case.

As part of future work, we will try to obtain co-NP upper bounds even in
the presence of rigid roles, and study extensions of TCQs with concrete domains
and inconsistency-tolerant semantics. Since co-NP is already a rather negative
result for data complexity, we could also try to find restricted formalisms with
lower data complexity. On the one hand, one could take a less expressive DL
to formulate the background ontology, which has already been investigated for
EL [11] and DL-LiteHhorn [10], but only the latter choice reduces the data com-
plexity (to ALogTime). On the other hand, one could investigate whether the
data complexity can be reduced by imposing additional restrictions on the TBox
or CQs, as has been done in the atemporal case [7, 8, 22].
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