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Abstract

Ontology-based data access (OBDA) generalizes query answering in databases towards deductive entailment since
(i) the fact base is not assumed to contain complete knowledge (i.e., there is no closed world assumption), and (ii) the
interpretation of the predicates occurring in the queries is constrained by axioms of an ontology. OBDA has been
investigated in detail for the case where the ontology is expressed by an appropriate Description Logic (DL) and the
queries are conjunctive queries. Motivated by situation awareness applications, we investigate an extension of OBDA
to the temporal case. As the query language we consider an extension of the well-known propositional temporal logic
LTL where conjunctive queries can occur in place of propositional variables, and as the ontology language we use the
expressive DL SHQ. For the resulting instance of temporalized OBDA, we investigate both data complexity and combined
complexity of the query entailment problem. In the course of this investigation, we also establish the complexity of
consistency of Boolean knowledge bases in SHQ.
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1. Introduction

Situation awareness tools [1, 2] try to help the user to
detect certain situations within a running system. Here
“system” is seen in a broad sense: it may be a computer
system, air traffic observed by radar, or a patient in an
intensive care unit. From an abstract point of view, the
system is observed by certain “sensors” (e.g., heart rate
and blood pressure monitors for a patient), and the results
of sensing, possibly already preprocessed and aggregated
appropriately, are stored in a fact base. Based on the infor-
mation available in the fact base, the situation awareness
tool is supposed to detect certain predefined situations
(e.g., heart rate very high and blood pressure low), which
require a reaction (e.g., fetch a doctor or give medication).

In a simple setting, one could realize such a tool by using
standard database techniques: the information obtained
from the sensors is stored in a relational database, and the
situations to be recognized are specified by queries in an
appropriate query language (e.g., conjunctive queries [3]).
However, in general we cannot assume that the sensors
provide us with a complete description of the current state
of the system, and thus the closed world assumption (CWA)
employed by database systems (where facts not occurring
in the database are assumed to be false) is not appropriate
(since there may be facts for which it is not known whether
they are true or false). In addition, though one usually
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does not have a complete specification of the working of
the system (e.g., a complete biological model of a human
patient), one has some knowledge about how the system
works. This knowledge can be used to formulate constraints
on the interpretation of the predicates used in the queries,
which may cause more answers to be found.

Ontology-based data access [4, 5] addresses these require-
ments. The fact base is viewed to be a Description Logic
ABox (which is not interpreted with the CWA), and an
ontology, also formulated in an appropriate DL, constrains
the interpretations of unary and binary predicates, called
concepts and roles in the DL community. In OBDA, one
usually assumes that the ABox is obtained from external
data sources (in the case of situation awareness, the raw
sensor data) through appropriate mappings (which in our
case realize the preprocessing and aggregation of the sen-
sor data), but for the purpose of this paper we abstract
from the mapping step, assuming that the result of the
preprocessing is explicitly represented in an ABox.
As an example, assume that the ABox A contains the

following assertions about patient Bob:

systolic_pressure(BOB,P1), High_pressure(P 1),
history(BOB, H1), Hypertension(H1), Male(BOB),

which say that Bob has high blood pressure (obtained from
sensor data), and is male and has a history of hypertension
(obtained from the patient records). In addition, we have an
ontology that says that patients with high blood pressure
have hypertension and that patients that currently have
hypertension and also have a history of hypertension are
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at risk of a heart attack:

∃systolic_pressure.High_pressure v ∃finding.Hypertension
∃finding.Hypertension u ∃history.Hypertension

v ∃risk.Myocardial_infarction

The situation we want to recognize for a given patient
x is whether this patient is a male person who is at risk
of a heart attack. This situation can be described by the
conjunctive query

∃y.Male(x) ∧ risk(x, y) ∧Myocardial_infarction(y).

Given the information in the ABox and the axioms in the
ontology, we can derive that Bob satisfies this query, i.e.,
he is a certain answer of the query. Obviously, without the
ontology this answer could not be derived.
The complexity of query entailment w.r.t. an ontology,

i.e., the complexity of checking whether a given tuple of
individuals is a certain answer of a query in an ABox w.r.t.
an ontology, has been investigated in detail for cases where
the ontology is expressed in an appropriate DL and the
query is a conjunctive query. One can either consider the
combined complexity, which is measured in the size of the
whole input (consisting of the query, the ontology, and the
ABox), or the data complexity, which is measured in the
size of the ABox only (i.e., the query and the ontology are
assumed to be of constant size). The underlying assumption
is that the query and the ontology are usually relatively
small, whereas the size of the data may be huge. In the
database setting (where there is no ontology and CWA is
used), conjunctive query entailment is NP-complete w.r.t.
combined complexity and in AC0 w.r.t. data complexity [3,
6]. For expressive DLs, the complexity of checking certain
answers is considerably higher. For instance, for the well-
known DLALC, the query entailment problem is ExpTime-
complete w.r.t. combined complexity and co-NP-complete
w.r.t. data complexity [7–9]. For this reason, the more light-
weight DLs of the DL-Lite family have been developed, for
which the entailment problem is still in AC0 w.r.t. data
complexity, and for which computing certain answers can
be reduced to answering first-order queries in the database
setting [10].

Unfortunately, OBDA as described until now is not suffi-
cient to achieve situation awareness. The reason is that the
situations we want to recognize may depend on states of
the system at different time points. For example, assume
that we want to find male patients with a history of hyper-
tension, i.e., patients that are male and at some previous
time point had hypertension.1 In order to express this kind
of temporal queries, we propose to extend the well-known
propositional temporal logic LTL [11] by allowing the use
of conjunctive queries in place of propositional variables.

1Whereas in the previous example we have assumed that a history
of hypertension was explicitly noted in the patient records, we now
want to derive this information from previously stored information
about blood pressure, etc.

For example, male patients with a history of hypertension
can then be described by the query

Male(x) ∧#−3−(∃y.finding(x, y) ∧ Hypertension(y)),

where #− stands for “previous” and 3− stands for “some-
time in the past.” We call the queries obtained this way
temporal conjunctive queries (TCQs). These queries ex-
tend the temporal description logic ALC-LTL introduced
and investigated in [12]. In ALC-LTL, only concept and
role assertions (i.e., very restricted conjunctive queries with-
out variables and existential quantification) can be used in
place of propositional variables. As in [12], we also consider
rigid concepts and roles, i.e., concepts and roles whose in-
terpretation does not change over time. For example, we
may want to assume that the concept Male is rigid, and
thus a patient that is male now also has been male in the
past and will stay male in the future.
Our overall setting for recognizing situations will thus

be the following. In addition to a global ontology T
(which describes properties of the system that hold at
every time point, using the expressive DL SHQ), we have
a sequence of ABoxes A0,A1, . . .An, which (incompletely)
describe the states of the system at the previous time points
0, 1, . . . , n− 1 and the current time point n. The situation
to be recognized is expressed by a temporal conjunctive
query, as introduced above, which is evaluated w.r.t. the
current time point n.

1.1. Related Work
Our work combines results on atemporal conjunctive

query answering w.r.t. DL ontologies with LTL as a tempo-
ral logic component. In the following, we describe relevant
work in these two fields as well as similar approaches to tem-
poral query answering, which have mainly been developed
for the light-weight languages of the DL-Lite family.
We build on the the results about the complexity of

conjunctive query entailment of [8, 13, 14] (see Sections 2.2
and 3 for details). Additionally, for our proofs it is not
sufficient to use only the results, but we must also adapt the
methods developed in these papers to show these results.
For example, we adapt the constructions involving forest
models and equivalence relations over individual names
from [14], and we use the results about spoilers in SHQ∩
from [8].
The temporal component of our query language is

LTL [11]. As such, we adapt the automata construction
for LTL satisfiability from [15, 16]. Our language also gen-
eralizes ALC-LTL [12], which allows DL axioms in place of
propositional variables, and in fact several constructions in
the present paper are adaptations of those for ALC-LTL,
in particular the ones used to show Lemmata 4.3 and 6.4
in [12]. The latter result about the consistency of Boolean
ALC-knowledge bases is in turn an adaptation of Theo-
rem 2.27 from [17]. Our hardness results for combined
complexity also follow easily from the results in [12].
Instead of temporalizing the query language and using

a global (atemporal) ontology, one can also temporalize
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the ontology language. Extensions of various description
logics with temporal operators in concepts and axioms have
been studied (see for example [17, 18]). A comprehensive
survey of temporal description logics can be found in [19].
In [20], various light-weight DLs are extended by allowing
temporal operators inside concepts. In addition to com-
plexity results for temporal extensions of DL-Lite, it is also
shown that reasoning easily becomes undecidable already
in a small temporal extension of the description logic EL.
Although the DL-Lite family was developed with mainly
query answering in mind, the complexity results in [20] are
concerned with inference problems not involving queries.

In the literature, one can find several approaches to tem-
poral query answering in description logics. In [21], tem-
poral query answering over temporalized RDF triples [22]
using an extension of the SPARQL query language is con-
sidered.

In [23], the very expressive temporalized DL DLRUS is
introduced, which is an extension of DLR that allows for
temporal operators within concepts and roles. Moreover,
the query containment problem of non-recursive Datalog
queries under constraints defined in DLRUS is investigated.
It turns out that this problem is in general undecidable, but
becomes decidable in the fragment DLR−US , where no tem-
poral operators are allowed within roles. The query contain-
ment problem is then in 2-ExpTime, whereas satisfiability
and subsumption in DLR−US are ExpSpace-complete.

Following the ideas of [20], in [24] a temporal extension of
DL-Lite is presented, which allows the temporal operators
3− and 3 on the left-hand side of GCIs and role inclusions.
In this logic, first-order rewritability of CQs w.r.t. DL-Lite-
knowledge bases is preserved from the atemporal case.
Thus, techniques from temporal relational databases can
be used to answer temporal queries that can refer to specific
points in time.

An approach to temporalize query answering in DL-Lite
that is more similar to the one considered in this paper is
presented in [25]. There, CQs are used as atoms in a tem-
poral formula that does not use negation. This allows easy
reuse of results about atemporal first-order rewritability
in DL-Lite. The paper also presents an algorithm to an-
swer such temporal queries over temporal databases, which
generalizes an algorithm from [26, 27].

A similar approach is pursued in [28] to combine a generic
DL query component with a linear temporal dimension.
To simplify the decision procedures, both components are
decoupled via an autoepistemic modal operator. This
allows to use atemporal query answering procedures as a
black-box inside a temporal satisfiability algorithm.

1.2. Our Contribution

We investigate both the combined and the data com-
plexity of our temporal extension of OBDA, as sketched
above, in three different settings: (i) both concepts and
roles may be rigid; (ii) only concepts may be rigid; and
(iii) neither concepts nor roles are allowed to be rigid. It

is well-known that one can simulate rigid concept names
by rigid role names [12], which is why there are only three
cases to consider.

The complexity results for TCQ entailment obtained in
this paper are summarized in Table 1. These results hold
for all description logics between ALC and SHQ. In fact,
we show that the hardness results already hold for ALC
and we prove the complexity upper bounds for the more
expressive DL SHQ.
SHQ extends ALC with transitive roles, subroles, and

qualified number restrictions. In the conference paper
[29], which is a precursor of the present paper, we showed
these results for ALC only. From a practical point of
view, we found the extension to SHQ interesting since
the additional means of expressiveness are important for
biomedical ontologies. For instance, one usually wants the
part-of role (which is, e.g., extensively used in medical
ontologies to define human anatomy) to be transitive, and
it is also useful to distinguish the proper-part-of role from
the part-of role and to declare that the former is a subrole
of the latter [30]. Number restrictions can, among other
things, be used to express that certain roles are functional.
In our introductory example, it makes sense to require that
a patient can have only one systolic blood pressure at each
point in time. More general number restrictions can be
used to express anatomical facts such as that humans have
exactly two kidneys. From a more theoretical point of view,
we wanted to know how far one can extend ALC without
increasing the complexity of query entailment. SHQ is
here the limit. If we add inverse roles, which are also quite
useful when defining medical ontologies, then the combined
complexity increases. In fact, for ALCI query entailment is
already 2-ExpTime-complete w.r.t. combined complexity
in the atemporal case [8]. For SHOQ (extending SHQ
by nominals) and SROQ (further extending SHOQ by
complex role inclusions), the best known upper bounds are
respectively 2-ExpTime and 3-ExpTime [31, 32]. Also, we
restrict the query language such that transitive roles (e.g.
the part-of role) and roles having transitive subroles cannot
directly be used in queries. The reason is that otherwise
query entailment is known to be co-NExpTime-hard in S
and 2-ExpTime-hard in SH even in the atemporal case [33].
Note, however, that such roles can be used indirectly since
concept names whose definition in the global ontology
involves such a role can be used in queries.

Though our complexity results are the same for ALC and
SHQ, and in principle the approaches used below to prove
the upper bounds for SHQ are similar to the ones employed
in [29, 34] for ALC, the proof details are considerably more
complex for SHQ. In particular, the proof of Theorem 4.1
uses a construction different from that of Theorem 3.2
in [34] since in the presence of number restrictions it is not
so easy to simply copy elements of a model while retaining
the satisfaction of the knowledge base. Furthermore, the
quasimodel construction in Section 6.3 uses new notions to
deal with role axioms, and systems of linear equations to
simulate the semantics of number restrictions.

3



Table 1: The complexity of simple TCQ entailment for all DLs between ALC and SHQ.

data complexity combined complexity
without rigid names co-NP-complete ExpTime-complete

(Corollary 4.2 and Theorem 4.13) (Theorems 4.3 and 4.13)
without rigid role names co-NP-complete co-NExpTime-complete

(Corollary 4.2 and Theorem 5.2) (Theorems 4.3 and 6.3)
with rigid names co-NP-hard/in ExpTime 2-ExpTime-complete

(Corollary 4.2 and Theorem 4.15) (Theorems 4.3 and 4.15)

For the combined complexity, the results obtained in
the present paper are actually identical to the ones for
ALC-LTL [12], though the upper bounds are considerably
harder to show. The data complexity results in Settings (ii)
and (iii) coincide with the ones for atemporal query en-
tailment, which is co-NP-complete w.r.t. data complexity.
For Setting (i), we can show that the entailment prob-
lem is in ExpTime w.r.t. data complexity (in contrast to
2-ExpTime-completeness w.r.t. combined complexity), but
we do not have a matching lower bound. To show the result
for combined complexity in Setting (ii), we additionally
establish the complexity of the atemporal problem of con-
sistency of Boolean knowledge bases in SHQ extended with
a limited form of role conjunctions.

Of the other related work mentioned in the previous sub-
section, the ones described in [23–25, 28] are most closely
related to our work. Nevertheless, they differ from our
approach in several ways:

• We consider the expressive DL SHQ instead of light-
weight DLs such as DL-Lite [24, 25].

• We consider a temporal query language instead of a
temporal ontology language [23, 24].

• In contrast to [28], we consider also the case of rigid
concept and role names. In [24, 25], rigid names are
also used, but in the context of light-weight DLs.

2. Preliminaries

In this section, we introduce the description logics ALC
and SHQ, conjunctive queries, and the temporal logic LTL.
These are the main ingredients for our temporal query
language, which will be defined in Section 3.

2.1. Description Logics

Description Logics (DLs) are a family of knowledge repre-
sentation formalisms (for an introduction, see [35]). While
our temporal query language can be parameterized with any
DL, in this paper we consider the DLs between ALC and
SHQ [36]. In the proof of Theorem 6.3, we additionally use
the DL SHQ∩ that extends SHQ with role conjunctions.

Definition 2.1 (syntax of SHQ∩). Let NC, NR, and
NI, be sets of concept names, role names, and individ-
ual names, respectively. The set of SHQ∩-concepts is the
smallest set such that

• all concept names A ∈ NC are SHQ∩-concepts, and

• if C,D are SHQ∩-concepts, r, r1, . . . , r` ∈ NR, and n
is a non-negative integer, then ¬C (negation), C uD
(conjunction), ∃(r1 ∩ · · · ∩ r`).C (existential restric-
tion), and ≥n r.C (at-least restriction) are also SHQ∩-
concepts.

A general concept inclusion in SHQ∩ (SHQ∩-GCI ) is of
the form C v D, where C,D are SHQ∩-concepts. A role
inclusion is of the form r v s, and a transitivity axiom is of
the form trans(r), where where r and s are role names. An
assertion is of the form A(a) (concept assertion) or r(a, b)
(role assertion), where A ∈ NC, r ∈ NR, and a, b ∈ NI. An
SHQ∩-axiom is either an SHQ∩-GCI, a role inclusion, a
transitivity axiom, or an assertion.

An SHQ∩-TBox is a finite set of SHQ∩-GCIs, an SHQ∩-
RBox is a finite set of role inclusions and transitivity axioms,
and an ABox is a finite set of assertions. An SHQ∩-
knowledge base K = 〈A, T ,R〉 consists of an ABox A, an
SHQ∩-TBox T , and an SHQ∩-RBox R. We denote the
set of individual names occurring in an SHQ∩-knowledge
base K by Ind(K).

Other constructors that are often used in SHQ∩ can be
defined as follows:

• > := At¬A (top), where A is an arbitrary, but fixed,
concept name;

• ⊥ := ¬> (bottom);

• C tD := ¬(¬C u ¬D) (disjunction);

• ∀(r1 ∩ · · · ∩ r`).C := ¬(∃(r1 ∩ · · · ∩ r`).¬C) (value
restriction); and

• ≤n r.C := ¬(≥(n+ 1) r.C) (at-most restriction).

As mentioned above, most of the time, we consider the
description logic SHQ that does not allow role conjunc-
tions in existential restrictions, i.e., requires that ` = 1.
We sometimes restrict the DL under consideration, e.g., to
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Figure 1: The relative expressivity of the DLs between ALC
and SHQ∩.

the sublogic ALC of SHQ∩ which does not allow role con-
junctions, transitivity axioms, role inclusions, or at-least
restrictions, and then write, e.g., ALC-knowledge base in-
stead of SHQ∩-knowledge base. The extension of ALC
with transitivity axioms is usually denoted by S. The
letters H and Q respectively denote the presence of role
inclusions and number restrictions. In Figure 1, all relevant
DLs and their relations are depicted.
From now on, we consider an arbitrary (but fixed) DL

between ALC and SHQ, and therefore we often drop this
prefix. Moreover, some notions, like interpretations and
conjunctive queries, do not even depend on the DL under
consideration.

Definition 2.2 (semantics of SHQ∩). An interpreta-
tion is a pair I = (∆I , ·I), consisting of a non-empty set
∆I (called domain) and an interpretation function ·I that
assigns to every A ∈ NC a set AI ⊆ ∆I , to every r ∈ NR
a binary relation rI ⊆ ∆I ×∆I , and to every a ∈ NI an
element aI ∈ ∆I such that the unique name assumption
(UNA) is satisfied, i.e., for all a, b ∈ NI with a 6= b we
have aI 6= bI . The interpretation function is extended to
concepts as follows:

• (¬C)I := ∆I \ CI ;

• (C uD)I := CI ∩DI ;

• (∃(r1 ∩ · · · ∩ r`).C)I := {d ∈ ∆I | there is an e ∈ CI
with (d, e) ∈ rI1 ∩ · · · ∩ rI` }; and

• (≥n r.C)I := {d ∈ ∆I | |{e ∈ CI | (d, e) ∈ rI}| ≥ n}.

An interpretation I is a model of an axiom α if

• CI ⊆ DI for α = C v D;

• rI ⊆ sI for α = r v s;

• rI ◦ rI ⊆ rI , i.e., rI is transitive, for α = trans(r);

• aI ∈ AI for α = A(a); and

• (aI , bI) ∈ rI for α = r(a, b).

We say that I is a model of a set of axioms if it is a model of
all axioms contained in it, and I is a model of a knowledge
base K = 〈A, T ,R〉 if it is a model of A, T , and R. We
write I |= α if I is a model of the axiom α, and similarly
for sets of axioms and knowledge bases.
A knowledge base is consistent if it has a model. An

axiom α is entailed by a knowledge base K (written K |= α)
if all models of K are also models of α, and similarly for
sets of axioms.

Motivated by the semantics of GCIs, we often use the
expression C ≡ D for two concepts C and D to abbreviate
the two GCIs C v D and D v C, restricting any model to
interpret C and D by the same set.
Recall that, contrary to the usual definition of concept

assertions, we only allow concept names to occur in them,
but no complex concepts. One can circumvent this by
introducing abbreviations A for complex concepts C via
A ≡ C. However, this restriction is useful to separate the
influence of the ABox and the TBox on the complexity of
reasoning problems.

If one or more components of a knowledge base 〈A, T ,R〉
are empty, we may also shorten it to, e.g., 〈T ,R〉 or R.
Given an RBox R, we say that a role name r is transitive
(w.r.t. R) if R |= trans(r), and r is a subrole of a role
name s (w.r.t. R) if R |= r v s. Furthermore, r is simple
(w.r.t. R) if it has no transitive subrole. Entailments of
the form R |= trans(r) and R |= r v s can be decided in
polynomial time in the size of R [36].

Unfortunately, consistency of knowledge bases in SHQ is
undecidable, even if all at-least restrictions are unqualified,
i.e., of the form ≥n r.> [36]. One cause of undecidability is
the occurrence of non-simple role names in such restrictions.
To regain decidability, role names occurring in number
restrictions are therefore usually required to be simple. In
the following, we also make this restriction to the syntax
of SHQ∩. We further require that role conjunctions with
at least two conjuncts contain only simple roles.
Under this assumption, the problem of deciding the

consistency of SHQ-knowledge bases is in ExpTime, even
if the numbers occurring in at-least restrictions are given
in binary encoding [37]. On the other hand, the problem
is ExpTime-hard already in ALC [35].
The notion of a knowledge base can be generalized to

arbitrary Boolean combinations of axioms.

Definition 2.3 (Boolean knowledge base). The pair
B = 〈Ψ,R〉 is called a Boolean knowledge base if R is an
RBox and Ψ is a Boolean axiom formula (w.r.t. R). The
set of Boolean axiom formulae (w.r.t. R) is the smallest
set such that

• every assertion is a Boolean axiom formula,
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• every GCI in which number restrictions only contain
simple role names (w.r.t. R) is a Boolean axiom for-
mula, and

• if Ψ1 and Ψ2 are Boolean axiom formulae, then so are
¬Ψ1 (negation) and Ψ1 ∧Ψ2 (conjunction).

The interpretation I is a model of the Boolean knowledge
base 〈Ψ,R〉 if I |= R and I |= Ψ holds, which is also
defined inductively: I |= ¬Ψ1 iff I 6|= Ψ1, and I |= Ψ1∧Ψ2
iff I |= Ψ1 and I |= Ψ2. A Boolean knowledge base is
consistent if it has a model.

The reason that role inclusions and transitivity axioms
are not included in the Boolean axiom formula is that the
notion of simple role names does not make sense w.r.t. a
Boolean combination of role axioms. Observe that every
classical knowledge base 〈A, T ,R〉 is equivalent to the
Boolean knowledge base 〈Ψ,R〉, where Ψ is the conjunction
of all axioms contained in A and T , and thus Boolean
knowledge bases generalize classical knowledge bases. We
denote by Ind(Ψ) the set of individuals occurring in the
Boolean knowledge base B = 〈Ψ,R〉.

2.2. Conjunctive queries
In addition to consistency and entailment, there are

many other inference problems relevant for DLs. One
such problem is answering so-called conjunctive queries,
which generalizes the entailment of assertions, e.g., deciding
whether K |= r(a, b) holds.

Definition 2.4 (CQ). Let NV be a set of variables. A
conjunctive query (CQ) is of the form φ = ∃y1, . . . , ym.ψ,
where y1, . . . , ym ∈ NV and ψ is a (possibly empty) finite
conjunction of atoms of the form

• A(z) for A ∈ NC and z ∈ NV ∪NI (concept atom); or

• r(z1, z2) for r ∈ NR and z1, z2 ∈ NV ∪NI (role atom).

The empty conjunction is denoted by true.
A union of conjunctive queries (UCQ) is of the form

φ1 ∨ · · · ∨ φn, where φ1, . . . , φn, n ≥ 1, are CQs.

We denote the set of individual names occurring in a UCQ φ
by Ind(φ), the set of variables occurring in φ by Var(φ), the
set of free variables of φ by FVar(φ), and the set of atoms
occurring in φ by At(φ). A UCQ φ with FVar(φ) = ∅ is
called Boolean.
Given a UCQ φ and a knowledge base K, we want to

find all certain answers to φ w.r.t. K, i.e., instantiations of
the free variables in φ such that the resulting sentence is
satisfied in all models of K. We first define the semantics
for Boolean UCQs, using the notion of homomorphisms [6].
This is then extended to answering arbitrary UCQs.

Definition 2.5 (UCQ answering). Let I = (∆, ·I) be
an interpretation and φ be a Boolean CQ. A mapping
π : Var(φ) ∪ Ind(φ)→ ∆ is a homomorphism of φ into I if

• π(a) = aI for all a ∈ Ind(φ);

• π(z) ∈ AI for all concept atoms A(z) ∈ At(φ); and

• (π(z1), π(z2)) ∈ rI for all role atoms r(z1, z2) ∈ At(φ).

We say that I is a model of φ (written I |= φ) if there
is such a homomorphism. Furthermore, I is a model of a
Boolean UCQ φ1 ∨ · · · ∨φn if it is a model of φi for some i,
1 ≤ i ≤ n.

A Boolean UCQ φ is entailed by a knowledge base K
(written K |= φ) if every model of K is also a model of φ.
Given a (not necessarily Boolean) UCQ φ, a mapping
a : FVar(φ) → Ind(K) is a certain answer to φ w.r.t. K if
K |= a(φ), where a(φ) is the Boolean UCQ obtained from φ
by replacing the free variables according to a.

For a UCQ φ and a knowledge base K, one can compute
all certain answers by enumerating all candidate mappings
a : FVar(φ)→ Ind(K) and then solving the entailment prob-
lem K |= a(φ) for each a. Since there are |Ind(K)||FVar(φ)|

such mappings, we have to solve exponentially many such
entailment problems.
To analyze the complexity of deciding K |= a(φ), it ob-

viously suffices to consider Boolean UCQs only. Usually,
two kinds of complexity measures are considered: com-
bined complexity and data complexity. For the combined
complexity, all parts of the input, i.e., the UCQ φ and the
knowledge base K, are taken into account. For the data
complexity, the UCQ, the TBox, and the RBox are assumed
to be constant, and the complexity is measured only w.r.t.
the data, i.e., the ABox. For this analysis, we assume in
the following that the query does not introduce new names,
i.e., it contains only concept and role names that also occur
in the TBox or the RBox. This is without loss of generality
since we can always introduce trivial axioms like A v A
or r v r into the TBox and RBox without affecting data
complexity or combined complexity.
Regarding data complexity, the entailment problem for

concept assertions in ALC is already co-NP-hard [38], and
a matching upper bound has been established for UCQ
entailment in SHQ [14].
The entailment problem for concept assertions in ALC

is ExpTime-hard w.r.t. combined complexity [35], and a
matching upper bound is known for entailment of UCQs in
ALCHQ [8]. In S, the problem is already co-NExpTime-
hard, while it becomes 2-ExpTime-hard in SH [33]. In
this paper, we focus on a variant of the UCQ entailment
problem that is ExpTime-complete even for SHQ, namely,
we restrict to simple queries, which are only allowed to use
simple role names. Note that this is only a restriction in
extensions of S.

2.3. Linear Temporal Logic

We now come to the temporal component of our query
language, which is based on propositional linear temporal
logic (LTL) [11].
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Definition 2.6 (LTL). Let {p1, . . . , pm} be a finite set of
propositional variables. The set of LTL-formulae is the
smallest set such that

• p1, . . . , pm are LTL-formulae, and

• if φ1 and φ2 are LTL-formulae, then so are ¬φ1 (nega-
tion), φ1 ∧ φ2 (conjunction), #φ1 (next), #−φ1 (pre-
vious), φ1 Uφ2 (until), and φ1 Sφ2 (since).

An LTL-structure is an infinite sequence J = (wi)i≥0 of
worlds wi ⊆ {p1, . . . , pm}. The LTL-structure J is a model
of an LTL-formula φ at time point i ≥ 0 iff J, i |= φ holds,
which is defined inductively as follows:

J, i |= pj iff pj ∈ wi
J, i |= ¬φ1 iff J, i 6|= φ1
J, i |= φ1 ∧ φ2 iff J, i |= φ1 and J, i |= φ2
J, i |= #φ1 iff J, i+ 1 |= φ1
J, i |= #−φ1 iff i > 0 and J, i− 1 |= φ1
J, i |= φ1 Uφ2 iff there is k ≥ i with J, k |= φ2

and J, j |= φ1 for all j, i ≤ j < k
J, i |= φ1 Sφ2 iff there is k, 0 ≤ k ≤ i with J, k |= φ2

and J, j |= φ1 for all j, k < j ≤ i

An LTL-formula φ is satisfiable if it has a model at time
point 0.

Note that what we introduced above would usually be
called Past-LTL, as LTL is normally defined using only the
operators # and U [11].
Our temporal query language is based on the temporal

DL ALC-LTL, which extends LTL by allowing GCIs and
assertions in place of propositional variables [12]. The
semantics of this logic is determined by infinite sequences of
interpretations, which will be defined more formally in the
next section. It is possible to designate certain concept and
role names as rigid, which means that their interpretation
is not allowed to change over time. Satisfiability of ALC-
LTL-formulae is ExpTime-complete without rigid names,
NExpTime-complete if only concept names are allowed to
be rigid, and 2-ExpTime-complete in general [12].

3. Temporal Conjunctive Queries

We now combine the notions of (simple) conjunctive
queries in SHQ and ALC-LTL-formulae into a new formal-
ism, called temporal conjunctive queries.

In the following, we assume (as in [12]) that a subset of
the concept and role names is designated as being rigid. Let
NRC ⊆ NC denote the rigid concept names, and NRR ⊆ NR
the rigid role names. The names in NC\NRC and NR\NRR
are called flexible. Individual names are also rigid, i.e., an
individual always keeps its name.

We first extend the notion of knowledge bases and models
into the temporal setting. The idea is that there is a global
TBox and a global RBox that define the terminology, and
several ABoxes that contain information about the state
of the world at the time points we have observed so far.

Definition 3.1 (TKB). A temporal knowledge base
(TKB) K = 〈(Ai)0≤i≤n, T ,R〉 consists of a finite sequence
of ABoxes Ai, a TBox T , and an RBox R.

Let I = (Ii)i≥0 be an infinite sequence of interpretations
Ii = (∆, ·Ii) over a fixed domain ∆ (constant domain
assumption). Then I is a model of K (written I |= K) if

• Ii |= Ai for all i, 0 ≤ i ≤ n,

• Ii |= T and Ii |= R for all i ≥ 0, and

• I respects rigid names, i.e., we have xIi = xIj for all
x ∈ NI ∪NRC ∪NRR and all time points i, j ≥ 0.

As for atemporal knowledge bases, we denote by Ind(K)
the set of all individual names occurring in a TKB K.

Definition 3.2 (TCQ). The set of simple temporal con-
junctive queries (TCQs) is the smallest set such that

• every simple CQ is a simple TCQ, and

• if φ1 and φ2 are simple TCQs, then so are ¬φ1 (nega-
tion), φ1 ∧ φ2 (conjunction), #φ1 (next), #−φ1 (pre-
vious), φ1 Uφ2 (until), and φ1 Sφ2 (since).

In the following, we usually drop the qualifier simple. As
for conjunctive queries, the sets Ind(φ) and FVar(φ) contain
all individuals and free variables, respectively, of a TCQ φ,
and a Boolean TCQ is a TCQ without free variables.

As usual in temporal logics, one can define the following
abbreviations:

• φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2) (disjunction);

• 3φ := true Uφ (eventually);

• 2φ := ¬3¬φ (always);

• 3−φ := true Sφ (once); and

• 2−φ := ¬3−¬φ (historically).

As before, we first define the semantics for Boolean
queries, which is a straightforward extension of the seman-
tics of CQs and LTL-formulae. The main difference is that
the point of reference is not the first time point 0, as in
LTL, but rather the last time point n of a given temporal
knowledge base. This can be seen as the current time point,
at which we have information (e.g., sensor data) about the
past, but not yet about the future. The notion of certain
answers can then be defined exactly as in the atemporal
case.

Definition 3.3 (semantics of TCQs). An infinite se-
quence of interpretations I = (Ii)i≥0 is a model of a
Boolean TCQ φ at time point i ≥ 0 iff I, i |= φ holds,
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which is defined inductively as follows (cf. Definition 2.6):

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= ¬φ1 iff I, i 6|= φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= φ1 Uφ2 iff there is k ≥ i with I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is k, 0 ≤ k ≤ i with I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i

Given a TKB K = 〈(Ai)0≤i≤n, T ,R〉, we say that I is
a model of φ w.r.t. K if I |= K and I, n |= φ. We call
φ satisfiable w.r.t. K if it has a model w.r.t. K, and it
is entailed by K (written K |= φ) if every model I of K
satisfies I, n |= φ.
Given a (not necessarily Boolean) TCQ φ, a mapping

a : FVar(φ) → Ind(K) is a certain answer to φ w.r.t. K if
K |= a(φ), where a(φ) is the Boolean TCQ obtained from
φ by replacing the free variables according to a.

As in the atemporal case, one can compute all certain
answers by enumerating the (exponentially many) map-
pings a : FVar(φ)→ Ind(K) and then solving the entailment
problem K |= a(φ) for each a. Therefore, it is enough to
consider the entailment problem. We instead analyze the
complexity of deciding non-entailment K 6|= φ. This prob-
lem has the same complexity as the satisfiability problem
of φ w.r.t. K. In fact, K 6|= φ iff ¬φ has a model w.r.t. K,
and conversely φ has a model w.r.t. K iff K 6|= ¬φ.

Note that, for the data complexity, we have to measure
the complexity in the size of the sequence of ABoxes in the
temporal knowledge base, instead of just a single ABox. As
for the data complexity of the UCQ entailment problem, we
assume that the ABoxes occurring in a temporal knowledge
base and the query contain only concept and role names
that also occur in the global TBox or the global RBox.

Obviously, TCQ entailment includes as a special case the
entailment of CQs by atemporal knowledge bases, which
can be seen as temporal knowledge bases with a sequence
of ABoxes of length 1, i.e., having n = 0. Although models
of such knowledge bases are formally infinite sequences of
interpretations, all but the first interpretation are irrelevant
for CQs.

On the temporal side, the TCQ satisfiability problem gen-
eralizes the satisfiability problem for ALC-LTL-formulae
since assertions are Boolean CQs. Although ALC-LTL-
formulae may additionally contain GCIs, they can equiv-
alently be expressed by negated CQs (see the proof of
Theorem 4.3 for details). On the other hand, TCQs are
more expressive than ALC-LTL-formulae since CQs like
∃y.r(y, y), which says that there is a loop in the model
without naming the individual which has the loop, can
clearly not be expressed in ALC.

4. Complexity of TCQ Entailment

We now analyze the complexity of TCQ entailment in
DLs between ALC and SHQ. We emphasize again that our
queries only use simple role names. Without this restriction,
UCQ entailment is already 2-ExpTime-hard in SH [33].
It is not clear whether our methods would allow us to show
tight upper bounds, as they presently rely on the fact that
UCQ entailment is in ExpTime (see Theorem 4.1). This
allows us to show the same complexity results for simple
TCQ entailment for all logics between ALC and SHQ, i.e.,
we show the lower bounds for ALC and the upper bounds
for SHQ.

The restriction that all interpretations satisfy the UNA
simplifies some of the proofs, but does not affect the results
in this paper. More precisely, the complexity lower bounds
follow from hardness results in [12, 38], the proofs of which
are independent of the unique name assumption. For the
upper bounds, observe that, to find a model that does not
necessarily satisfy the UNA, one can guess in nondeter-
ministic polynomial time an equivalence relation on the
individual names that collects those names that will be
interpreted as the same domain element, replace all names
by a fixed representative of their equivalence class, and
then ask for a model satisfying the UNA. For details on this
construction, see [14] or the proof of Theorem 4.1 below,
where we need to enforce the UNA on newly introduced
individual names. This additional guessing step does not
affect our complexity results.
We first take a look at the atemporal special case of

the satisfiability problem for conjunctions φ of CQ-literals,
which are either Boolean CQs or negated Boolean CQs.
Since such a Boolean TCQ φ contains no temporal op-
erators, for the satisfiability problem it suffices to con-
sider a single interpretation instead of an infinite sequence
I = (Ii)i≥0 of interpretations. Extending the notation for
UCQs, we often write Ii |= φ instead of I, i |= φ in this
case. Furthermore, it is sufficient to consider TKBs with
only one ABox, which can be viewed as classical knowl-
edge bases. The following result will prove useful also for
analyzing entailment of arbitrary TCQs.

Theorem 4.1. Deciding satisfiability of a conjunction of
CQ-literals w.r.t. a knowledge base is

• ExpTime-complete w.r.t. combined complexity and

• NP-complete w.r.t. data complexity.

Proof. Deciding CQ entailment inALC is ExpTime-hard
w.r.t. combined complexity and co-NP-hard w.r.t. data
complexity [9, 35, 38]. This problem is a special case of
the complement of our problem.

Let now K = 〈A, T ,R〉 be an SHQ-knowledge base and
φ be a conjunction of CQ-literals. To check whether there
is an interpretation I with I |= K and I |= φ, we reduce
this problem to a query non-entailment problem of known
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complexity. Let

φ = χ1 ∧ . . . ∧ χ` ∧ ¬ρ1 ∧ . . . ∧ ¬ρm

for Boolean CQs χ1, . . . , χ`, ρ1, . . . , ρm. First, we instan-
tiate the non-negated CQs χ1, . . . , χ` by omitting the ex-
istential quantifiers and replacing the variables by fresh
individual names. The set A′ of all resulting atoms can
thus be viewed as an additional ABox that restricts the
interpretation I.
However, we also have to ensure that the UNA is re-

spected for the newly introduced individual names. To do
this, we employ a trick from [14], which consists in guess-
ing an equivalence relation ≈ on Ind(A∪A′) that specifies
which individual names are allowed to be mapped to the
same domain element, with the additional restriction that
each equivalence class can contain at most one element
from Ind(A). For such a relation ≈, we fix a representative
for each equivalence class such that every class that con-
tains an a ∈ Ind(A) has a as its representative. We denote
by A≈ the ABox resulting from A′ by replacing each new
individual name by the representative of its equivalence
class. Note that there are exponentially many such equiva-
lence relations, each of which is of size polynomial in the
size of φ.
We now show that the existence of an interpretation I

with I |= K for K = 〈A, T ,R〉 and I |= φ is equivalent
to the existence of an equivalence relation ≈ as above
and an interpretation I ′ with I ′ |= 〈A ∪ A≈, T ,R〉 and
I ′ |= ¬ρ1 ∧ . . . ∧ ¬ρm.
For the “if” direction, assume that ≈ is an equivalence

relation on the individual names and I ′ is a model of
A, T , R, A≈, and ¬ρ1 ∧ . . . ∧ ¬ρm. By mapping each
variable occurring in χ1∧. . .∧χ` to the interpretation of the
representative of the equivalence class of the corresponding
fresh individual name, we obtain homomorphisms from χi
into I ′, for each i, 1 ≤ i ≤ n. This shows that I ′ is also a
model of φ.
For the “only if” direction, assume that I |= K and

I |= φ. Thus, there are homomorphisms from each χi,
1 ≤ i ≤ n, into I. We define any pair of individual names
in A ∪ A′ equivalent w.r.t. ≈ iff they are mapped to the
same domain element by their respective homomorphisms
or I. The extension of I that maps each representative
of its equivalence class to exactly this domain element is
obviously a model of A≈. It still satisfies A, T , R, and
¬ρ1∧. . .∧¬ρm since they do not contain the new individual
names, and thus it is of the required form.
The above problem is thus equivalent to finding an

equivalence relation ≈ and an interpretation I with
I |= 〈A ∪ A≈, T ,R〉 and I 6|= ρ, where ρ := ρ1∨· · ·∨ρm is
the Boolean UCQ that results from negating the conjunc-
tion of all negated CQs in φ. This is the same as asking
whether 〈A ∪ A≈, T ,R〉 does not entail ρ.

For the combined complexity, we can enumerate all equiv-
alence relations ≈ in exponential time, and check the above
non-entailment for the polynomial-size SHQ-knowledge

base and UCQ resulting from each ≈, which can be done
in ExpTime [8]. For the data complexity, we can guess ≈
in nondeterministic polynomial time, and check the non-
entailment in NP [13]. 2

In the remainder of this paper, we will present several
constructions, most of which use the above theorem, to
derive the complexity results shown in Table 1 for TCQ
entailment in all DLs between ALC and SHQ. The results
depend on which symbols are allowed to be rigid.

4.1. Lower Bounds for the Entailment Problem
For the data complexity, we obtain the lower bounds

from Theorem 4.1.

Corollary 4.2. TCQ entailment is co-NP-hard w.r.t.
data complexity.

Proof. Theorem 4.1 states that for conjunctions of CQ-
literals φ and atemporal knowledge bases K, deciding
whether φ has a model w.r.t. K is NP-complete w.r.t. data
complexity. Since φ is a special TCQ and rigid names are ir-
relevant in the atemporal case, we obtain co-NP-hardness
w.r.t. data complexity for the entailment problem for all
the cases in Table 1. 2

For the combined complexity, we get the lower bounds by
a simple reduction of the satisfiability problem for ALC-
LTL [12].

Theorem 4.3. TCQ entailment w.r.t. combined complex-
ity is
• ExpTime-hard if NRC = NRR = ∅;

• co-NExpTime-hard if NRC 6= ∅ and NRR = ∅; and

• 2-ExpTime-hard if NRR 6= ∅.

Proof. We reduce the satisfiability problem of ALC-LTL
to the TCQ non-entailment problem.

Let ψ be the Boolean TCQ and T be the TBox obtained
from an ALC-LTL-formula φ as follows. We replace each
GCI C v D in φ by ¬(∃x.A(x)) and add A ≡ Cu¬D to T ,
where A is a fresh concept name. Similarly, we replace
every complex concept assertion E(a) in φ by B(a) and
add B ≡ E to T . Then φ is satisfiable iff 〈∅, T , ∅〉 6|= ¬ψ.
Since satisfiability of ALC-LTL-formulae is ExpTime-

complete without rigid names, NExpTime-complete with
rigid concept names, and 2-ExpTime-complete with rigid
concept and role names [12], this shows the claimed lower
bounds. 2

In the following sections, we present the ideas for the upper
bounds w.r.t. combined complexity and data complexity.
For the former, we can match all lower bounds we have
from Theorem 4.3. For the latter, unfortunately we cannot
match the lower bound of co-NP in the case where we
have rigid role names. While our constructions need to
deal with CQs and the additional expressivity of SHQ in
an appropriate way, the basic ideas are similar to those
presented for ALC-LTL in [12].
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4.2. Upper Bounds for the Entailment Problem

We divide the satisfiability problem of a Boolean TCQ φ
w.r.t. a TKB K = 〈(Ai)0≤i≤n, T ,R〉 into two separate
satisfiability problems, similar to what was done for ALC-
LTL in Lemma 4.3 of [12]. The t-satisfiability expresses
that the temporal structure of φ is consistent, while the
r-satisfiability determines whether it is possible to satisfy
the rigidity constraints for the names in NRC and NRR.

We consider the propositional abstraction φ̂ of φ, which
is the propositional LTL-formula built from φ by replacing
each CQ by a unique propositional variable. We assume
that α1, . . . , αm are the CQs occurring in φ, p1, . . . , pm
are the propositional variables of φ̂, and that each αi is
replaced by pi for all i, 1 ≤ i ≤ m. This LTL-formula
allows us to analyze the temporal structure of φ separately
from the DL query component.

We now consider a set S ⊆ 2{p1,...,pm}, which intuitively
specifies the worlds that are allowed to occur in an LTL-
structure satisfying φ̂. To express this restriction, we define
the propositional LTL-formula

φ̂S := φ̂ ∧2−2

 ∨
X∈S

∧
p∈X

p ∧
∧
p/∈X

¬p

 .

Note that a formula 2−2ψ is satisfied iff ψ holds at all
time points. An immediate connection between φ and φ̂S
is formalized in the next lemma.

Lemma 4.4. If φ has a model w.r.t. K, then there is a set
S ⊆ 2{p1,...,pm} and a propositional LTL-structure that is a
model of φ̂S at time point n.

Proof. Let I = (Ii)i≥0 be a sequence of interpretations
that respects rigid names, is a model of K, and satisfies
I, n |= φ. For each interpretation Ii of I, we set

Xi := {pj | 1 ≤ j ≤ m and Ii satisfies αj},

and then consider the set S := {Xi | i ≥ 0} induced
by I. The propositional abstraction Î = (wi)i≥0 of I is now
defined by wi := Xi for all i ≥ 0. It is easy to check that
the fact that I satisfies φ at time point n implies that Î is
a model of φ̂S at time point n. 2

However, guessing a set S and then testing whether the
induced LTL-formula φ̂S is has a model at time point n is
not sufficient for checking whether φ has a model w.r.t. K.
We must also check whether S can indeed be induced by
some sequence of interpretations that is a model of K. In
the following, let S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, and
ι : {0, . . . , n} → {1, . . . , k} be a mapping that specifies a
set Xι(i) for each of the ABoxes Ai, 0 ≤ i ≤ n.

Definition 4.5 (r-satisfiability). We call S r-satisfiable
w.r.t. ι and K if there exist interpretations J1, . . . ,Jk,
I0, . . . , In such that

• they share the same domain and respect rigid names;2

• they are models of T and R;

• each Ji, 1 ≤ i ≤ k, is a model of

χi :=
∧

pj∈Xi

αj ∧
∧

pj /∈Xi

¬αj ; and

• each Ii, 0 ≤ i ≤ n, is a model of Ai and χι(i).

The intuition underlying this definition is the following.
The existence of the interpretation Ji, 1 ≤ i ≤ k, ensures
that the conjunction χi of the CQ-literals specified by Xi

is consistent. In fact, a set S containing a set Xi for which
this does not hold cannot be induced by a sequence of
interpretations. The interpretations Ii, 0 ≤ i ≤ n, consti-
tute the first n+ 1 interpretations in such a sequence. In
addition to inducing a set Xι(i) ∈ S and thus satisfying
the corresponding conjunction χι(i), the interpretation Ii
must also satisfy the ABox Ai. The first and the second
condition ensure that a sequence of interpretations built
from J1, . . . ,Jk, I0, . . . , In respects rigid names and satis-
fies the global TBox T and the global RBox R. Note that
we can use Theorem 4.1 to check whether interpretations
satisfying the last three conditions of Definition 4.5 exist.
As we will see below, the difficulty lies in ensuring that
they also satisfy the first condition.

Satisfaction of the temporal structure of φ by a sequence
of interpretations built this way is ensured by testing φ̂S
for satisfiability w.r.t. a side condition that ensures that
the first n worlds are those chosen by ι.

Definition 4.6 (t-satisfiability). The LTL-formula φ̂ is
t-satisfiable w.r.t. S and ι if there exists an LTL-structure
J = (wi)i≥0 such that

• J, n |= φ̂S and

• wi = Xι(i) for all i, 0 ≤ i ≤ n.

We can now combine these two satisfiability tests to decide
satisfiability of a TCQ w.r.t. a TKB.

Lemma 4.7. The TCQ φ is satisfiable w.r.t. the TKB K
iff there is a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a
mapping ι : {0, . . . , n} → {1, . . . , k} such that

• S is r-satisfiable w.r.t. ι and K, and

• φ̂ is t-satisfiable w.r.t. S and ι.

Proof. For the “only if” direction, assume that there is
a sequence of interpretations I = (Ii)i≥0 with I |= K and
I, n |= φ. Recall that we have already seen in Lemma 4.4
that I induces a set S ⊆ 2{p1,...,pm} such that φ̂S is satis-
fiable at time point n. Let S = {X1, . . . , Xk}. For each

2This is defined analogously to the case of sequences of interpreta-
tions (Definition 3.1).
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i ≥ 0, there is an index νi ∈ {1, . . . , k} such that Ii induces
the set Xνi , i.e.,

Xνi = {pj | 1 ≤ j ≤ m and Ii satisfies αj},

and, conversely, for each ν ∈ {1, . . . , k}, there is an index
i ≥ 0 such that ν = νi. We define the mapping ι as follows:
ι(i) = νi for all i, 0 ≤ i ≤ n. Let Î = (wi)i≥0 be the
propositional abstraction of I. As argued in Lemma 4.4, Î
is a model of φ̂S at time point n. By definition of ι, Xνi

and Î, we also have wi = Xι(i) for all i, 0 ≤ i ≤ n.
For i, 1 ≤ i ≤ k, the interpretation Ji is obtained as

follows. Let `1, . . . , `k be such that ν`1 = 1, . . . , ν`k = k.
Now, if we set Ji := I`i , then it is clear that Ji is a
model of χi. It is now easy to see that the interpre-
tations J1, . . . ,Jk, I0, . . . , In satisfy the conditions for r-
satisfiability of S w.r.t. ι and K.
To show the “if” direction, assume that there is a set

S = {X1, . . . , Xk}, a mapping ι : {0, . . . , n} → {1, . . . , k},
an LTL-structure J = (wi)i≥0 such that J is a model of
φ̂S at time point n and wi = Xι(i) for all i, 0 ≤ i ≤ n,
and models J1, . . . ,Jk, I0, . . . , In of T and R with the
properties of Definition 4.5.
By the definition of φ̂S , for every world wi, there is

exactly one index νi ∈ {1, . . . , k} such that wi satisfies∧
p∈Xνi

p ∧
∧

p/∈Xνi

¬p.

Since wi, 0 ≤ i ≤ n, satisfies exactly the propositional
variables of Xι(i), we have ι(i) = νi. We can now define
a sequence of interpretations I := (Ii)i≥0 respecting rigid
names as follows: we set Ii := Jνi for i > n. By Defini-
tion 4.5, each Ii satisfies exactly the CQs specified by the
propositional variables in Xνi . Since J, n |= φ̂S , this means
that I, n |= φ. It also follows directly from Definition 4.5
that I |= K. Hence, we have that φ has model w.r.t. K. 2

Since the overall complexity of the satisfiability problem
depends on which symbols are allowed to be rigid, we
obtain the set S and the function ι either by enumeration,
guessing, or direct construction (see, e.g., Theorems 4.13
and 4.15). Given S and ι, it remains to check the two
conditions of Lemma 4.7. For the r-satisfiability test, we
need to use different constructions depending on which
symbols are allowed to be rigid. Using these constructions,
we obtain the complexity results for the entailment problem
shown in Table 1. The details can be found in later sections.
First, we focus on the second condition of Lemma 4.7.

4.2.1. An Automaton for LTL-Satisfiability
We construct a generalized Büchi automaton, similar

to the standard construction for satisfiability of LTL-
formulae [15, 16], such that emptiness of this automaton is
equivalent to t-satisfiability of φ̂ w.r.t. S and ι.

Definition 4.8 (generalized Büchi automaton). A
generalized Büchi automaton G = (Q,Σ,∆, Q0,F) consists

of a finite set of states Q, a finite input alphabet Σ, a
transition relation ∆ ⊆ Q× Σ×Q, a set Q0 ⊆ Q of initial
states, and a set of sets of accepting states F ⊆ 2Q.

Given an infinite word w = σ0σ1σ2 . . . ∈ Σω, a run of G
on w is an infinite word q0q1q2 . . . ∈ Qω such that q0 ∈ Q0
and (qi, σi, qi+1) ∈ ∆ for all i ≥ 0. This run is accepting if,
for every F ∈ F , there are infinitely many i ≥ 0 such that
qi ∈ F . The language accepted by G is defined as

Lω(G) := {w ∈ Σω | there is an accepting run of G on w}.

The emptiness problem for generalized Büchi automata is
the problem of deciding, given a generalized Büchi automa-
ton G, whether Lω(G) = ∅ or not.

We use generalized Büchi automata rather than normal
ones (where |F| = 1) since this allows for a simpler con-
struction below. It is well-known that a generalized Büchi
automaton can be transformed into an equivalent normal
one in polynomial time [39, 40]. Together with the fact
that the emptiness problem for normal Büchi automata can
be solved in polynomial time [16], this yields a polynomial
time bound for the complexity of the emptiness problem
for generalized Büchi automata.
To define our automaton, we need the notion of a type

for φ̂.

Definition 4.9 (type). A sub-literal of φ̂ is a sub-formula
of φ̂ or its negation. A set T of sub-literals of φ̂ is a type
for φ̂ iff the following properties are satisfied:

1. for every sub-formula ψ of φ̂, we have ψ ∈ T iff ¬ψ /∈ T ;

2. for every sub-formula ψ1∧ψ2 of φ̂, we have ψ1∧ψ2 ∈ T
iff {ψ1, ψ2} ⊆ T ;

We denote the set of all types for φ̂ by T. We further define
the set T|S ⊆ T that contains all types T for φ̂ for which
T ∩ {p1, . . . , pm} ∈ S.

The reason that we use the types for φ̂ and not for φ̂S
is that the latter formula is exponentially larger than the
former. To avoid this exponential blowup in the automaton,
we check the additional condition of φ̂S , namely that each
world of a model must occur in the set S, by restricting the
first component of the state set of the automaton to T|S .

Another difference to the standard construction for LTL
is the additional condition that wi = Xι(i) should hold for
all i, 0 ≤ i ≤ n. We check this by attaching a counter from
{0, . . . , n+ 1} to the states of the automaton. Transitions
where the counter is i < n+ 1 check if the current world
corresponds to Xι(i) and increase the counter by 1. At
i = n, we ensure that φ̂ is satisfied.

Definition 4.10 (automaton for t-satisfiability).
The generalized Büchi automaton G = (Q,Σ,∆, Q0,F) is
defined as follows:

• Q := T|S × {0, . . . , n+ 1};
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• Σ := 2{p1,...,pm};

• ((T, k), σ, (T ′, k′)) ∈ ∆ iff

– σ = T ∩ {p1, . . . , pm};
– #ψ ∈ T iff ψ ∈ T ′;
– #−ψ ∈ T ′ iff ψ ∈ T ;
– ψ1 Uψ2 ∈ T iff (i) ψ2 ∈ T or (ii) ψ1 ∈ T and
ψ1 Uψ2 ∈ T ′;

– ψ1 Sψ2 ∈ T ′ iff (i) ψ2 ∈ T ′ or (ii) ψ1 ∈ T ′ and
ψ1 Sψ2 ∈ T ;

– k < n+ 1 implies σ = Xι(k);

– k = n implies φ̂ ∈ T ; and

– k′ =
{
k + 1 if k < n+ 1, and
k otherwise;

• Q0 := {(T, 0) | ψ1 Sψ2 ∈ T ⇒ ψ2 ∈ T and #−ψ /∈ T};
and

• F contains, for each sub-formula of φ̂ of the form
ψ1 Uψ2, the set Fψ1 Uψ2 × {n+ 1}, where

Fψ1 Uψ2 := {T ∈ T|S | ψ1 Uψ2 ∈ T ⇒ ψ2 ∈ T}.

This automaton accepts exactly those sequences of worlds
that satisfy the conditions for t-satisfiability of φ̂ w.r.t. S
and ι. The proof is a straightforward extension of the
original proof for LTL-satisfiability [15, 16], and can be
found in the appendix.

Lemma 4.11. For every infinite word w = w0w1 . . . ∈ Σω,
we have w ∈ Lω(G) iff the LTL-structure J := (wi)i≥0

satisfies J, n |= φ̂S and wi = Xι(i) for all i, 0 ≤ i ≤ n.

This implies that Lω(G) 6= ∅ iff φ̂ is t-satisfiable w.r.t. S
and ι. We can thus decide the latter problem by testing G
for emptiness, which yields the following complexity results.

Lemma 4.12. Deciding t-satisfiability of φ̂ w.r.t. S and ι
can be done

• in ExpTime w.r.t. combined complexity and

• in P w.r.t. data complexity.

Proof. For combined complexity, there are exponentially
many types for φ̂ and exponentially many input symbols in
2{p1,...,pm}. The set F contains linearly many sets of size at
most exponential, while the size of Q0 and ∆ is bounded
polynomially in the size of Q (which is exponential). Since
all conditions that need to be checked to construct the
components of G can be checked in exponential time, and
the size of G is exponential in the size of K and φ, the
emptiness test can be done in ExpTime.
For data complexity, the size of G is polynomial in n

because of the following reasons: the size of T|S is constant
since the size of S depends only on the size of φ, which is

constant. Thus, the size of Q is linear in n. The size of Σ
is constant. Obviously, then the size of ∆ is polynomial
in n. The size of Q0 is linear in n, because Q0 ⊆ Q. The
size of F is logarithmic in n, because each set Fψ1 Uψ2 is
of constant size, and the number of such sets does not
depend on n. Obviously, G can also be constructed in time
polynomial in n. The data complexity of the emptiness
test is thus in P. 2

However, the complexity of the entailment problem also
depends on the complexity of the r-satisfiability test for S.
In the following sections, we will establish some results as
to this complexity in the cases without rigid names, and
with rigid concept and role names. The most interesting
(and most complex) case without rigid role names, but with
rigid concept names, is considered in Section 5 for data
complexity and in Section 6 for combined complexity.

4.2.2. The Case without Rigid Names
Assume that a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and

a mapping ι : {0, . . . , n} → {1, . . . , k} are given. To check
r-satisfiability of S w.r.t. ι and K without rigid names, it
clearly suffices to check the satisfiability of the following
conjunctions of CQ-literals w.r.t. the TBox T and the
RBox R individually:

• for each i, 1 ≤ i ≤ k, the conjunction χi; and

• for each i, 0 ≤ i ≤ n, the conjunction χι(i)∧
∧
α∈Ai α.

3

Each of these conjunctions of CQ-literals is of polynomial
size in the size of K and φ. We can now use Theorem 4.1 to
establish the complexity of the entailment problem without
rigid names.

Theorem 4.13. If NRC = NRR = ∅, TCQ entailment is

• in ExpTime w.r.t. combined complexity and

• in co-NP w.r.t. data complexity.

Proof. For combined complexity, note that we do not
need to guess the set S. Since the r-satisfiability condition
imposes no dependency between the sets X ∈ S, it suffices
to define S as the set of all sets Xi that pass the satisfiabil-
ity test of the corresponding conjunction χi w.r.t. 〈∅, T ,R〉.
Since there are exponentially many such sets, but each of
them is of polynomial size, by Theorem 4.1 we only have
to do exponentially many ExpTime-tests to construct S.
We can further enumerate all possible mappings ι in expo-
nential time and check for each ι the satisfiability of the
conjunctions χι(i)∧

∧
α∈Ai α again in ExpTime. For each ι

that passes these tests, we can check t-satisfiability of φ̂
w.r.t. S and ι in ExpTime by Lemma 4.12. Lemma 4.7 now

3We can assume that all of these models have the same domain
since their domains can be assumed to be countably infinite by
the Löwenheim-Skolem theorem, and that all individual names are
interpreted by the same domain elements in all models.
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yields a total complexity of ExpTime for the satisfiability
problem, and therefore also for the entailment problem.

For data complexity, note that since S is of constant size
w.r.t. the ABoxes and ι is linear in n, guessing S and ι
can be done in NP. Since the t-satisfiability test can be
done in P (Lemma 4.12) and the satisfiability tests for
r-satisfiability of S can be done in NP (Theorem 4.1), by
Lemma 4.7 the satisfiability problem is also in NP. 2

4.2.3. The Case with Rigid Role Names
If the sets NRC and NRR are allowed to be non-empty,

the satisfiability tests for the r-satisfiability of S are not
independent any longer. To make sure that the models
respect the rigid symbols, we use a renaming technique
similar to the one used in [12] that works by introducing
enough copies of the flexible symbols.

For every i, 1 ≤ i ≤ k+n+ 1, and every flexible concept
name A (every flexible role name r) occurring in T or R, we
introduce a copy A(i) (r(i)). We call A(i) (r(i)) the i-th copy
of A (r). The conjunctive query α(i) (the GCI/transitivity
axiom/role inclusion β(i)) is obtained from a CQ α (a
GCI/transitivity axiom/role inclusion β) by replacing every
occurrence of a flexible name by its i-th copy. Similarly, for
1 ≤ ` ≤ k, the conjunction of CQ-literals χ(i)

` is obtained
from χ` (see Definition 4.5) by replacing each CQ αj by α(i)

j .
Finally, we define

χS,ι :=
∧

1≤i≤k
χ

(i)
i ∧

∧
0≤i≤n

(
χ

(k+i+1)
ι(i) ∧

∧
α∈Ai

α(k+i+1)

)
,

TS,ι := {β(i) | β ∈ T and 1 ≤ i ≤ k + n+ 1},
RS,ι := {γ(i) | γ ∈ R and 1 ≤ i ≤ k + n+ 1}.

Note that here it is essential that the ABoxes do not contain
complex concepts, otherwise they could not be interpreted
as conjunctions of CQ-literals.

Lemma 4.14. The set S is r-satisfiable w.r.t. ι and K iff
χS,ι is satisfiable w.r.t. 〈TS,ι,RS,ι〉.

The proof of this lemma can be found in the appendix.
Unfortunately, the data complexity of this approach does
not allow us to match the lower bound of co-NP for the
entailment problem we have from Corollary 4.2. However,
for the combined complexity we obtain containment in
2-ExpTime.

Theorem 4.15. If NRR 6= ∅, TCQ entailment is

• in 2-ExpTime w.r.t. combined complexity and

• in ExpTime w.r.t. data complexity.

Proof. To check a TCQ φ for satisfiability w.r.t. a TKB K,
we first enumerate all possible sets S and mappings ι, which
can be done in 2-ExpTime w.r.t. combined complexity
and in ExpTime w.r.t. data complexity since S is constant
in this case. For each of these double-exponentially many

pairs (S, ι), we then check t-satisfiability of φ̂S w.r.t. S
and ι in exponential time (see Lemma 4.12) and test S
for r-satisfiability w.r.t. ι and K. By Lemma 4.7, φ has a
model w.r.t. K iff at least one pair passes both tests.
For the combined complexity of the r-satisfiability test,

observe that the conjunction of CQ-literals χS,ι is of expo-
nential size in the size of φ and K. By Theorem 4.1, the
overall combined complexity of the r-satisfiability test is
thus in 2-ExpTime.
For the data complexity of the r-satisfiability test, we

know that χS,ι is of linear size in the size of the input
ABoxes. Unfortunately, by copying each of the types χι(i)
assigned to the ABoxes, we have introduced linearly many
negated CQs, which is why Theorem 4.1 only yields an
ExpTime upper bound for the data complexity. Note that
linearly many non-negated CQs in χS,ι are not problematic,
as they can be instantiated and viewed as part of the ABox,
as detailed in the proof of Theorem 4.1. 2

However, we can match the lower bound of co-NP for the
data complexity in the following special cases.

Lemma 4.16. If NRR 6= ∅, TCQ entailment is in co-NP
w.r.t. data complexity if any of the following conditions
apply:

1. The number n of the input ABoxes is bounded by a
constant.

2. The set of individual names allowed to occur in the
ABoxes is fixed.

Proof. As in the proof of Theorem 4.13, we can guess
the set S and the mapping ι in NP and do the LTL-
satisfiability test in P. Thus, it suffices to show that in the
above-mentioned special cases r-satisfiability of S can be
tested in NP.

1. If n is bounded by a constant, then the number of
negated CQs in χS,ι is constant, and thus Theorem 4.1
yields the desired NP upper bound.

2. If the set of individual names is fixed, then the number
of possible assertions involving concept names occur-
ring in the TBox is constant. Note that the concept
names occurring only in the ABoxes do not affect the
entailment of the TCQ, as they can only occur in pos-
itive assertions, and can thus always be satisfied by
appropriately interpreting the new names.
This allows us to restrict the formula χS,ι to contain
at most one copy of χι(i) for each distinct combination
of χι(i) and Ai (ignoring assertions about names that
do not occur in the TBox). Clearly, consistency of
each combination of an ABox with a type needs to be
checked only once. Since there are now only constantly
many such combinations, the modified TCQ χ′S,ι again
contains only constantly many negated CQs. As in
the previous case, Theorem 4.1 yields the result. 2

13



5. Data Complexity for the Case of Rigid Concept
Names

We will now show that the data complexity of TCQ
entailment in the case where NRC 6= ∅ and NRR = ∅ is
in co-NP. As detailed in the proof of Theorem 4.13, it
suffices to show that r-satisfiability of S w.r.t. ι and K can
be checked in NP.
Similar to the previous sections, we construct conjunc-

tions of CQ-literals of which we want to check satisfiabil-
ity. The approach is a mixture of those of Sections 4.2.2
and 4.2.3, as we combine several satisfiability tests required
for r-satisfiability, but do not go as far as compiling all of
them into just one conjunction. More precisely, we consider
the conjunctions of CQ-literals γi ∧ χS , 0 ≤ i ≤ n, w.r.t.
〈TS ,RS〉, where

γi :=
∧
α∈Ai

α(ι(i)), χS :=
∧

1≤i≤k
χ

(i)
i ,

TS := {β(i) | β ∈ T and 1 ≤ i ≤ k},
RS := {γ(i) | γ ∈ R and 1 ≤ i ≤ k}.

However, for r-satisfiability we have to make sure that
rigid consequences of the form A(a) for a rigid concept
name A ∈ NRC and an individual name a ∈ NI are shared
between all of these conjunctions γi ∧ χS . It suffices to do
this for the set RCon(T ) of rigid concept names occurring
in T since those that occur only in ABox assertions cannot
affect the entailment of the TCQ φ.

Similar to what was done in Lemma 6.3 of [12], we guess
a set D ⊆ 2RCon(T ) and a function τ : Ind(φ) ∪ Ind(K)→ D.
The idea is that D fixes the combinations of rigid concept
names that occur in the models of γi ∧ χS and τ assigns
to each individual name one such combination. To express
this formally, we extend the TBox by the axioms in

Tτ := {Aτ(a) ≡ Cτ(a) | a ∈ Ind(φ) ∪ Ind(K)},

where Aτ(a) are fresh rigid concept names and, for every
Y ⊆ RCon(T ), the concept CY is defined as

l

A∈Y
A u

l

A∈RCon(T )\Y

¬A.

Correspondingly, we extend the conjunctions γi ∧ χS by

ρτ :=
∧

a∈Ind(φ)∪Ind(K)

Aτ(a)(a)

in order to fix the behavior of the rigid concept names on
the named individuals.
We need one more definition to formulate the main

lemma of this section. We say that an interpretation I
respects D if

D = {Y ⊆ RCon(T ) | there is a d ∈ ∆I with d ∈ (CY )I},

which means that every combination of rigid concept names

in D is realized by a domain element of I, and conversely,
the domain elements of I may only realize those combina-
tions that occur in D.

Lemma 5.1. If NRC 6= ∅ and NRR = ∅, then S is r-
satisfiable w.r.t. ι and K iff there exist D ⊆ 2RCon(T )

and τ : Ind(φ) ∪ Ind(K) → D such that each γi ∧ χS ∧ ρτ ,
0 ≤ i ≤ n, has a model w.r.t. 〈TS ∪Tτ ,RS〉 that respects D.

The proof of this lemma can be found in the appendix.
Observe now that the restriction imposed by D can

equivalently be expressed as the conjunction of CQ-literals

σD := (¬∃x.AD(x)) ∧
∧
Y ∈D
∃x.AY (x),

where AY and AD are fresh concept names that are re-
stricted by adding the axioms AD ≡

d
Y ∈D ¬AY and

AY ≡ CY for each Y ∈ D to the TBox.4 We denote by T ′S
the resulting extension of TS ∪ Tτ , and have now reduced
the r-satisfiability of S w.r.t. ι and K to the consistency of
γi ∧ χS ∧ ρτ ∧ σD w.r.t. 〈T ′S ,RS〉.

Theorem 5.2. If NRC 6= ∅ and NRR = ∅, TCQ entail-
ment is in co-NP w.r.t. data complexity.

Proof. Following the reduction described above, we guess
a set D ⊆ 2RCon(T ) and a function τ : Ind(φ)∪ Ind(K)→ D,
which can be done in nondeterministic polynomial time
since D only depends on T and τ is of size linear in the size
of the input ABoxes. Next, we check the satisfiability of
the polynomially many conjunctions γi∧χS ∧ρτ ∧σD w.r.t.
〈T ′S ,RS〉. Note that χS , σD, T ′S , and RS do not depend
on the input ABoxes, while γi and ρτ are of polynomial
size. Furthermore, only χS may contain negated CQs, and
thus their number does not depend on the size of the input
ABoxes. Hence, one can see from the proof of Theorem 4.1
that this satisfiability problem can be also be decided in
nondeterministic polynomial time in data complexity.
By Lemma 5.1, r-satisfiability of S w.r.t ι and K can

be decided in NP, and thus we can obtain the desired
complexity upper bound for TCQ entailment as in the
proof of Theorem 4.13. 2

6. Combined Complexity for the Case of Rigid
Concept Names

Unfortunately, the approach used in the previous section
does not yield a combined complexity of co-NExpTime.
The reason is that the conjunctions χS and σD are of
exponential size in the size of φ, and thus Theorem 4.1 only
yields an upper bound of 2-ExpTime. In this section, we

4We did not add all the axioms AY ≡ CY earlier since we reuse
Lemma 5.1 in the following section about combined complexity, and
these additional axioms cause an exponential blowup in the size of
the TBox.

14



describe a different approach with a combined complexity
of co-NExpTime.
As a first step, we rewrite the Boolean TCQ φ into a

Boolean TCQ ψ of polynomial size in the size of φ and K
such that answering φ at time point n is equivalent to
answering ψ at time point 0 w.r.t. a trivial sequence of
ABoxes. This is done by compiling the ABoxes into the
query and postponing φ using the #-operator.

Lemma 6.1. Let K = 〈(Ai)0≤i≤n, T ,R〉 be a TKB and
φ be a Boolean TCQ. Then there is a Boolean TCQ ψ of
size polynomial in the size of φ and K such that K |= φ iff
〈∅, T ,R〉 |= ψ.

Proof. We define the Boolean TCQ

ψ := (γ0 ∧#γ1 ∧ . . . ∧#nγn)→ #nφ,

where γi :=
∧
α∈Ai α and #i abbreviates i nested # op-

erators. Obviously, the size of ψ is polynomial in the
size of φ and K. It remains to prove that K |= φ iff
K′ := 〈∅, T ,R〉 |= ψ. We have:

K |= φ

iff 〈(Ai)0≤i≤n, T ,R〉 |= φ

iff I, n |= φ for all I |= 〈(Ai)0≤i≤n, T ,R〉

iff I, n |= φ for all I |= K′ with I, 0 |= γ0; I, 1 |= γ1; . . . ;
I, n |= γn

iff I, 0 |= #nφ for all I |= K′ with I, 0 |= γ0; I, 0 |= #γ1;
. . . ; I, 0 |= #nγn

iff I, 0 |= ψ for all I |= K′

iff K′ |= ψ. 2

We can thus focus on deciding whether a Boolean TCQ φ
has a model w.r.t. a TKB K = 〈∅, T ,R〉 containing only
one empty ABox. Note that this compilation does not yield
a low data complexity for the entailment problem since,
after encoding the ABoxes into φ, the size of χS as well as
that of the generalized Büchi automaton G are exponential
in the size of the ABoxes (cf. Sections 4.2.1 and 5).

We now again analyze the two conditions of Lemma 4.7,
this time with the goal of obtaining a combined complexity
of NExpTime for the TCQ satisfiability problem. First,
observe that guessing S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and
ι : {0} → {1, . . . , k} can be done in nondeterministic expo-
nential time in the size of φ. Furthermore, by Lemma 4.12,
the t-satisfiability test can be realized in ExpTime. It re-
mains to determine the complexity of testing r-satisfiability
of S w.r.t. ι and K = 〈∅, T ,R〉.
We do this in three steps. First, in Section 6.1 we re-

duce this problem to a variant of the satisfiability problem
for conjunctions of CQ-literals w.r.t. a knowledge base
and a set D as in Section 5. This problem is then fur-
ther reduced in Section 6.2 to the consistency problem

for Boolean SHQ∩-knowledge bases w.r.t. D. Finally, the
latter problem is shown to be decidable in ExpTime in
Section 6.3.

6.1. Reduction to atemporal queries
As mentioned above, we start the r-satisfiability test as

in Section 5 by guessing a set D ⊆ 2RCon(T ) and a mapping
τ : Ind(φ)→ D. Since D is of size exponential in T and τ
is of size polynomial in the size of φ and T , guessing D
and τ can also be done in NExpTime. Since γ0 = true, by
Lemma 5.1 we know that r-satisfiability of S is independent
of ι and it suffices to test whether χS ∧ ρτ has a model
w.r.t. 〈TS ∪ Tτ ,RS〉 that respects D. Instead of applying
Theorem 4.1 directly to this problem, which would yield
a complexity of 2-ExpTime, we split it into separate sub-
problems for each component χi of χS . The proof of the
next lemma can be found in the appendix.

Lemma 6.2. If NRC 6= ∅ and NRR = ∅, then S is r-
satisfiable w.r.t. K = 〈∅, T ,R〉 iff there exist D ⊆ 2RCon(T )

and τ : Ind(φ)→ D such that each χ̂i := χi ∧ ρτ , 1 ≤ i ≤ k,
has a model w.r.t. 〈T ∪ Tτ ,R〉 that respects D.

Note that the size of each χ̂i is polynomial in the size
of φ and T and the number k of these conjunctions is
exponential in the size of φ. Moreover, the size of Tτ is
polynomial in the size of φ and T . We show in Lemma 6.8
below that we can find the required models for χ̂i w.r.t.
〈T ∪ Tτ ,R〉 that respect D in exponential time in the size
of χ̂i, T , Tτ , and R. This yields the desired complexity
result for r-satisfiability, and thus the last result of Table 1
for TCQ entailment.

Theorem 6.3. If NRC 6= ∅ and NRR = ∅, TCQ entail-
ment is in co-NExpTime w.r.t. combined complexity.

6.2. Reduction to Boolean SHQ∩-knowledge bases
We now show that the problem of checking whether

there is a model of a conjunction ψ of CQ-literals w.r.t.
a knowledge base 〈T ,R〉 that respects a set D ⊆ 2RCon(T )

can be solved in exponential time in the size of ψ, T , and R.
As in the proof of Theorem 4.1, we first reduce this problem
to a non-entailment problem for a union of Boolean CQs:
there is a model of ψ and 〈T ,R〉 that respects D iff there
is a model of 〈A, T ,R〉 that respects D and is not a model
of ρ (written 〈A, T ,R〉 6|= ρ w.r.t. D), where A is an ABox
obtained by instantiating the non-negated CQs in ψ with
fresh individual names and ρ is a UCQ constructed from
the negated CQs in ψ. It thus suffices to show that we
can decide query non-entailment 〈A, T ,R〉 6|= ρ w.r.t. D in
time exponential in the size of A, T , R, and ρ.
It is known that 〈A, T ,R〉 6|= ρ iff there is a forest

model I of A, T , and R such that I 6|= ρ [8, 14]. We
define here forest models for the more general case of
Boolean SHQ∩-knowledge bases (recall Definition 2.3) since
we need them for the subsequent reductions and in the
proof of Lemma 6.14.
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Definition 6.4 (forest model). A tree is a non-empty
prefix-closed subset of N∗, where N∗ denotes the set of all
finite words over the non-negative integers.
An interpretation I = (∆I , ·I) is a forest base for a

Boolean SHQ∩-knowledge base B = 〈Ψ,R〉 if

• ∆I ⊆ Ind(Ψ)×N∗ such that for all a ∈ Ind(Ψ) the set
{u | (a, u) ∈ ∆I} is a tree;

• if ((a, u), (b, v)) ∈ rI , then either u = v = ε, or a = b
and v = u · c for some c ∈ N, where · denotes concate-
nation; and

• for every a ∈ Ind(Ψ), we have aI = (a, ε).

A model J = (∆J , ·J ) of B is called a forest model of B if
there is a forest base I = (∆I , ·I) for B such that ∆I = ∆J ,
for each A ∈ NC, we have AI = AJ , for each a ∈ NI, we
have aI = aJ , and for each r ∈ NR, we have

rJ = rI ∪
⋃

R|=svr, R|=trans(s)

(sI)+,

where ·+ denotes the transitive closure.

Note that B = 〈Ψ,R〉 has a model that respects D iff
〈Ψ ∧A(a),R〉 has a model that respects D, where a is
a fresh individual name and A is a fresh concept name.
We thus assume without loss of generality that Ψ always
contains at least one individual name. This is necessary to
ensure that there is a non-empty forest base for B.

As an example of a forest model, consider Figure 2, where
a graphical representation of a forest model is given. It
depicts the individual names a, b, and c, which represent the
roots (a, ε), (b, ε), and (c, ε) of three trees. Moreover, s is a
simple role name, and r is a transitive role name. The solid
arrows denote the role connections that are present in the
corresponding forest base, and the dashed arrows denote
role connections that are introduced due to transitivity.

The construction in the proof of the following lemma is
very similar to the one in [14], but we extend the previous
result to Boolean knowledge bases, take into account a
set D, and provide a full proof in the appendix.

Lemma 6.5. Let B be a Boolean SHQ∩-knowledge base,
let A1, . . . , Ak be concept names occurring in B, and let
D ⊆ 2{A1,...,Ak}. Then B has a model that respects D iff it
has a forest model that respects D.

We can also extend the mentioned result about non-
entailment of UCQs from [8, 14] to our setting. In the
following, we assume that the UCQ ρ contains only indi-
viduals that also occur in the ABox (or Boolean axiom
formula). If this is not the case for an individual name a,
we can simply add A(a) to the ABox, where A is a new
concept name.

Lemma 6.6. We have 〈A, T ,R〉 6|= ρ w.r.t. D iff there is
a forest model J of 〈A, T ,R〉 that respects D with J 6|= ρ.

Recall that we want to decide the existence of such a forest
model in time exponential in the size of A, T , R, and ρ. To
this purpose, we further reduce this problem following an
idea from [8]. There, the notion of a spoiler is introduced.
A spoiler is an SHQ∩-knowledge base 〈A′, T ′, ∅〉 that states
properties that must be satisfied such that a query is not
entailed by a knowledge base. The ABox A′ of such a
spoiler may also contain negated assertions, and can thus
be seen as a Boolean knowledge base, but for simplicity we
will continue to regard it as a set. Furthermore, a spoiler
may contain role conjunctions.

It is shown in [8] that 〈A, T ,R〉 6|= ρ iff there is a spoiler
〈A′, T ′, ∅〉 for 〈A, T ,R〉 such that 〈A ∪ A′, T ∪ T ′,R〉 is
consistent. Additionally, all spoilers can be computed in
time exponential in the size of 〈A, T ,R〉 and ρ, and each
spoiler is of polynomial size. In the proof of these results,
one only has to deal with forest models, which furthermore
do not need to be modified. More formally, for any forest
model I of 〈A, T ,R〉 that does not satisfy ρ there is a
spoiler 〈A′, T ′, ∅〉 that also has I as a model and, conversely,
every forest model of the knowledge base 〈A, T ,R〉 that
also satisfies a spoiler 〈A′, T ′, ∅〉 does not satisfy ρ (see the
proof of Lemma 3 in [41]). This implies the following more
general result that also takes into account the set D.

Proposition 6.7. We have 〈A, T ,R〉 6|= ρ w.r.t. D iff
there is a spoiler 〈A′, T ′, ∅〉 for 〈A, T ,R〉 such that there
is a model of 〈A ∪ A′, T ∪ T ′,R〉 that respects D.

It remains to show that the existence of such a model can be
checked in exponential time in the size of 〈A∪A′, T ∪T ′,R〉,
and therefore in exponential time in the size of ψ, T , and R.
We will show a more general result for Boolean knowledge
bases in the next section (Theorem 6.15). Together with
the reductions described in this section, we obtain the
desired complexity result.

Lemma 6.8. The existence of a model of a conjunction of
CQ-literals ψ w.r.t. a knowledge base 〈T ,R〉 that respects D
can be decided in exponential time in the size of ψ, T ,
and R.

6.3. Consistency of Boolean SHQ∩-knowledge bases
For the final result of this paper, we consider a Boolean

SHQ∩-knowledge base B = 〈Ψ,R〉, a collection of con-
cept names A1, . . . , Ak occurring in B, and a subset D
of 2{A1,...,Ak}. We assume here that all GCIs in Ψ are of
the form > v C; this is without loss of generality since any
GCI C v D is equivalent to > v ¬(C u ¬D).

We will show that deciding consistency of B w.r.t. D, i.e.,
whether B has a model that respects D, can be done in expo-
nential time in the size of B. This complexity result is tight
since already for classical SHQ∩-knowledge bases, the con-
sistency problem (without D) is ExpTime-complete [8, 37].
The complexity of this problem even remains in ExpTime
when simple role conjunctions are allowed to occur in num-
ber restrictions and non-simple roles are allowed in role
conjunctions in existential restrictions [42].
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Figure 2: An example of a forest model.

The proof is an adaptation of the proof of Lemma 6.4
in [12], which is again an adaptation of the proof of Theo-
rem 2.27 in [17], which shows that consistency of Boolean
ALC-knowledge bases can be decided in exponential time.
An earlier version of this proof for ALC∩ can be found
in [29, 34]. There, for role conjunctions, additional concept
names are introduced that function as so-called pebbles that
mark elements that have specific role predecessors, an idea
borrowed from [43–45]. In this paper, we employ instead
systems of equations over non-negative integers to deal
with role conjunctions, transitivity axioms, role inclusions,
and number restrictions simultaneously.

For the subsequent construction, we extend the notion of
a quasimodel from [12], which is an abstract description of a
model that characterizes domain elements by the concepts
they satisfy. We first introduce several auxiliary notions.
We define Con(Ψ) as the set of all concepts occurring

in Ψ, and Con(B) as the closure under negation of the set

Con(Ψ) ∪ {∃r.C | ∃s.C ∈ Con(Ψ),
R |= r v s, and R |= trans(r)}.

The reason that we consider these additional existential
restrictions is that they are needed to properly deal with
transitive roles (see Definition 6.9).

Similarly, we denote by Sub(Ψ) the set of all subformulae
of Ψ, by Rol(B) the set of all role names occurring in B,
and by Sub(B) the closure under negation of the set

Sub(Ψ) ∪ {r(a, b) | r ∈ Rol(B), a, b ∈ Ind(B)}.

We include all possible role assertions about individuals
and role names from B since we later want to close sets
of role assertions under R to be able to read off all rele-
vant consequences about individuals from such a set (see
Definition 6.11).

In the following, we identify ¬¬ψ with ψ for all concepts
and Boolean knowledge bases ψ. Thus, all sets introduced
above are polynomial in the size of B.

Definition 6.9 (concept type). A concept type for B is
a set c ⊆ Con(B) ∪ Ind(Ψ) such that:

• C uD ∈ c iff C,D ∈ c for all C uD ∈ Con(B);

• ¬C ∈ c iff C /∈ c for all ¬C ∈ Con(B); and

• a ∈ c for a ∈ Ind(Ψ) implies b /∈ c for all b ∈ Ind(Ψ)
with b 6= a.

Given two concept types c,d and a role name r, we say that
c and d are r-compatible (w.r.t. R) (written (c,d) ∈ rR)
if the following conditions are satisfied:

• for all ¬(∃r.D) ∈ c, we have ¬D ∈ d; and

• for all s ∈ NR with R |= r v s, R |= trans(r), and
¬(∃s.D) ∈ c, we have ¬(∃r.D) ∈ d.

Obviously, the number of concept types is exponential in
the size of Ψ. The r-compatibility of two concept types
c,d indicates that it is possible to connect them via an
r-edge without violating the value restrictions in c. These
conditions are very similar to the tableau rules (∀) and
(∀+) that deal with value restrictions in the presence of
role inclusions and transitivity axioms (see, e.g. [36]).

Definition 6.10 (role type). A role type for B is a set
r ⊆ Rol(B) such that

• if s v r ∈ R, then s ∈ r implies r ∈ r.

We denote the set of all role types for B by R(B).
For r ∈ R(B), we say that two concept types c,d for B

are r-compatible (w.r.t. R) (written (c,d) ∈ rR) iff they
are r-compatible w.r.t. R for every r ∈ r.

Again, the number of role types for B is exponential in the
size of B.

Finally, a quasimodel also has to determine which of the
axioms in Ψ it satisfies.

Definition 6.11 (formula type). A formula type for B
is a set f ⊆ Sub(B) such that:

• Ψ ∈ f ;

• ¬ψ ∈ f iff ψ /∈ f for all ¬ψ ∈ Sub(B);

• ψ1 ∧ ψ2 ∈ f iff {ψ1, ψ2} ⊆ f for all ψ1 ∧ ψ2 ∈ Sub(B);

• if r(a, b) ∈ f and R |= r v s, then s(a, b) ∈ f ; and

• if r(a, b) ∈ f , r(b, c) ∈ f , and R |= trans(r), then
r(a, c) ∈ f .
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The number of formula types for B is exponential in the
size of B. Using these definitions, we can now define model
candidates, and later refine this notion to quasimodels.

Definition 6.12 (model candidate). A model candi-
date for B is a tripleM = (S, ι, f) such that
• S is a set of concept types for B such that for any

c,d ∈ S with c 6= d, we have c ∩ d ∩ Ind(Ψ) = ∅;

• ι : Ind(Ψ)→ S is a function such that a ∈ ι(a) for all
a ∈ Ind(Ψ); and

• f is a formula type for B.

Intuitively, the set S determines the behavior of the domain
elements, while ι fixes the interpretation of the named
domain elements, and f ensures that B is satisfied. We
denote by Su the set S \ ι(Ind(Ψ)), i.e., the set of all those
concept types that do not contain an individual name.
These types represent the unnamed domain elements of
the model candidate. To define quasimodels, we add to
the definition of a model candidate several conditions that
ensure that the concept types can indeed be assembled into
a model of B.
To satisfy the number restrictions in the concept types

of a model candidateM = (S, ι, f), we introduce, for each
c ∈ S, a system of equations EM,c with variables ranging
over the non-negative integers. Below, we consider mostly
inequations, which can, however, easily be turned into
equations by introducing new slack variables. In EM,c,
we use variables of the form xc,r,d that determine, for an
individual of type c, the number of unnamed r-successors
of concept type d, where we require that (c,d) ∈ rR and
d ∈ Su, i.e., c and d are r-compatible and d does not
represent a named individual.
Given c ∈ S, C ∈ Con(B), and r ∈ R(B), we can now

count the number of unnamed r-successors of c that sat-
isfy C using the following expression:

ΞM,c,r,C :=
∑

C∈d∈Su, (c,d)∈rR

xc,r,d.

To count the named r-successors of c that satisfy C, we
define the constant ΓM,c,r,C as

|{b ∈ Ind(Ψ) | C ∈ ι(b), and
r(a, b) ∈ f iff r ∈ r}| if c = ι(a)

0 otherwise.

To ensure that an at-least restriction ≥n r.C ∈ c is satisfied,
we construct the following inequation:∑

r∈r∈R(B)

(ΞM,c,r,C + ΓM,c,r,C) ≥ n. (E1)

Similarly, for each ¬(≥n r.C) ∈ c, we add∑
r∈r∈R(B)

(ΞM,c,r,C + ΓM,c,r,C) ≤ n− 1. (E2)

For an existential restriction E = ∃(r1 ∩ · · · ∩ r`).C ∈ c,
we introduce the inequation∑

r1,...,r`∈r∈R(B)

(ΞM,c,r,C + ΓM,c,r,C) ≥ 1. (E3)

Finally, for each ¬(∃(r1 ∩ · · · ∩ r`).C) ∈ c, we use the
equation ∑

r1,...,r`∈r∈R(B)

(ΞM,c,r,C + ΓM,c,r,C) = 0. (E4)

This finishes the description of EM,c. Note that this
system contains exponentially many variables in the size
of B, but only polynomially many equations, and thus it
can be solved in exponential time, even if the numbers are
given in binary encoding [46] (for details, see the proof of
Theorem 6.15).

We finally come to the central definition of this section.

Definition 6.13 (quasimodel). The model candidate
M = (S, ι, f) for B is a quasimodel for B if it satisfies
the following properties:

(a) S is not empty;

(b) for every A(a) ∈ Sub(B), we have A(a) ∈ f iff A ∈ ι(a);

(c) for every r(a, b) ∈ f , we have (ι(a), ι(b)) ∈ rR;

(d) for every > v C ∈ f and every c ∈ S, we have C ∈ c;

(e) for every ¬(> v C) ∈ f , there is a c ∈ S such that
C /∈ c; and

(f) for every c ∈ S, the system of equations EM,c has a
solution over the non-negative integers.

The quasimodelM = (S, ι, f) for B respects D if it satisfies:

(g) for every c ∈ S, there is a set Y ∈ D such that
Y = c ∩ {A1, . . . , Ak}; and

(h) for every Y ∈ D, there is a concept type c ∈ S such
that Y = c ∩ {A1, . . . , Ak}.

We show in the appendix that to check consistency of B
w.r.t. D it suffices to search for quasimodels for B that
respect D.

Lemma 6.14. Let B be a Boolean SHQ∩-knowledge base,
let A1, . . . , Ak be concept names occurring in B, and let
D ⊆ 2{A1,...,Ak}. Then B is consistent w.r.t. D iff it has a
quasimodel that respects D.

It remains to show that one can check the existence of a
quasimodel for B that respects D in time exponential in the
size of B. For this, consider the following algorithm. Given
B = 〈Ψ,R〉 and D, it enumerates all model candidates
(Su ∪ Sι, ι, f) for B, where
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• Su is the set of all concept types for B that are subsets
of Con(B), and

• Sι := {ι(a) | a ∈ Ind(Ψ), ι(a) \ {a} ∈ Su}.

We denote these candidates by M1, . . . ,MN . Note that
each of them is of size exponential in the size of B. It
should be clear that

N ≤ 2|Con(B)|·|Ind(Ψ)| · 2|Sub(B)|,

and thus the enumeration of M1, . . . ,MN can be done
in exponential time since Con(B) and Sub(B) are of size
polynomial in the size of B.

Now, set i = 1 and considerMi = (S, ι, f).

Step 1. Check whetherMi satisfies (b) and (c).

If it does, continue with Step 2. Otherwise, stop
consideringMi and go to Step 5.

Step 2. Check each concept type in S. A concept type
c ∈ S is called defective if it violates (d) for some
> v C ∈ f or it violates (g).

If a defective c ∈ S \ Sι is found, then set
S := S \ {c} and continue with Step 2. If a
defective c ∈ Sι is found, then stop considering
Mi and go to Step 5. If no defective concept
types in S are found, continue with Step 3.

Step 3. Consider the model candidateM′ = (S ′, ι, f) ob-
tained from the previous step. For every c ∈ S ′,
check whether EM′,c has a solution.

If a c ∈ S ′u is found such that EM′,c has no solu-
tion, then remove c from S ′ and redo Step 3. If a
c ∈ S ′ι is found such that EM′,c has no solution,
then go to Step 5. If no such concept type in S ′
is found, continue with Step 4.

Step 4. Check whether the model candidate (S ′′, ι, f) ob-
tained from Step 3 satisfies (a), (e), and (h).

If it does, stop with output “quasimodel that re-
spects D found.” Otherwise, continue with Step 5.

Step 5. Set i := i + 1. If i ≤ N , continue with Step 1.
Otherwise, stop with output “no quasimodel that
respects D exists.”

We show in the appendix that the algorithm is sound
and complete and terminates in exponential time. By
Lemma 6.14, we get the following result.

Theorem 6.15. Let B be a Boolean SHQ∩-knowledge
base, let A1, . . . , Ak be concept names occurring in B, and
let D ⊆ 2{A1,...,Ak}. Then consistency of B w.r.t. D can be
decided in time exponential in the size of B.

7. Conclusions

We have introduced a new temporal query language that
extends the temporal DL ALC-LTL to SHQ and uses sim-
ple conjunctive queries as atoms. Our complexity results
on the entailment problem for such queries w.r.t. tempo-
ral knowledge bases are summarized in Table 1. Without
any rigid names, we observed that entailment of TCQs is
as hard as entailment of CQs w.r.t. atemporal ALC- and
SHQ-knowledge bases, i.e., in this case adding temporal
operators to the query language does not increase the com-
plexity. However, if we allow rigid concept names (but
no rigid role names), the picture changes. While the data
complexity remains the same as in the atemporal case,
the combined complexity of query entailment increases to
co-NExpTime, i.e., the non-entailment problem is as hard
as satisfiability in ALC-LTL. If we further add rigid role
names, the combined complexity (of non-entailment) again
increases in accordance with the complexity of satisfiabil-
ity in ALC-LTL. For data complexity, it is still unclear
whether adding rigid role names results in an increase. We
have shown an upper bound of ExpTime (which is one
exponential better than the combined complexity), but the
only lower bound we have is the trivial one of co-NP.

Further work will include trying to close this gap. More-
over, it would be interesting to find out what effect the
addition of inverse roles has on the complexity of query en-
tailment in the temporal case. Given the results for ALCI
and SHIQ in the atemporal case, where query entailment
is 2-ExpTime-complete w.r.t. combined complexity [8] and
co-NP-complete w.r.t. data complexity [13], there is the
possibility that the problem remains co-NP-complete w.r.t.
data complexity also in the temporal case, and 2-ExpTime-
complete w.r.t. combined complexity for all three settings
considered in this paper (i.e., without rigid names, without
rigid role names, with rigid names). But showing this will
require considerable extensions of the proof techniques em-
ployed until now since the presence of inverse roles creates
additional problems. We have also left open the complexity
of the entailment problem for non-simple TCQs, which is
already 2-ExpTime-hard in SH [33].
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Appendix A. Full Proofs

Lemma 4.11. For every infinite word w = w0w1 . . . ∈ Σω,
we have w ∈ Lω(G) iff the LTL-structure J := (wi)i≥0

satisfies J, n |= φ̂S and wi = Xι(i) for all i, 0 ≤ i ≤ n.

Proof. Assume that the LTL-structure J := (wi)i≥0 is a
model of φ̂S at time point n and we have wi = Xι(i) for all
i, 0 ≤ i ≤ n. If we define

Si := {ψ | J, i |= ψ, and ψ is a sub-literal of φ̂}

for i ≥ 0, then

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

is a run on G:

• We have (Si, k) ∈ Q for all i ≥ 0 and k, 0 ≤ k ≤ n+ 1:

– For every sub-formula ψ of φ̂, we have either
J, i |= ψ or J, i |= ¬ψ. Thus, we have ψ ∈ Si iff
¬ψ /∈ Si.

– For every sub-formula ψ1 ∧ ψ2 of φ̂, we have
J, i |= ψ1 ∧ ψ2 iff J, i |= ψ1 and J, i |= ψ2. Thus,
we have ψ1 ∧ ψ2 ∈ Si iff {ψ1, ψ2} ⊆ Si.

– For each world wi, i ≥ 0, we have
wi ∈ S since J satisfies φ̂S . Thus, we have
Si ∩ {p1, . . . , pm} = wi ∈ S for all i ≥ 0.

• We have for every sub-formula #−ψ of φ̂ that
J, 0 6|= #−ψ, and thus #−ψ /∈ S0. Additionally, we
have for every ψ1 Sψ2 ∈ S0, since J, 0 |= ψ1 Sψ2 also
J, 0 |= ψ2. This implies that (S0, 0) ∈ Q0.

• We have for all i, 0 ≤ i ≤ n,

((Si, i), wi, (Si+1, i+ 1)) ∈ ∆,

and for all i ≥ n+ 1,

((Si, n+ 1), wi, (Si+1, n+ 1)) ∈ ∆,

since:

– we have wi = Si ∩ {p1, . . . , pm} by the definition
of Si;

– for every sub-formula #ψ of φ̂, we have #ψ ∈ Si
iff J, i |= #ψ iff J, i+ 1 |= ψ iff ψ ∈ Si+1;

– for every sub-formula #−ψ of φ̂, we have
#−ψ ∈ Si+1 iff J, i + 1 |= #−ψ iff J, i |= ψ
iff ψ ∈ Si;

– for every sub-formula ψ1 Uψ2 of φ̂, we have
ψ1 Uψ2 ∈ Si iff J, i |= ψ1 Uψ2 iff (i) J, i |= ψ2 or
(ii) J, i |= ψ1 and J, i+1 |= ψ1 Uψ2 iff (i) ψ2 ∈ Si
or (ii) ψ1 ∈ Si and ψ1 Uψ2 ∈ Si+1;

– for every sub-formula ψ1 Sψ2 of φ̂, we have
ψ1 Sψ2 ∈ Si+1 iff J, i + 1 |= ψ1 Sψ2 iff
(i) J, i + 1 |= ψ2 or (ii) J, i + 1 |= ψ1 and
J, i |= ψ1 Sψ2 iff (i) ψ2 ∈ Si+1 or (ii) ψ1 ∈ Si+1
and ψ1 Sψ2 ∈ Si;

– i < n+ 1 implies wi = Xι(i) by assumption;

– for i = n we have J, n |= φ̂S , which implies
J, n |= φ̂, and thus φ̂S ∈ Sn;

– the condition for incrementing the second compo-
nent of a state (until n+1 is reached) is obviously
also satisfied.
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Moreover, the above run is accepting. We prove this by
contradiction. Suppose that for some sub-formula ψ1 Uψ2
of φ̂, the set {i ≥ 0 | Si ∈ Fψ1 Uψ2} is finite. Then there
exists a k ≥ 0 such that S` 6∈ Fψ1 Uψ2 for all ` ≥ k. This
means ψ1 Uψ2 ∈ S` and ψ2 6∈ S` for all ` ≥ k. Hence,
I, k |= ψ1 Uψ2 and I, ` 6|= ψ2 for all ` ≥ k. This contradicts
the semantics of U.

For the converse direction, assume that w ∈ Lω(G), i.e.,
there is an accepting run

(S0, 0)(S1, 1) . . . (Sn, n)(Sn+1, n+ 1)(Sn+2, n+ 1) . . .

of G on w.
By the definition of ∆, we have wi = Xι(i) for all i,

0 ≤ i ≤ n. To show that J := (wi)i≥0 is a model of
φ̂S at time point n, observe that for each i ≥ 0 we have
wi = Si ∩ {p1, . . . , pm} ∈ S by definition of the state set Q.
Thus, the conjunct

2−2

 ∨
X∈S

∧
p∈X

p ∧
∧
p/∈X

¬p


of φ̂S is clearly satisfied by J (at any time point).

Furthermore, we have that φ̂ ∈ Sn again by the definition
of ∆, and thus it is now enough to show that ψ ∈ Si iff
J, i |= ψ for each i ≥ 0. This can be shown by induction
on the structure of ψ.

• If ψ is a propositional variable, we have ψ ∈ Si iff
ψ ∈ wi iff wi |= ψ iff J, i |= ψ.

• If ψ = ¬χ, we have ¬χ ∈ Si iff χ /∈ Si iff J, i 6|= χ iff
J, i |= ¬χ.

• If ψ = χ1 ∧ χ2, we have χ1 ∧ χ2 ∈ Si iff {χ1, χ2} ⊆ Si
iff J, i |= χ1 and J, i |= χ2 iff J, i |= χ1 ∧ χ2.

• If ψ = #χ, we have #χ ∈ Si iff χ ∈ Si+1 iff J, i+1 |= χ
iff J, i |= #χ.

• If ψ = #−χ, we have #−χ ∈ Si iff i > 0 and χ ∈ Si−1
iff i > 0 and J, i− 1 |= χ iff J, i |= #−χ. The first iff
holds because of the definition of Q0.

• If ψ = χ1 Uχ2, we prove χ1 Uχ2 ∈ Si iff J, i |= χ1 Uχ2
as follows.
(⇐=) Assume J, i |= χ1 Uχ2. Then there exists a k ≥ i
such that J, k |= χ2 and J, ` |= χ1 for all `, i ≤ ` < k.
We show by induction on j that χ1 Uχ2 ∈ Sk−j for
j ≤ k − i.
For j = 0, we have: J, k |= χ2 implies χ2 ∈ Sk by the
outer induction hypothesis, and the definition of ∆
yields χ1 Uχ2 ∈ Sk.
For j > 0, we have: J, k−j |= χ1 implies χ1 ∈ Sk−j by
the outer induction hypothesis. By the inner induction
hypothesis, we have χ1 Uχ2 ∈ Sk−j+1. Thus, by the
definition of ∆, it follows that χ1 Uχ2 ∈ Sk−j .

(=⇒) Assume χ1 Uχ2 ∈ Si. Since states of Fχ1 Uχ2

occur infinitely often among S0, S1, S2 . . ., there is a
k ≥ i such that Sk ∈ Fχ1 Uχ2 . Let k be the small-
est index with that property. Then it follows that
χ1 Uχ2 ∈ S` and χ2 /∈ S` for all `, i ≤ ` < k.
χ1 Uχ2 ∈ S` and χ2 /∈ S` for all `, i ≤ ` < k, yield
χ1 ∈ S` because of the definition of ∆. Thus, J, ` |= χ1
for all `, i ≤ ` < k (∗).
χ1 Uχ2 ∈ Sk−1 and χ2 /∈ Sk−1 imply χ1 Uχ2 ∈ Sk
because of the definition of ∆. This yields χ2 ∈ Sk
since Sk ∈ Fχ1 Uχ2 , and thus J, k |= χ2 (∗∗).
(∗) and (∗∗) yield that J, i |= χ1 Uχ2 by the semantics
of U.

• If ψ = χ1 Sχ2, we prove χ1 Sχ2 ∈ Si iff J, i |= χ1 Sχ2
as follows.
(⇐=) Assume J, i |= χ1 Sχ2. Then there exists a k,
0 ≤ k ≤ i such that J, k |= χ2 and J, ` |= χ1 for
all `, k < ` ≤ i. We show by induction on j that
χ1 Sχ2 ∈ Sk+j for j ≤ i− k.
For j = 0, we have: J, k |= χ2 implies χ2 ∈ Sk by the
outer induction hypothesis, and the definition of ∆
yields χ1 Sχ2 ∈ Sk.
For j > 0, we have: J, k + j |= χ1 χ1 ∈ Sk+j by the
outer induction hypothesis. By the inner induction
hypothesis, we have χ1 Sχ2 ∈ Sk+j−1. Thus, by the
definition of ∆, it follows that χ1 Sχ2 ∈ Sk+j .
(=⇒) Assume χ1 Sχ2 ∈ Si. There are two cases: either
i = 0 or i > 0.
For i = 0, we have: χ1 Sχ2 ∈ S0 implies χ2 ∈ S0 by
the definition of Q0. This yields J, 0 |= χ2, and thus
J, 0 |= χ1 Sχ2.
For i > 0, we have again two cases: either χ2 ∈ Si
or χ1 ∈ Si and χ1 Sχ2 ∈ Si−1. For the case where
χ1 ∈ Si, it directly follows that J, i |= χ1 Sχ2. For the
other case where χ1 ∈ Si and χ1 Sχ2 ∈ Si−1, we have
by the inner induction hypothesis: J, i− 1 |= χ1 Sχ2.
Thus, there is a k, 0 ≤ k ≤ i− 1, such that J, k |= χ2
and J, j |= χ1 for all j, k < j ≤ i− 1. Since we have
by the outer induction hypothesis also that J, i |= χ1,
it follows that there is a k, 0 ≤ k ≤ i, such that
J, k |= χ2 and J, j |= χ1 for all j, k < j ≤ i. Hence,
J, i |= χ1 Sχ2. 2

Lemma 4.14. The set S is r-satisfiable w.r.t. ι and K iff
χS,ι is satisfiable w.r.t. 〈TS,ι,RS,ι〉.

Proof. Let J1, . . . ,Jk, I0, . . . , In be the interpretations
required by Definition 4.5 for the r-satisfiability of S w.r.t.
ι and K. We construct the interpretation J as follows:

• the domain of J is the shared domain of the above
interpretations;
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• the rigid names are interpreted as in the above inter-
pretations;

• the i-th copy, 1 ≤ i ≤ k, of each flexible name is
interpreted like the original name in Ji; and

• the i-th copy, k + 1 ≤ i ≤ k + n+ 1, of each flexible
name is interpreted like the original name in Ii−k−1.

It is easy to verify that J is a model of χS,ι, TS,ι, and
RS,ι.
For the other direction, let J be a model of χS,ι w.r.t.

〈TS,ι,RS,ι〉. We obtain the interpretations J1, . . . ,Jk,
I0, . . . , In by the inverse construction to the one above:

• the domain of all these interpretations is the domain
of J ;

• the rigid names are interpreted by these interpretations
as in J ;

• every flexible name is interpreted in Ji, 1 ≤ i ≤ k, as
its i-th copy is interpreted in J ; and

• every flexible name is interpreted in Ii, 0 ≤ i ≤ n, as
it k + i+ 1-st copy is interpreted in J .

Again, it is easy to verify that these interpretations satisfy
the conditions of Definition 4.5. 2

Lemma 5.1. If NRC 6= ∅ and NRR = ∅, then S is r-
satisfiable w.r.t. ι and K iff there exist D ⊆ 2RCon(T )

and τ : Ind(φ) ∪ Ind(K) → D such that each γi ∧ χS ∧ ρτ ,
0 ≤ i ≤ n, has a model w.r.t. 〈TS ∪Tτ ,RS〉 that respects D.

Proof. For the “if” direction, assume that Ii, 0 ≤ i ≤ n,
are the required models for γi∧χS ∧ρτ w.r.t. 〈TS ∪Tτ ,RS〉.
Similar to the proof of Lemma 6.3 in [12], we can assume
w.l.o.g. that their domains ∆i are countably infinite and for
each Y ∈ D there are countably infinitely many elements
d ∈ (CY )Ii . This is a consequence of the Löwenheim-
Skolem theorem and the fact that the countably infinite
disjoint union of Ii with itself is again a model of γi∧χS∧ρτ
and 〈TS ∪ Tτ ,RS〉. The latter follows from the observa-
tion that for any CQ there is a homomorphism into Ii iff
there is a homomorphism into the disjoint union of Ii with
itself. One direction is trivial, while whenever there is a
homomorphism into the disjoint union, we can construct a
homomorphism into Ii by replacing the elements in the im-
age of this homomorphism by the corresponding elements
of ∆i. It is easy to see that the resulting homomorphism
still satisfies all atoms of the CQ.

Consequently, we can partition the domains ∆i into the
countably infinite sets ∆i(Y ) := {d ∈ ∆i | d ∈ (CY )Ii}
for Y ∈ D. By the assumptions above and the fact that
all Ii satisfy ρτ and Tτ , there are bijections πi : ∆0 → ∆i,
1 ≤ i ≤ n, such that

• πi(∆0(Y )) = ∆i(Y ) for all Y ∈ D and

• πi(aI0) = aIi for all a ∈ Ind(φ) ∪ Ind(K).

Thus, we can assume in the following that the models Ii
actually share the same domain and interpret the rigid
names in RCon(T ) and Ind(φ) ∪ Ind(K) in the same way.
We can now construct the models required by Definition 4.5
by appropriately relating the flexible names and their copies.
For example, interpreting the rigid concept names as in Ii
and the flexible names as their ι(i)-th copies in Ii yields
a model of χι(i) w.r.t. 〈Ai, T ,R〉, and similarly for the
models of χj w.r.t. 〈T ,R〉 for 1 ≤ j ≤ k. These models
share the same domain and respect the rigid names in
RCon(T ) and Ind(φ)∪ Ind(K). Note that the interpretation
of the names in NRC and NI that occur neither in K nor
in φ is irrelevant and can be fixed arbitrarily, as long as
the UNA is satisfied.

Thus, it remains to consider those rigid concept names A
occurring in (Ai)0≤i≤n, but not in T . Since they are not
constrained by the TBox, it suffices to interpret them in
such a way that they satisfy all ABox assertions. But since
these assertions can only occur positively in the ABoxes,
the set {aI0 | A(a) ∈ Ai, 0 ≤ i ≤ n} fulfills this restriction.
For the “only if” direction, it is easy to see that one

can combine the interpretations Ii, J1, . . . , Jk from Def-
inition 4.5 to a model I ′i of γi ∧ χS w.r.t. 〈TS ,RS〉 by
interpreting the ι(i)-th copy of a flexible name as the origi-
nal name in Ii, and the j-th copy of a flexible name as the
original name in Jj , for each j, 1 ≤ j ≤ k, with j 6= ι(i).
Obviously, the interpretations I ′i share the same domain,
interpret individual names in the same way, and respect
rigid concept names.

For a ∈ Ind(φ)∪ Ind(K), we define τ(a) := Y ⊆ RCon(T )
iff a ∈ (CY )I0 , which ensures that the interpretations I ′i
can be extended to models of ρτ and Tτ by appropriately
interpreting the new concept names Tτ(a). Furthermore,
we let D contain all those sets Y ⊆ RCon(T ) such that
there is a d ∈ (CY )I′

i for some 0 ≤ i ≤ n. Since we have
(CY )I′

i = (CY )I
′
j for all 0 ≤ i, j ≤ n and all Y ∈ D, the

interpretations I ′i respect D. Hence, we obtain models of
γi ∧ χS ∧ ρτ w.r.t. 〈TS ∪ Tτ ,RS〉 that respect D. 2

Lemma 6.2. If NRC 6= ∅ and NRR = ∅, then S is r-
satisfiable w.r.t. K = 〈∅, T ,R〉 iff there exist D ⊆ 2RCon(T )

and τ : Ind(φ)→ D such that each χ̂i := χi ∧ ρτ , 1 ≤ i ≤ k,
has a model w.r.t. 〈T ∪ Tτ ,R〉 that respects D.

Proof. By Lemma 5.1, S is r-satisfiable w.r.t. K iff there
exist D ⊆ 2RCon(T ) and τ : Ind(φ) → D such that χS ∧ ρτ
has a model w.r.t. 〈TS ∪ Tτ ,RS〉 that respects D.
For the “if” direction, let D ⊆ 2RCon(T ), τ : Ind(φ)→ D,

and Ii be models of χi∧ρτ and 〈T ∪Tτ ,R〉 that respect D.
As in the proof of Lemma 5.1, we can ensure that they
share the same domain and interpret the rigid names in
RCon(T ) and Ind(φ) in the same way. Similar to before,
we can construct a model J of χS ∧ ρτ and 〈TS ∪ Tτ ,RS〉
over the shared domain of I1, . . . Ik as follows: interpret
the i-th copy of a flexible name as the original name in Ii,
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and every rigid name as in I1. Since the interpretations of
the names in RCon(T ) are not changed, J also respects D.

For the “only if” direction, let J be a model of χS ∧ ρτ
and 〈TS∪Tτ ,RS〉 that respects D. As before, a model Ii of
χi ∧ ρτ and 〈T ∪ Tτ ,R〉 can be constructed by interpreting
the rigid names as in J and the flexible names as their i-th
copies in J . Again, these models still respect D. 2

Lemma 6.5. Let B be a Boolean SHQ∩-knowledge base,
let A1, . . . , Ak be concept names occurring in B, and let
D ⊆ 2{A1,...,Ak}. Then B has a model that respects D iff it
has a forest model that respects D.

Proof. The “if” direction is trivial. For the “only if” di-
rection, assume that I = (∆I , ·I) is a model of B = 〈Φ,R〉
that respects D. Moreover, we assume that ∆I is countable,
which is w.l.o.g. due to the downward Löwenheim-Skolem
theorem. We can thus assume that ∆I ⊆ N. We define
now a forest base J = (∆J , ·J ) for B with domain

∆J :=
{

(a, d1 . . . dm) | a ∈ Ind(Ψ), m ≥ 0,
d1, . . . , dm ∈ ∆I , there is no
b ∈ Ind(Ψ) such that d1 = bI

}
as follows:

• aJ := (a, ε) for all a ∈ Ind(Ψ);

• bJ for b ∈ NI \ Ind(Ψ) can be fixed arbitrarily, as long
as the UNA is satisfied;

• AJ := {(a, ε) | aI ∈ AI} ∪ {(a, d1 . . . dm) | dm ∈ AI};
and

• rJ := {((a, ε), (b, ε)) | (aI , bI) ∈ rI}∪
{((a, ε), (a, d)) | (aI , d) ∈ rI}∪
{((a, d1 . . . dm), (a, d1 . . . dmdm+1)) |

m > 0, (dm, dm+1) ∈ rI}.

Obviously, J satisfies the conditions for a forest base for B.
We construct now a forest model Ĵ = (∆Ĵ , ·Ĵ ) for B. For
that, we define ∆Ĵ := ∆J , for each A ∈ NC, AĴ := AJ ,
for each a ∈ NI, aĴ := aJ , and for each r ∈ NR:

rĴ := rJ ∪
⋃

R|=svr, R|=trans(s)

(sJ )+.

To prove that this indeed defines a forest model, we first
show the following claim by structural induction.

Claim 1. For every (a, d1 . . . dm) ∈ ∆Ĵ and concept C,
we have (a, d1 . . . dm) ∈ CĴ iff either m = 0 and aI ∈ CI ,
or dm ∈ CI .

For the base case, C being a concept name, the claim is
directly implied by the definition.

For the case where C is of the form ¬D, we have

(a, d1 . . . dm) ∈ (¬D)Ĵ

iff (a, d1 . . . dm) /∈ DĴ

iff either m = 0 and aI /∈ DI , or dm /∈ DI

iff either m = 0 and aI ∈ (¬D)I , or dm ∈ (¬D)I .

For the case where C is of the form D u E, we have

(a, d1 . . . dm) ∈ (D u E)Ĵ

iff (a, d1 . . . dm) ∈ DĴ and (a, d1 . . . dm) ∈ EĴ

iff either m = 0 and aI ∈ DI and aI ∈ EI , or dm ∈ DI
and dm ∈ EI

iff either m = 0 and aI ∈ (D u E)I , or dm ∈ (D u E)I .

For the case where C is of the form ∃(r1 ∩ · · · ∩ r`).D
with ` > 1, we have rĴ1 ∩ · · · ∩ rĴ` = rJ1 ∩ · · · ∩ rJ` since
r1, . . . , r` are simple role names, and thus

(a, d1 . . . dm) ∈ (∃(r1 ∩ · · · ∩ r`).D)Ĵ

iff either m = 0 and

– there is a (b, ε) ∈ DĴ such that ((a, ε), (b, ε)) is
in rJ1 ∩ · · · ∩ rJ` , or

– there is a (a, d) ∈ DĴ such that ((a, ε), (a, d)) is
in rJ1 ∩ · · · ∩ rJ` ;

or there is a (a, d1 . . . dmdm+1) ∈ DĴ such that
((a, d1 . . . dm), (a, d1 . . . dmdm+1)) is in rJ1 ∩ · · · ∩ rJ`

iff either m = 0 and there is a d ∈ DI such that
(aI , d) ∈ rI1 ∩ · · · ∩ rI` , or there is a d ∈ DI such that
(dm, d) ∈ rI1 ∩ · · · ∩ rI`

iff either m = 0 and aI ∈ (∃(r1 ∩ · · · ∩ r`).D)I , or
dm ∈ (∃(r1 ∩ · · · ∩ r`).D)I .

For the case where C is of the form ∃r.D, we have

(a, d1 . . . dm) ∈ (∃r.D)Ĵ

iff there is x ∈ DĴ with either ((a, d1 . . . dm), x) ∈ rJ or
there is a role name s with R |= s v r, R |= trans(s),
and ((a, d1 . . . dm), x) ∈ (sJ )+

iff either m = 0 and

– there is a (b, ε) ∈ DĴ with ((a, ε), (b, ε)) ∈ rJ ,

– there is a (a, d) ∈ DĴ with ((a, ε), (a, d)) ∈ rJ ,
or

– there is a role name s with I |= s v r and
I |= trans(s), and a sequence (a0, ε), (a1, ε), . . . ,
(an, ε), (an, e1), . . . , (an, e1 . . . ek) of elements
of ∆Ĵ such that a0 = a, (an, e1 . . . ek) ∈ DĴ , and
each two consecutive elements of this sequence
are connected via sJ ;
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or there is a sequence (a, d1 . . . dm), (a, d1 . . . dm+1),
. . . , (a, d1 . . . dm+n) of elements of ∆Ĵ such that n ≥ 1,
(a, d1 . . . dm+n) ∈ DĴ , and each two consecutive ele-
ments of this sequence are connected via sJ , where s
is a role name such that either n = 1 and s = r, or
I |= s v r and I |= trans(s),

iff either m = 0 and

– there is a d ∈ DI such that (aI , d) ∈ rI , or
– there is s ∈ NR with I |= s v r and I |= trans(s),

and an ek ∈ ∆I such that (aI , ek) ∈ sI ⊆ rI and
ek ∈ DI ;

or there is a d ∈ DI such that (dm, d) ∈ sI ⊆ rI ,
where s is a role name such that either s = r, or
I |= s v r and I |= trans(s),

iff either m = 0 and aI ∈ (∃r.D)I , or dm ∈ (∃r.D)I .

For the case where C is of the form ≥n r.D for a simple
role name r, we again have rĴ = rJ , and thus

(a, d1 . . . dm) ∈ (≥n r.D)Ĵ

iff there is a subset X ⊆ DĴ with |X| = n such that
((a, ε), x) ∈ rJ for each x ∈ X, and either

– m = 0 and each x ∈ X is either of the form (b, ε)
or (a, d), or

– each x ∈ X is of the form (a, d1 . . . dmdm+1)

iff there is a subset Y ⊆ DI with |Y | = n such thatm = 0
and (aI , y) ∈ rI for each y ∈ Y , or (dm, y) ∈ rI for
each y ∈ Y

iff either m = 0 and aI ∈ (≥n r.D)I , or dm ∈ (≥n r.D)I .

The second equivalence holds since each rI-successor of
a named individual aI is represented by exactly one
rĴ -successor of (a, ε) since domain elements of the form
(a, bI) for b ∈ Ind(Ψ) are not allowed. This finishes the
proof of Claim 1.
It remains only to show that Ĵ is indeed a model of B.

For this, we prove first the following claim by structural
induction.

Claim 2. For all ψ ∈ Sub(Ψ), we have Ĵ |= ψ iff I |= ψ.

For the first base case, assume that ψ is of the form A(a)
for some A ∈ NC and a ∈ NI. We have aI ∈ AI iff
aĴ = aJ = (a, ε) ∈ AJ = AĴ by definition.
For the second base case, assume that ψ is of the form

r(a, b) for a, b ∈ NI and r ∈ NR. If I |= r(a, b), then
(aI , bI) ∈ rI , and thus

(aĴ , bĴ ) = (aJ , bJ ) = ((a, ε), (b, ε)) ∈ rJ ⊆ rĴ .

Conversely, if ((a, ε), (b, ε)) ∈ rĴ , then there is a role
name s and a sequence (a0, ε), . . . , (an, ε), n ≥ 1, of el-
ements of ∆Ĵ such that a0 = a, an = b, each two consecu-
tive elements of this sequence are connected via sJ , and
either n = 1 and s = r, or R |= s v r and R |= trans(s).
By definition of sJ , the properties of s, and since I |= R,
we can infer that (aI , bI) ∈ rI , and thus I |= r(a, b).

For the third base case, assume that ψ is of the form
C v D. For the “if” direction, assume that I |= C v D and
thus CI ⊆ DI . Suppose that there is a (a, d1 . . . dm) ∈ CĴ

with (a, d1 . . . dm) /∈ DĴ . By Claim 1, either m = 0 and
we have aI ∈ CI and aI /∈ DI , or dm ∈ CI and dm /∈ DI ,
which contradicts our assumption that CI ⊆ DI .

For the “only if” direction, assume that CĴ ⊆ DĴ .
Suppose that there is a d ∈ CI with d /∈ DI . By the
definition of ∆Ĵ , we have (a, d′d) ∈ ∆Ĵ for any a ∈ Ind(Ψ)
and d′ ∈ ∆I such that there is no b ∈ Ind(Ψ) with d′ = bI .
By Claim 1, we get (a, d′d) ∈ CĴ and (a, d′d) /∈ DĴ , which
again yields a contradiction.

For the induction step, assume first that ψ is of the form
¬ψ′. We have that Ĵ |= ¬ψ′ iff Ĵ 6|= ψ′ iff I 6|= ψ′ iff
I |= ¬ψ′. Assume now that ψ is of the form ψ1 ∧ ψ2. We
have that Ĵ |= ψ1 ∧ ψ2 iff Ĵ |= ψ1 and Ĵ |= ψ2 iff I |= ψ1
and I |= ψ2 iff I |= ψ1 ∧ ψ2.
This finishes the proof of the claim. Since Ψ ∈ Sub(Ψ),

this shows that Ĵ is indeed a model of Ψ. We show that
Ĵ is also a model of R in the following claim.

Claim 3. For all α ∈ R, we have Ĵ |= α.

Assume first that α is of the form r v s. Since I |= R,
we have I |= r v s and thus rI ⊆ sI . We first show that
rJ ⊆ sJ . For this, take (x, y) ∈ rJ . There are three cases
to consider:

• If x = (a, ε) and y = (b, ε) with a, b ∈ Ind(Ψ), we
have (aI , bI) ∈ rI and thus (aI , bI) ∈ sI . Hence, the
definition of sJ yields that (x, y) ∈ sJ .

• If x = (a, ε) and y = (a, d) with a ∈ Ind(Ψ), d ∈ ∆I ,
we have (aI , d) ∈ rI and thus (aI , d) ∈ sI . Again, the
definition of sJ yields that (x, y) ∈ sJ .

• If x = (a, d1 . . . dm) and y = (a, d1 . . . dmdm+1) with
a ∈ Ind(Ψ), m > 0, d1, . . . , dm+1 ∈ ∆I , we have
(dm, dm+1) ∈ rI and thus (dm, dm+1) ∈ sI . Again,
the definition of sJ yields that (x, y) ∈ sJ .

To show that rĴ ⊆ sĴ , take (x, y) ∈ rĴ . If (x, y) ∈ rJ ,
we have (x, y) ∈ sJ and thus (x, y) ∈ sĴ . Otherwise, we
have that (x, y) ∈ (tJ )+ with R |= t v r and R |= trans(t).
Since r v s ∈ R, we have obviously R |= r v s. It is easy
to see that this implies R |= t v s. Then the definition of
sĴ yields that (tJ )+ ⊆ sĴ . Hence (x, y) ∈ sĴ .

Assume now that ψ is of the form trans(r). Since I |= R,
we have I |= trans(r) and thus rI ◦ rI ⊆ rI . By the
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same arguments as above, we have that for each t with
tI ⊆ rI , we have tJ ⊆ rJ , and thus (tJ )+ ⊆ (rJ )+ since
the transitive closure is monotonic. Since rI ⊆ rI , we
have also I |= r v r. The definition of rĴ yields now that
rĴ = (rJ )+, and hence Ĵ is a model of trans(r).

Claim 2 and Claim 3 yield that Î is indeed a model of B.
It only remains to be shown that Ĵ respects D. Since I
respects D, we have

D = {Y ⊆ {A1, . . . , Ak} | ∃d ∈ ∆I with d ∈ (CY )I}.

We now define

D′ := {Y ⊆ {A1, . . . , Ak} | ∃x ∈ ∆Ĵ with x ∈ (CY )Ĵ }.

and show that D = D′. Since Ĵ respects D′, this implies
that Ĵ respects D.
For the direction (⊆), assume that Y ∈ D, and thus

there is a d ∈ (CY )I . By Claim 1 and the definition
of ∆Ĵ , there is a (a, d′d) ∈ (CY )Ĵ , and hence Y ∈ D′.
For the direction (⊇), assume that Y ∈ D′, i.e., there is
a (a, d1 . . . dm) ∈ (CY )Ĵ . By Claim 1 and the definition
of ∆Ĵ , there is a d ∈ (CY )I , where for m = 0, we can
set d := aI , and for m > 0, we can take d := dm. Hence,
Y ∈ D. 2

Lemma 6.6. We have 〈A, T ,R〉 6|= ρ w.r.t. D iff there is
a forest model J of 〈A, T ,R〉 that respects D with J 6|= ρ.

Proof. The “if” direction is trivial. For the “only if”
direction, assume that there is a model I = (∆I , ·I) of
〈A, T ,R〉 that respects D such that I 6|= ρ. As shown in
the proof of Lemma 6.5, I can be transformed into a forest
model Ĵ = (∆Ĵ , ·Ĵ ) that respects D. Assume that J , Ĵ
are obtained from I as in the proof of Lemma 6.5. It is
left to show that then Ĵ 6|= ρ.
Assume to the contrary that Ĵ |= ρ. Then there is a

Boolean CQ ρi in the UCQ ρ such that there is a homomor-
phism π from ρi into Ĵ . We define a homomorphism π′

from ρi into I as follows: π′(a) := aI for all individual
names a occurring in the input; and for all v ∈ Var(ρi),
we define π′(v) := aI if π(v) = (a, ε) for a ∈ Ind(A), and
π′(v) = dm if π(v) = (a, d1 . . . dm) with m > 0. We now
show that π′ is indeed a homomorphism from ρi into I.
Consider first a concept atom A(a) ∈ At(ρi). Since

(a, ε) = aĴ ∈ AĴ , we get aI ∈ AI by Claim 1.
For an atom A(v) ∈ At(ρi) with v ∈ Var(ρi), we get

π(v) ∈ AĴ , and thus π′(v) ∈ AI again by Claim 1.
For r(a, b) ∈ At(ρi), we can show (aI , bI) ∈ rI as in the

proof of Claim 2.
Assume now that there is a role atom of the form r(a, v)

in At(ρi), i.e., ((a, ε), π(v)) ∈ rĴ . If ((a, ε), π(v)) ∈ rJ ,
then (a, π′(v)) ∈ rI by the definitions of J and π′. Other-
wise, there must be a role name s such that R |= s v r,
R |= trans(s), and ((a, ε), π(v)) ∈ (sJ )+. This implies

the existence of a sequence (a0, ε), (a1, ε), . . . , (an, ε),
(an, e1), . . . , (an, e1 . . . ek) in ∆Ĵ such that a0 = a,
π(v) = (an, e1 . . . ek), and each two consecutive elements
of this sequence are connected via sJ . By the definition
of sJ , we get (aI , π′(v)) ∈ sI ⊆ rI .
For any role atom r(v, a) ∈ At(ρi), we know that

(π(v), (a, ε)) ∈ rĴ . By the definition of rĴ , this implies
that there is a sequence (a0, ε), . . . , (an, ε) in ∆Ĵ such
that an = a, π(v) = (a0, ε), and each two consecutive
elements of this sequence are connected via sJ , where
s is a role name such that either n = 1 and s = r, or
R |= s v r and R |= trans(s). By the definition of sJ ,
the properties of s, and since I |= R, this implies that
(π′(v), aI) = (aI0 , aIn) ∈ rI .

Finally, consider a role atom of the form r(v, v′) in At(ρi).
We have (π(v), π(v′)) ∈ rĴ . If π(v) = (a, ε) for some
a ∈ Ind(A), then we can show as in the case of r(a, v)
that (π′(v), π′(v′)) = (aI , π′(v′)) ∈ rI . Otherwise, we
have π(v) = (a, d1 . . . dm) for m > 0 and there is a se-
quence (a, d1 . . . dm), (a, d1 . . . dm+1), . . . , (a, d1 . . . dm+n)
in ∆Ĵ such that n ≥ 1, π(v′) = (a, d1 . . . dm+n), and each
two consecutive elements of this sequence are connected
via sJ , where s is a role name such that either n = 1 and
s = r, or R |= s v r and R |= trans(s). This implies that
(π′(v), π′(v′)) = (dm, dm+n) ∈ sI ⊆ rI .

Hence, I |= ρi, and thus I |= ρ, which contradicts our
assumption that I 6|= ρ. 2

Lemma 6.14. Let B be a Boolean SHQ∩-knowledge base,
let A1, . . . , Ak be concept names occurring in B, and let
D ⊆ 2{A1,...,Ak}. Then B is consistent w.r.t. D iff it has a
quasimodel that respects D.

Proof. For the “if” direction, suppose thatM = (S, ι, f)
is a quasimodel for B = 〈Ψ,R〉 that respects D. Then by
condition (f), for each c ∈ S, EM,c has a solution νc that
maps the variables of EM,c into the non-negative integers.
Let zM be the greatest non-negative integer that occurs in
any of these solutions. Let Z denote the set {1, . . . , zM}.

We define an interpretation J = (∆J , ·J ) as follows:

• ∆J := Anon ∪ Ind(Ψ), where Anon := Su × Z×R(B);

• aJ := a for all a ∈ Ind(Ψ);5

• AJ := {(c, i, r) ∈ Anon | A ∈ c}) ∪
{a ∈ Ind(Ψ) | A ∈ ι(a)} for all A ∈ NC; and

• for all role names r ∈ NR, (c, i, r), (d, j, s) ∈ Anon,
and a, b ∈ Ind(Ψ), we define

– (a, b) ∈ rJ iff r(a, b) ∈ f ;

5We ignore for now the individual names in NI \ Ind(Ψ) since they
are irrelevant when dealing with B. After constructing the model I
below, one can ensure that it respects the UNA by constructing the
countably infinite disjoint union of I with itself to allow for different
interpretations of each of these individual names.
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– (a, (d, j, s)) ∈ rJ iff r ∈ s, (ι(a),d) ∈ sR, and
νι(a)(xι(a),s,d) ≥ j;

– ((c, i, r), (d, j, s)) ∈ rJ iff r ∈ s, (c,d) ∈ sR, and
νc(xc,s,d) ≥ j;

– ((c, i, r), b) /∈ rJ .

Now we construct a model I = (∆I , ·I) of B by defin-
ing ∆I := ∆J , for each A ∈ NC, AI := AJ , for each
a ∈ Ind(Ψ), aI := aJ , and for each r ∈ NR,

rI := rJ ∪
⋃

R|=svr, R|=trans(s)

(sJ )+.

We prove the following claim by structural induction.

Claim 4. For all concepts C ∈ Con(B), we have:

CI = {(c, i, r) ∈ Anon | C ∈ c} ∪ {a ∈ Ind(Ψ) | C ∈ ι(a)}.

For the base case, C being a concept name, the definition
of I immediately implies the claim. For the case that C is
of the form ¬D, we have by the semantics of SHQ∩, the
induction hypothesis, the definition of I, and the definition
of concept types that

• for all (c, i, r) ∈ Anon, we have (c, i, r) ∈ (¬D)I iff
D /∈ c iff ¬D ∈ c; and

• for all a ∈ Ind(Ψ), we have a ∈ (¬D)I iff D /∈ ι(a) iff
¬D ∈ ι(a).

For the case that C is of the form DuE, we have by similar
arguments that following:

• for all (c, i, r) ∈ Anon, we have (c, i, r) ∈ (D u E)I iff
D ∈ c and E ∈ c iff D u E ∈ c; and

• for all a ∈ Ind(Ψ), we have a ∈ (D u E)I iff D ∈ ι(a)
and E ∈ ι(a) iff D u E ∈ ι(a).

For the case that C is of the form ∃(r1 ∩ · · · ∩ r`).D, we
have by similar arguments the following:

(∃(r1 ∩ · · · ∩ r`).D)I

= {d ∈ ∆I | there is an e ∈ ∆I with
(d, e) ∈ rI1 ∩ · · · ∩ rI` and e ∈ DI}

= {d ∈ ∆I | there is a (d, j, s) ∈ DI with
(d, (d, j, s)) ∈ rI1 ∩ · · · ∩ rI` } ∪

{a ∈ Ind(Ψ) | there is a b ∈ Ind(Ψ) with
(a, b) ∈ rI1 ∩ · · · ∩ rI` and b ∈ DI}

= {d ∈ ∆I | there is a (d, j, s) ∈ Anon with
(d, (d, j, s)) ∈ rI1 ∩ · · · ∩ rI` and D ∈ d} ∪

{a ∈ Ind(Ψ) | there is a b ∈ Ind(Ψ) with
(a, b) ∈ rI1 ∩ · · · ∩ rI` and D ∈ ι(b)}

∗= {(c, i, r) ∈ Anon | ∃(r1 ∩ · · · ∩ r`).D ∈ c} ∪
{a ∈ Ind(Ψ) | ∃(r1 ∩ · · · ∩ r`).D ∈ ι(a)}.

The starred equality ∗= holds due to the following arguments.
Assume, for the direction (⊇), that (c, i, r) ∈ Anon and
∃(r1∩· · ·∩r`).D ∈ c. Since νc solves (E3), there are d ∈ Su
and s ∈ R(B) such that D ∈ d, r1, . . . , r` ∈ s, (c,d) ∈ sR,
and νc(xc,s,d) ≥ 1. By definition of rJ1 , . . . , rJ` , we obtain
((c, i, r), (d, 1, s)) ∈ rJ1 ∩ · · · ∩ rJ` ⊆ rI1 ∩ · · · ∩ rI` . For the
remaining part of the direction (⊇), assume that a ∈ Ind(Ψ)
and ∃(r1 ∩ · · · ∩ r`).D ∈ ι(a). Since νc is a solution of (E3),
there is an s ∈ R(B) such that r1, . . . , r` ∈ s and

• there is a d ∈ Su with D ∈ d, (ι(a),d) ∈ sR, and
νι(a)(xι(a),s,d) ≥ 1; or

• there is a b ∈ Ind(Ψ) such that D ∈ ι(b) and
{r1(a, b), . . . r`(a, b)} ⊆ f .

In the first case, we can infer that (a, (d, 1, s)) ∈ rI1 ∩· · ·∩rI`
as above. In the second case, by the definition of J , we
get (a, b) ∈ rJ1 ∩ · · · ∩ rJ` ⊆ rI1 ∩ · · · ∩ rI` .
For the other direction (⊆), consider a d ∈ ∆I and

(d, j, s) ∈ Anon such that (d, (d, j, s)) ∈ rI1 ∩ · · · ∩ rI` and
D ∈ d. We consider first the case that d = (c, i, r) ∈ Anon
and show that C = ∃(r1 ∩ · · · ∩ r`).D ∈ c. Assume to the
contrary that C /∈ c, and thus ¬C ∈ c.

• For the case ` > 1, we have that r1, . . . , r` are simple
role names, and thus ((c, i, r), (d, j, s)) ∈ rJ1 ∩· · ·∩rJ` .
By definition of J , we have r1, . . . , r` ∈ s, (c,d) ∈ sR,
and νc(xc,s,d) ≥ j ≥ 1. Since νc is a solution of (E4),
we must have νc(xc,s,d) = 0, which is a contradiction.

• For the case ` = 1, by the definition of rI1 , we have
((c, i, r), (d, j, s)) ∈ rJ1 or ((c, i, r), (d, j, s)) ∈ (sJ )+

for some s ∈ NR with R |= s v r1 and R |= trans(s).
The first case can be handled as in the case for ` > 1,
while in the second case there is a sequence (c0, i0, r0),
. . . , (cn, in, rn) in Anon such that

– n ≥ 1;
– (c0, i0, r0) = (c, i, r);
– (cn, in, rn) = (d, j, s); and
– for all k, 0 ≤ k ≤ n − 1, we have s ∈ rk+1,

(ck, ck+1) ∈ rRk+1, and νck(xck,rk+1,ck+1) ≥ ik+1.

If n = 1, then c1 = d, r1 = s, and (c,d) ∈ sR. Since
s is a role type, s ∈ s, and R |= s v r1, we also have
r1 ∈ s. This implies that (c,d) ∈ sR ⊆ rR1 . Since we
assumed that ¬(∃r1.D) ∈ c, we obtain ¬D ∈ d, which
yields a contradiction.
If n > 1, then, since ¬(∃r1.D) ∈ c and (c, c1) ∈ sR,
we have ¬(∃s.D) ∈ c1. By similar arguments, we can
infer that ¬(∃s.D) ∈ cn−1. Since (cn−1,d) ∈ sR, we
again conclude the contradictory ¬D ∈ d.

For the second part of the direction (⊆), consider the case
that d = a ∈ Ind(Ψ). We show C = ∃(r1∩· · ·∩r`).D ∈ ι(a)
by similar arguments as above. Assume that ¬C ∈ ι(a).

27



• For the case ` > 1, we have (a, (d, j, s)) ∈ rJ1 ∩· · ·∩rJ` .
It follows from the definition of J that r1, . . . , r` ∈ s,
(ι(a),d) ∈ sR, and νι(a)(xι(a),s,d) ≥ j ≥ 1. As before,
this contradicts the fact that νι(a) is a solution of (E4).

• For the case ` = 1, we have (a, (d, j, s)) ∈ rJ1 or
(a, (d, j, s)) ∈ (sJ )+ for some s ∈ NR with R |= s v r1
and R |= trans(s). The first case is again the same
as for the case ` > 1, while in the second case, there
is a sequence a0, . . . , an, (c0, i0, r0), . . . , (cm, im, rm)
in ∆I such that

– n,m ≥ 0;
– a0 = a;
– (cm, im, rm) = (d, j, s);
– for all k, 0 ≤ k ≤ n− 1, we have s(ak, ak+1) ∈ f ;
– νι(an)(xι(an),r0,c0) ≥ i0, (ι(an), c0) ∈ rR0 , and
s ∈ r0; and

– for all k, 0 ≤ k ≤ m − 1, we have s ∈ rk+1,
(ck, ck+1) ∈ rRk+1, and νck(xck,rk+1,ck+1) ≥ ik+1.

We first consider the case that n = m = 0. Then
a = an, c0 = d, r0 = s, and (ι(a),d) ∈ sR. Since s
is a role type, s ∈ s, and R |= s v r1, we also have
r1 ∈ s, and thus (ι(a),d) ∈ rR1 . Since ¬(∃r1.D) ∈ ι(a),
we obtain ¬D ∈ d, which is a contradiction.
If n = 0 and m > 0, then we have (ι(a), c0) ∈ sR
since s ∈ r0. Since ¬(∃r1.D) ∈ ι(a), we obtain
¬(∃s.D) ∈ c0, and similarly ¬(∃s.D) ∈ cm−1, and
thus ¬D ∈ cm = d. This is a contradiction.
If n > 0, then s(a, a1) ∈ f . By condition (c), this
implies that (ι(a), ι(a1)) ∈ sR. Since ¬(∃r1.D) ∈ ι(a),
we obtain ¬(∃s.D) ∈ ι(a1). By similar arguments, we
can infer that ¬(∃s.D) ∈ ι(an), and finally ¬D ∈ d,
which contradicts our assumption that D ∈ d.

For the last part of the direction (⊆), let a, b ∈ Ind(Ψ) with
(a, b) ∈ rI1 ∩ · · · ∩ rI` and D ∈ ι(b). For the last time, we
assume that C = ∃(r1 ∩ · · · ∩ r`).D /∈ ι(a) and make a case
distinction on `.

• If ` > 1, then (a, b) ∈ rJ1 ∩ · · · ∩ rJ` , and thus
{r1(a, b), . . . , r`(a, b)} ⊆ f . Since f is a formula type,
the set {r ∈ Rol(B) | r(a, b) ∈ f} is a role type that
contains r1, . . . , r`. Since D ∈ ι(b), we know that
ΓM,ι(a),r,D ≥ 1. This contradicts our assumption
that (E4) has a solution.

• If ` = 1, then (a, b) ∈ rJ1 or (a, b) ∈ (sJ )+ for some
s ∈ NR with R |= s v r1 and R |= trans(s). The first
case is impossible by the same arguments as above,
and in the second case, there is a sequence a0, . . . , an
in Ind(Ψ) such that

– n ≥ 1;
– a0 = a;

– an = b; and
– for all k, 0 ≤ k ≤ n− 1, we have s(ak, ak+1) ∈ f .

If n = 1, then s(a, b) ∈ f , and thus (ι(a), ι(b)) ∈ sR by
condition (c). Since ¬(∃r1.D) ∈ ι(a), we again obtain
¬D ∈ ι(b), and thus a contradiction.
If n > 1, then r1(a, a1) ∈ f since f is a formula
type for B and R |= s v r1. By condition (c), we
obtain (ι(a), ι(a1)) ∈ rR1 , and thus ¬(∃s.D) ∈ ι(a1)
since ¬(∃r1.D) ∈ ι(a). Similarly, we can infer that
¬(∃s.D) ∈ ι(an−1), and finally ¬D ∈ ι(b). This con-
tradicts our assumption that D ∈ ι(b).

Finally, consider the case that C is of the form ≥n r.D.
Recall that r must be simple, and thus rI = rJ . We first
count, for any element d ∈ ∆I , the number of unnamed rJ -
successors that satisfy D. Let c be a concept type such that
either d = (c, i, r) ∈ Anon, or d = a ∈ Ind(Ψ) and c = ι(a).
For a fixed role type s ∈ R(B) and concept type d ∈ Su
with r ∈ s, D ∈ d, and (c,d) ∈ sR, we have by definition
of J that ((c, i, r), (d, j, s)) ∈ rJ iff νc(xc,s,d) ≥ j. Thus,
the number of rJ -successors of d that are of the form
(d, j, s) is exactly νc(xc,s,d). By induction, we obtain

|{(d, j, s) ∈ Anon | (d, (d, j, s)) ∈ rJ , (d, j, s) ∈ DI}|
= |{(d, j, s) ∈ Anon | (d, (d, j, s)) ∈ rJ , D ∈ d}|

=
∑

r∈s∈R(B)
D∈d∈Su, (c,d)∈sR

|{j ∈ Z | (d, (d, j, s)) ∈ rJ }|

=
∑

r∈s∈R(B),
D∈d∈Su, (c,d)∈sR

νc(xc,s,d)

=
∑

r∈s∈R(B)

νc(ΞM,c,s,D). (1)

To similarly count the named successors of d ∈ ∆I , we
only have to consider the case that d = a ∈ Ind(Ψ) since
unnamed domain elements can only have unnamed rJ -
successors. By the definitions of role types and formula
types, for every b ∈ Ind(Ψ) there is a unique role type
s ∈ R(B) such that s(a, b) ∈ f iff s ∈ s. By definition of J ,
s(a, b) ∈ f is equivalent to (a, b) ∈ sJ , and thus we have

|{b ∈ Ind(Ψ) | (a, b) ∈ rJ , b ∈ DI}|
= |{b ∈ Ind(Ψ) | (a, b) ∈ rJ , D ∈ ι(b)}|

=
∑

r∈s∈R(B)

|{b ∈ Ind(Ψ) | (a, b) ∈ sJ iff s ∈ s, D ∈ ι(b)}|

=
∑

r∈s∈R(B)

|{b ∈ Ind(Ψ) | s(a, b) ∈ f iff s ∈ s, D ∈ ι(b)}|

=
∑

r∈s∈R(B)

ΓM,ι(a),s,D. (2)

For every (c, i, r) ∈ Anon, we know that νc solves the
inequations in (E1) and (E2). Thus, we have ≥n r.D ∈ c
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iff the values in (1) are all ≥ n iff (c, i, r) ∈ (≥n r.D)I .
Similarly, for a ∈ Ind(Ψ) it follows that ≥n r.D ∈ ι(a) iff
the sum of (1) and (2) is ≥ n iff a ∈ (≥n r.D)I .
This finishes the proof of Claim 4. To show that I is

indeed a model of B, we first show the following claim by
structural induction.

Claim 5. For all ψ ∈ Sub(B), we have ψ ∈ f iff I |= ψ.

For the first base case, assume that ψ is of the form A(a)
for A ∈ NC and a ∈ NI. We have A(a) ∈ f iff A ∈ ι(a) by
condition (b). Thus, A(a) ∈ f iff aI = aJ = a ∈ AJ = AI

iff I |= A(a).
For the second base case, assume that ψ is of the form

r(a, b) for a, b ∈ NI and r ∈ NR. If r(a, b) ∈ f , we have
(a, b) ∈ rJ by the definition of rJ . Since rJ ⊆ rI , a = aI ,
and b = bI , we obtain (aI , bI) ∈ rI , and thus I |= r(a, b).
Conversely, if I |= r(a, b), we have by the definition of rI
that (a, b) ∈ rJ or (a, b) ∈ (sJ )+ for some s ∈ NR with
R |= s v r and R |= trans(s). If (a, b) ∈ rJ , the defini-
tion of rJ implies that r(a, b) ∈ f . Otherwise, there are
d1, . . . , dm ∈ ∆I such that (a, d1) ∈ sJ , (d1, d2) ∈ sJ , . . . ,
and (dm, b) ∈ sJ . By the definition of sJ , we know that
d1, . . . , dm ∈ Ind(Ψ), and thus s(a, d1) ∈ f , s(d1, d2) ∈ f ,
. . . , and s(dm, b) ∈ f . The definition of a formula type
yields that s(a, b) ∈ f and r(a, b) ∈ f .

For the third base case, assume that ψ is of the form
> v C. If > v C ∈ f , then for every c ∈ S, we have
C ∈ c by condition (d). Claim 4 yields together with the
fact that ι maps into S that CI = Anon ∪ Ind(Ψ) = ∆I .
For the converse direction, if > v C /∈ f , then by the
definition of a formula type, ¬(> v C) ∈ f . Then, by
condition (e), there is a c ∈ S such that C /∈ c, which
implies ¬C ∈ c, because c is a concept type. Claim 4
yields that either {c} × Z × R ⊆ (¬C)I or there is an
a ∈ Ind(Ψ) such that c = ι(a) and a ∈ (¬C)I . Thus, we
have CI 6= Anon ∪ Ind(Ψ) = ∆I .
For the induction step, assume first that ψ is of the

form ¬ψ′. By induction, we have ψ ∈ f iff ψ′ /∈ f iff
I 6|= ψ′ iff I |= ¬ψ′. Similarly, if ψ is of the form ψ1 ∧ ψ2,
then ψ ∈ f iff {ψ1, ψ2} ⊆ f iff I |= ψ1 and I |= ψ2 iff
I |= ψ1 ∧ ψ2.
This finishes the proof of Claim 5. Since f is a formula

type for Ψ, we have Ψ ∈ f , and thus together with Claim 5
that I |= Ψ. We now show that I is also a model of R.

Claim 6. For all α ∈ R, we have I |= α.

Assume first that α is of the form r v s. We first show
that rJ ⊆ sJ . For this, take (x, y) ∈ rJ . There are three
cases to consider:

• If x, y ∈ Ind(Ψ), we have r(x, y) ∈ f . Since r v s ∈ R,
we have also R |= r v s, which yields s(x, y) ∈ f since
f is a formula type. The definition of sJ yields that
(x, y) ∈ sJ .

• If x ∈ Ind(Ψ) and y = (d, j, s) ∈ Anon, we have
r ∈ s, (ι(x),d) ∈ sR, and νι(x)(xι(x),s,d) ≥ j. By

the definition of a role type, we have s ∈ s. Hence,
(x, (d, j, s)) ∈ sJ .

• If x = (c, i, r) ∈ Anon and y = (d, j, s) ∈ Anon, we
have r ∈ s, (c,d) ∈ sR, and νc(xc,s,d) ≥ j. By
the definition of a role type, we have s ∈ s. Hence
((c, i, r), (d, j, s)) ∈ sJ .

To show that rI ⊆ sI , take (x, y) ∈ rI . If (x, y) ∈ rJ , we
have (x, y) ∈ sJ and thus (x, y) ∈ sI . Otherwise, we have
(x, y) ∈ (tJ )+ with R |= t v r and R |= trans(t). Since
r v s ∈ R, we also have R |= t v s. The definition of sI
yields that (tJ )+ ⊆ sI , and hence (x, y) ∈ sI .

Assume now that ψ is of the form trans(r). Since
trans(r) ∈ R, we have also R |= trans(r), and obviously
also R |= r v r. By the same arguments as above, we have
that for each t with R |= t v r that tJ ⊆ rJ , and thus
(tJ )+ ⊆ (rJ )+ since the transitive closure is monotonic.
This yields that rI = (rJ )+, and thus I |= trans(r).

This finishes the proof of Claim 6. Together with Claim 5,
this implies that I is indeed a model of B. It only remains
to be shown that I respects D. By condition (g) and
Claim 4, we have for every d ∈ ∆I a set Y ∈ D such that
d ∈ (CY )I . By condition (h) and Claim 4, we also have for
every Y ∈ D a d ∈ ∆I such that d ∈ (CY )I . This shows
that I respects D.

This finishes the proof of the “if” direction of the lemma.
For the “only if” direction, assume that there is a model
I = (∆I , ·I) of B = 〈Ψ,R〉 that respects D. Due to
Lemma 6.5, we can assume w.l.o.g. that I is a forest model.
We denote by ∆Iu the set {d ∈ ∆I | d 6= aI for all a ∈ NI}
of unnamed domain elements, and by ∆In the set ∆I \∆Iu of
named domain elements. We now construct a quasimodel
for B.
Let τ(d) := {C ∈ Con(B) | d ∈ CI} for d ∈ ∆I . We

defineM = (S, ι, f) as follows:

• S := {τ(d) | d ∈ ∆Iu} ∪ {τ(aI) ∪ {a} | a ∈ Ind(Ψ)};

• ι(a) := τ(aI) ∪ {a} for all a ∈ Ind(Ψ); and

• f := {ψ ∈ Sub(B) | I |= ψ}.

Obviously, S is a set of concept types for B, f is a formula
type for B, and we have also that for any c,d ∈ S with
c 6= d that c ∩ d ∩ Ind(Ψ) = ∅. By definition, a ∈ ι(a) for
all a ∈ Ind(Ψ). Hence,M is a model candidate for B. We
continue showing the following claim.

Claim 7. For all d, e ∈ ∆I and r ∈ NR, we have that
(d, e) ∈ rI implies (τ(d), τ(e)) ∈ rR.

Assume that (d, e) ∈ rI . For the first condition of r-
compatibility, take any ¬(∃r.D) ∈ τ(d), which implies
that d ∈ (¬∃r.D)I . By the semantics of SHQ∩, we have
e ∈ (¬D)I , and thus ¬D ∈ τ(e). For the second condition
of r-compatibility, take any s ∈ NR with R |= r v s,
R |= trans(r), and ¬(∃s.D) ∈ τ(d). Since I is a model
of R, we have rI ⊆ sI and rI is transitive. Suppose that
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¬(∃r.D) /∈ τ(e), and thus ∃r.D ∈ τ(e). Then there is
an e′ ∈ ∆I with e′ ∈ DI and (e, e′) ∈ rI . Since rI is
transitive, we have also (d, e′) ∈ rI , and thus (d, e′) ∈ sI ,
which yields a contradiction to ¬(∃s.D) ∈ τ(d).

This finishes the proof of Claim 7. We can now use
this claim to show thatM is also a quasimodel for B that
respects D.

Condition (a) is easily verified, because ∆I 6= ∅ by
definition.

For Condition (b), we have A(a) ∈ f iff I |= A(a) iff
aI ∈ AI iff A ∈ τ(aI) ∪ {a} = ι(a).

For Condition (c), assume that r(a, b) ∈ f . Then,
I |= r(a, b), and thus (aI , bI) ∈ rI . Claim 7 yields
that (τ(aI), τ(bI)) ∈ rR. Obviously, we also have that
(ι(a), ι(b)) ∈ rR.

For Condition (d), take c ∈ S and > v C ∈ f . The
definition of f yields I |= > v C, and thus CI = ∆I .
Hence, C ∈ τ(d) for any d ∈ ∆I , which yields by the
definition of S that C ∈ c.

For Condition (e), take ¬(> v C) ∈ f . By the definition
of f , this implies I 6|= > v C. Thus, there is a d ∈ ∆I
with d /∈ CI . Thus, we have either C /∈ τ(d) ∈ S or
C /∈ τ(d) ∪ {a} ∈ S for some a ∈ Ind(Ψ).

For Condition (f), take any c ∈ S. We construct a
solution νc of the system of equations EM,c. Since c ∈ S,
there is a d ∈ ∆I with c = τ(d) if d ∈ ∆Iu and c = τ(d)∪{a}
if d = aI for some a ∈ Ind(Ψ). Let z denote the maximal
integer that occurs in any number restriction in B. We first
consider the variables xc,r,d. Take any r ∈ R(B) and any
d ∈ Su such that (c,d) ∈ rR. Then we define

νc(xc,r,d) := min
{
z, |{e ∈ ∆Iu | τ(e) = d,

(d, e) ∈ sI iff s ∈ r}|
}
.

We set νc(xc,r,d) to at most z to ensure that this value is
finite.

Consider now any ≥n r.C ∈ Con(B). We show that

≥n r.C ∈ c iff
∑

r∈r∈R(B)

(νc(ΞM,c,r,C) + ΓM,c,r,C) ≥ n,

(3)
which implies that the inequations of the form (E1)
and (E2) are satisfied.

Assume first that there are d ∈ Su and r ∈ R(B) such
that C ∈ d, r ∈ r, (c,d) ∈ rR, and νc(xc,r,d) = z ≥ n.
Then by definition of νc, there are at least n unnamed
domain elements e ∈ ∆Iu with C ∈ d = τ(e) and (d, e) ∈ rI ,
which implies that d ∈ (≥n r.C)I , and thus ≥n r.C ∈ c.
Additionally, νc(ΞM,c,r,C) ≥ z ≥ n, which shows that (3)
holds. We assume in the following that for all d ∈ Su and
r ∈ R(B) with C ∈ d, r ∈ r, and (c,d) ∈ rR, we have
νc(xc,r,d) = |{e ∈ ∆Iu | τ(e) = d, (d, e) ∈ sI iff s ∈ r}|.

It now follows that, for any r ∈ R(B), we have

νc(ΞM,c,r,C)

=
∑

C∈d∈Su, (c,d)∈rR

νc(xc,r,d)

=
∑

C∈d∈Su, (c,d)∈rR

|{e ∈ ∆Iu | τ(e) = d,
(d, e) ∈ sI iff s ∈ r}|

= |{e ∈ CI ∩∆Iu | (d, e) ∈ sI iff s ∈ r}|, (4)

where the third equality follows by Claim 7. Thus,∑
r∈r∈R(B)

νc(ΞM,c,r,C) = |{e ∈ CI ∩∆Iu | (d, e) ∈ rI}|.

(5)

If d ∈ ∆In, then d = aI and c = τ(aI) ∪ {a} for some
a ∈ Ind(Ψ). Thus,∑
r∈r∈R(B)

ΓM,c,r,C

=
∑

r∈r∈R(B)

|{b ∈ Ind(Ψ) | C ∈ ι(b), s(a, b) ∈ f iff s ∈ r}|

= |{b ∈ Ind(Ψ) | C ∈ ι(b), r(a, b) ∈ f}|
= |{b ∈ Ind(Ψ) | bI ∈ CI , (aI , bI) ∈ rI}|
= |{e ∈ CI ∩∆In | (d, e) ∈ rI}|. (6)

If d ∈ ∆Iu, then c = τ(d) ∈ Su, and therefore we have
ΓM,c,r,C = 0 for all r ∈ R(B) with r ∈ r. Since I is a
forest model, d cannot have named rI-successors, and thus
also |{e ∈ CI ∩∆In | (d, e) ∈ rI}| = 0, which shows that (6)
holds for all d ∈ ∆I = ∆Iu ∪∆In.

Since {∆Iu,∆In} partitions ∆I , we thus have ≥n r.C ∈ c
iff d ∈ (≥n r.C)I iff |{e ∈ CI | (d, e) ∈ rI}| ≥ n iff∑

r∈r∈R(B)

(νc(ΞM,c,r,C) + ΓM,c,r,C) ≥ n

by (5) and (6), which shows that (3) holds.

Consider now any E = ∃(r1 ∩ · · · ∩ r`).C ∈ Con(B). As
above, the existence of d ∈ Su and r ∈ R(B) such that
C ∈ d, r1, . . . , r` ∈ r, (c,d) ∈ rR, and νc(xc,r,d) = z ≥ 1
implies that both E ∈ c and νc(ΞM,c,r,C) ≥ z ≥ 1, which
shows that the corresponding inequation of the form (E3)
is satisfied.

Therefore, in the following we can make the same as-
sumption as in the previous case, i.e., that none of these
variables is assigned the value z. Then (4) holds as before,
and thus∑

r1,...,r`∈r∈R(B)

νc(ΞM,c,r,C)

= |{e ∈ CI ∩∆Iu | (d, e) ∈ rI1 ∩ · · · ∩ rI` }|.
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We also have∑
r1,...,r`∈r∈R(B)

ΓM,c,r,C

= |{e ∈ CI ∩∆In | (d, e) ∈ rI1 ∩ · · · ∩ rI` }|

by similar arguments as in the previous case.
Again, it follows that E ∈ c iff d ∈ EI iff there is at

least one e ∈ CI with (d, e) ∈ rI1 ∩ · · · ∩ rI` iff∑
r1,...,r`∈r∈R(B)

(νc(ΞM,c,r,C) + ΓM,c,r,C) ≥ 1,

which shows that the (in-)equations of the forms (E3)
and (E4) are satisfied, and thusM satisfies Condition (f).
For Condition (g), let c ∈ S. Then there must be a

d ∈ ∆I with τ(d) ⊆ c. Since I respects D, there must be
a set Y ∈ D such that d ∈ (CY )I . Hence, by definition of
τ(d), we have Y = c ∩ {A1, . . . , Ak}.

For Condition (h), let Y ∈ D. Since I respects D, there
must be a d ∈ (CY )I . Hence, by definition of τ(d), we
have either Y = τ(d) ∩ {A1, . . . , Ak} with τ(d) ∈ S or
Y = (τ(d) ∪ {a}) ∩ {A1, . . . , Ak} with τ(d) ∪ {a} ∈ S for
some a ∈ Ind(Ψ). 2

Theorem 6.15. Let B be a Boolean SHQ∩-knowledge base,
let A1, . . . , Ak be concept names occurring in B, and let
D ⊆ 2{A1,...,Ak}. Then consistency of B w.r.t. D can be
decided in time exponential in the size of B.

Proof. By Lemma 6.14, it suffices to show that the algo-
rithm described in Section 6.3 to find quasimodels for B
that respect D is sound, complete, and terminates in time
exponential in the size of B.
If the algorithm has constructed a model candidate

M = (S, ι, f) that passed all tests, thenM obviously sat-
isfies Conditions (a)–(h) of Definition 6.13.
Conversely, if M = (S, ι, f) is a quasimodel of B that

respects D, then ι and f must be enumerated by the algo-
rithm at some point. Since ι and f satisfy Conditions (b)
and (c), they pass the tests in Step 1. In Step 2, a model
candidateM′ := (S ′, ι, f) with S ⊆ S ′ is constructed since
the concept types in S satisfy (d) and (g) by assump-
tion. We continue with Step 3, where a model candidate
M′′ := (S ′′, ι, f) with S ′′ ⊆ S ′ is constructed. The systems
of equations EM′′,c for c ∈ S have the same solutions
as EM,c—the additional variables for the concept types
in S ′′ \ S can simply be evaluated to 0. Thus, we know
that S ⊆ S ′′ and we continue with Step 4. Finally, observe
that the concept types needed to satisfy Conditions (a), (e),
and (h) are contained in S, and therefore in S ′′. This shows
that the algorithm detects the existence of a quasimodel
of B that respects D.
To analyze the time complexity of the algorithm, ob-

serve first that r-compatibility w.r.t. R can be checked in
polynomial time since this only involves inclusion tests for

sets of polynomial size and entailment tests of role axioms
w.r.t. R.

As mentioned before, the number N of model candi-
dates is at most exponential, while each model candidate
(Su ∪ Sι, ι, f) is of exponential size. For each of these expo-
nentially many model candidates, the checks in Step 1 can
be done in polynomial time and the checks in Step 2 are
done at most exponentially often since each time one of the
exponentially many concept types in S is removed. Each
of these checks can be done in exponential time since the
following conditions are checked for at most exponentially
many concept types c:

• for (d) we check for inclusion of polynomially many
concepts in c;

• for (g), we enumerate all (at most exponentially many)
elements of D and do a simple check.

By similar arguments as above, Step 3 is executed at most
exponentially often. Each time this step is performed,
for exponentially many concept types c ∈ S ′ it must be
checked whether EM′,c has a solution. Consider now a
concept type c ∈ S ′, and denote by n the number of
variables and by m the number of equations in EM′,c.
Note that n may be exponential in the size of B since
there are exponentially many possible concept types and
role types. However, m is polynomial since we have one
equation per at-least and existential restriction occurring
in Ψ. In [46], it was shown that EM′,c can be solved in
time O(n2m+2(ma)(m+1)(2m+1)), where a is the value of
the largest number appearing in the equations. Thus, even
if the numbers in at-least restrictions are given in binary
encoding, Condition (f) can also be checked in exponential
time in the size of B.

Finally, checking (a), (e), and (h) in Step 4 can be done
in exponential time by similar arguments as for Step 2. 2
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