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Introduction. Description Logics (DLs) [4] are a family of logic formalisms, which are de-
signed specially to represent the conceptual knowledge of an application domain. DLs allow
users to define classes and relations of the domain using concepts and roles, to formulate con-
straints on the domain by means of terminological axioms and to deduce consequences such as
subsumption (subclass) relationships following from the definitions and constraints. The DL EL
allows to construct concepts from atomic concept names and role names using the constructors
conjunction (C uD), existential restriction (∃r.C for a role name r), and the top concept (>).

Unification in DLs was introduced in [8] to detect redundancies between concept definitions
in so-called ontologies. For example, assume that one developer of a medical ontology defines
the concept of a patient with severe head injury using the EL-concepts

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_finding u Injury u ∃finding_site.Head). (2)

Formally, these expressions are not equivalent, but they are nevertheless meant to represent
the same concept. They can obviously be made equivalent by treating the concept names
Head_injury and Severe_finding as variables, and substituting them by Injuryu∃finding_site.Head
and ∃severity.Severe, respectively. In this case, we say that the concepts are unifiable, and call
the substitution that makes them equivalent a unifier. In [7], we were able to show that uni-
fication in EL is NP-complete. The main idea underlying the proof of this result is to show
that any solvable EL-unification problem has a local unifier, i.e., a unifier built from a polyno-
mial number of so-called atoms determined by the unification problem. This yields a brute-force
NP-algorithm for unification, which guesses a local substitution and then checks (in polynomial
time) whether it is a unifier.

Intuitively, a unifier proposes definitions for the concept names that are used as variables:
in our example, we know that, if we define Head_injury as Injury u ∃finding_site.Head and
Severe_finding as ∃severity.Severe, then the two concepts (1) and (2) are equivalent w.r.t. these
definitions. Of course, this example was constructed such that the unifier (which is local)
provides sensible definitions for the concept names used as variables. In general, the existence
of a unifier only says that there is a structural similarity between the two concepts. The
developer that uses unification needs to inspect the unifier(s) to see whether the definitions
it suggests really make sense. For example, the substitution that replaces Head_injury by
PatientuInjuryu∃finding_site.Head and Severe_finding by Patientu∃severity.Severe is also a local
unifier, which however does not make sense. Unfortunately, even small unification problems
like the one in our example can have too many local unifiers for manual inspection. We propose
disunification to avoid local unifiers that do not make sense. In addition to positive constraints
(requiring equivalence or subsumption between concepts), a disunification problem may also
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Table 1: Syntax and semantics of EL
Concept Syntax Semantics

top > >I := ∆I

conjunction C uD (C uD)I := CI ∩DI

existential restriction ∃r.C (∃r.C)I := {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

contain negative constraints (preventing equivalence or subsumption between concepts). In our
example, the nonsensical unifier can be avoided by adding the dissubsumption constraint

Head_injury 6v? Patient (3)

to the equivalence constraint (1) ≡? (2).
The main reason for unification in EL to be decidable in NP is locality: if the problem has a

unifier then it has a local unifier. It turns out that disunification in EL is not local in this sense.
Decidability and complexity of disunification in EL remains an open problem, but we provide
partial solutions that are of interest in practice. On the one hand, we consider dismatching prob-
lems, i.e., disunification problems where the negative constraints are dissubsumptions C 6v? D
for which either C or D is ground. The dissubsumption (3) from above actually satisfies this
restriction since Patient is not a variable. We prove that (general) solvability of dismatching
problems can be reduced to local disunification, i.e., the question whether a given disunification
problem has a local solution, which shows that dismatching in EL is NP-complete. On the
other hand, we develop two specialized algorithms to solve local disunification problems that
extend the ones for unification [6, 7]: a goal-oriented algorithm that reduces the amount of
nondeterministic guesses necessary to find a local solution, as well as a translation to SAT. The
reason we extend both algorithms is that, in the case of unification, they have proved to com-
plement each other well in first evaluations [1]: the goal-oriented algorithm needs less memory
and finds minimal solutions faster, while the SAT reduction generates larger data structures,
but outperforms the goal-oriented algorithm on unsolvable problems.

Disunification in DLs is closely related to unification and admissibility in modal logics [9,
12–17], as well as (dis)unification modulo equational theories [7, 8, 10, 11]. In the following, we
shortly describe the ideas behind our work. More details can be found in [2, 3].

Preliminaries. An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an
interpretation function that maps concept names to subsets of ∆I and role names to binary
relations over ∆I . This function is extended to concepts as shown in Table 1. A concept C is
subsumed by a concept D (written C v D) if for every interpretation I it holds that CI ⊆ DI .
The two concepts C and D are equivalent (written C ≡ D) if C v D and D v C. Since
conjunction is interpreted as intersection, we can treat u as a commutative and associative
operator, and thus dispense with parentheses in nested conjunctions. An atom is a concept
name or an existential restriction. Hence, every concept term C is a conjunction of atoms or >.
We call the atoms in this conjunction the top-level atoms of C. Obviously, C is equivalent to
the conjunction of its top-level atoms, where the empty conjunction corresponds to >. An atom
is flat if it is a of the form A or ∃r.A for a concept name A.

Subsumption in EL is decidable in polynomial time [5] and can be checked by recursively
comparing the top-level atoms of the two concept terms: for two atoms C,D, we have C v D
iff C = D is a concept name or C = ∃r.C ′, D = ∃r.D′, and C ′ v D′; if C,D are concepts, then
C v D iff for every top-level atom D′ of D there is a top-level atom C ′ of C such that C ′ v D′.
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This means that C 6v D (i.e., C is not subsumed by D) iff there is a top-level atom D′ of D
such that for all top-level atoms C ′ of C we have C ′ 6v D′. By further analyzing the structure
of atoms, we obtain the following.

Lemma 1. Let C,D be two atoms. Then C 6v D iff either (i) C or D is a concept name and
C 6= D; (ii) D = ∃r.D′, C = ∃s.C ′, and r 6= s; or (iii) D = ∃r.D′, C = ∃r.C ′, and C ′ 6v D′.

For the purposes of (dis)unification, we designate certain concept names as variables, while
all others are constants. We consider (basic) disunification problems, which are conjunctions of
subsumptions C v? D and dissubsumptions C 6v? D between concepts C,D.1 A substitution σ
solves a disunification problem Γ if the (dis)subsumptions of Γ become valid when applying σ on
both sides. We here restrict substitutions to a finite signature of constants and role names—it
would not make sense for the new definitions to extend the vocabulary of the ontologies under
consideration, nor to define variables in terms of other variables.

We now consider a flat disunification problem Γ, i.e. one that contains only (dis)subsumptions
where both sides are conjunctions of flat atoms. We denote by At the set of all such atoms
that occur in Γ, by Var the set of variables occurring in Γ, and by Atnv := At \ Var the set of
non-variable atoms of Γ. Let S : Var → 2Atnv be an assignment, i.e. a function that assigns to
each variable X ∈ Var a set SX ⊆ Atnv. The relation >S on Var is defined as the transitive
closure of {(X,Y ) ∈ Var2 | Y occurs in an atom of SX}. If >S is irreflexive, then S is called
acyclic. In this case, we can define the substitution σS inductively along >S as follows: if X
is minimal, then σS(X) :=

d
D∈SX

D; otherwise, assume that σS(Y ) is defined for all Y ∈ Var
with X > Y , and define σS(X) :=

d
D∈SX

σS(D). Substitutions of this form are called local.
Unification in EL is local : each problem Γ can be transformed into an equivalent flat problem

that has a local solution iff Γ is solvable, and hence (general) solvability of unification problems
in EL is in NP [7]. However, disunification in EL is not local in this sense: consider

Γ := {X v? B, A uB u C v? X, ∃r.X v? Y, > 6v? Y, Y 6v? ∃r.B} (4)

with variables X,Y and constants A,B,C. If we set σ(X) := AuBuC and σ(Y ) := ∃r.(AuC),
then σ is a solution of Γ that is not local. This is because ∃r.(A u C) is not a substitution of
any non-variable atom in Γ. Assume now that Γ has a local solution γ. Since γ must solve
the first dissubsumption, γ(Y ) cannot be >, and due to the third subsumption, none of the
constants A,B,C can be a conjunct of γ(Y ). The remaining atoms ∃r.γ(X) and ∃r.B are ruled
out by the last dissubsumption since both γ(X) and B are subsumed by B. This shows that
Γ cannot have a local solution, although it is solvable. We call a local disunification problem a
disunification problem asking for local solutions only. Thus (4) defined as a local disunification
problem does not have solutions.

Obviously, deciding the existence of a local solution for a flat disunification problem is
decidable in NP: We can guess an assignment S, and check it for acyclicity and whether σS
solves the disunification problem in polynomial time. The corresponding complexity lower
bound follows from NP-hardness of (local) solvability of unification problems in EL [7].

Dismatching in EL is NP-complete. A dismatching problem Γ is a disunification problem
where one side of each dissubsumption is ground. Notice that Γ defined in (4) is in fact a
dismatching problem. We show that such a problem can be polynomially reduced to a flat
disunification problem that has a local solution iff Γ is solvable. This shows that deciding
solvability of dismatching problems in EL is in NP. For a detailed description of the algorithm,
see [3, Algorithm 8].

1A unification problem contains only subsumptions.
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Based on Lemma 1, we designed a non-deterministic algorithm which applies transformation
rules reducing dissubsumptions whenever possible. For example, we replace the first dissub-
sumption in (4), > 6v? Y , with Y v? ∃r.Z. The rule we applied here is the following:
Solving Left-Ground Dissubsumptions:

Condition: This rule applies to s = C1 u · · · u Cn 6v? X if X is a variable and C1, . . . , Cn are
ground atoms.
Action: Choose one of the following options:

• Choose a constant A ∈ Σ and replace s by X v? A. If C1 u · · · u Cn v A, then fail.

• Choose a role r ∈ Σ, introduce a new variable Z, replace s by X v? ∃r.Z, C1 6v? ∃r.Z, . . . ,
Cn 6v? ∃r.Z, and immediately apply Atomic Decomposition to each of these dissubsumptions.

Notice that the rule involves a don’t know nondeterministic choice. According to the rule, we
can choose a constant or create a new existential restriction with a fresh variable, and use
it in the new subsumption and dissubsumptions. In our example the left hand side of the
dissubsumption > 6v? Y is empty, hence only a subsumption is produced. In effect, we obtain
from (4) a new flat disunification problem:

Γ′ := {X v? B, A uB u C v? X, ∃r.X v? Y, Y v? ∃r.Z, Y 6v? ∃r.B} (5)
The main idea of the reduction of dismatching in EL to local disunification is to increase the
set of local atoms in new subsumptions and dissubsumptions added to the original problem so
as to be able to solve the dissubsumptions using a local substitution. In our example, such a
new atom is ∃r.Z. In general disunification problems, this idea does not work, because we may
be forced to add new variables and atoms ad infinitum. But in the case of dismatching, where
one side of a dissubsumption is always ground, the number of new variables is restricted by
the number of ground subconcepts in the ground sides of dissubsumptions. Hence the process
terminates in polynomial time with a flat disunification problem whose local solution is also a
solution for the original dismatching problem. Thus we can state the main result of this paper.

Theorem 2. Deciding solvability of dismatching problems in EL is NP-complete.

Goal-directed algorithm and SAT reduction to find local solutions. The brute-force
NP-algorithm for checking local solvability of flat disunification problems is hardly practical.
For this reason, we extended the rule-based algorithm from [7] and the SAT reduction from [6]
by additional rules and propositional clauses, respectively, to deal with dissubsumptions.

For a given disunification problem, both algorithms attempt to define an acyclic assignment
S of non-variable atoms to variables. In the case of the rule-based algorithm, the problem is
transformed with every rule application. Rules apply to unsolved subsumptions or dissubsump-
tions, and this can cause extension of the assignment S and possibly the generation of new
(dis)subsumptions. For example, solving Γ′ in (5) would require adding ∃r.Z to SY and this
would trigger the addition of ∃r.Z 6v? ∃r.B to Γ′. This dissubsumption would be immediately
decomposed to Z 6v? B. Finally, since Z would have an empty set of non-variable atoms as-
signed (SZ = ∅), we obtain the solution {X 7→ B, Y 7→ ∃r.>, Z 7→ >}, which is a local solution
of Γ′ in (5) and a non-local solution of Γ in (4).

In the case of the algorithm reducing a local disunification problem to SAT, we use (among
others) the propositional variables [C v D] for all C,D ∈ At. The intuition is that a satisfying
valuation of the propositional problem induces a solution σ such that σ(C) v σ(D) holds
whenever [C v D] is true under the valuation. Properties of (dis)subsumptions in EL and the
(dis)subsumptions of the problem are encoded with the help of these variables as propositional
clauses. For example, the only dissubsumption in Γ′ in (5) is encoded as [Y v ∃r.B] → . The
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subsumptions with more than one atom on the left-hand side (like the second subsumption
in Γ′) require non-Horn clauses. We prove that the set of clauses obtained by this translation of
a disunification problem is satisfiable iff there is a local solution of the problem. For a detailed
definition of the algorithms and more explanations, see [2].

The SAT reduction has been implemented in our prototype system UEL.2 First experiments
show that dismatching is helpful for reducing the number and size of unifiers. The performance
of the solver for dismatching problems is comparable to the one for pure unification problems.
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