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Abstract

The exact unification type of an equational theory is based on a new preorder on substitutions,

called the exactness preorder, which is tailored towards transferring decidability results for unification

to disunification. We show that two important results regarding the unification type of commutative

theories hold not only for the usual instantiation preorder, but also for the exactness preorder: w.r.t.

elementary unification, commutative theories are of type unary or nullary, and the theory ACUIh of

Abelian idempotent monoids with a homomorphism is nullary.

1 Introduction

It is well-known that deciding solvability of a disunification problem modulo an equational
theory E [BB94, Com91] can be reduced to E-unification in case the theory E is effectively
finitary, i.e., for every E-unification problem a finite complete set of E-unifiers always exists
and can be effectively computed. Given a disunification problem Γ, one first computes a finite
complete set of E-unifiers for the equations in Γ, and then checks whether this set contains a
substitution that also satisfies all the disequations of Γ.

In order to extend this approach to non-finitary equational theories, Cabrer and Metcalfe
[CM14] introduced a new preorder on substitutions that contains, but is usually larger than,
the instantiation preorder:

σ vX
E τ iff σ(s) =E σ(t)⇒ τ(s) =E τ(t) for all terms s, t built using only variables from X.

Using this preorder in place of the instantiation preorder (where X is the set of variables
occurring in the unification problem), one can now define (minimal) complete sets of unifiers,
and thus obtain a new classification of equational theories w.r.t. their type, which we call
exact unification type. The definition of the exactness preorder is tailored towards ensuring
that the above reduction from disunification to unification still works. The advantage of using
the exactness preorder rather than the instantiation preorder is that the former is larger, and
thus it may be the case that a theory that is non-finitary w.r.t. the instantiation preorder is
finitary w.r.t. the exactness preorder. For instance the theories of Idempotent Semigroups and
of Distributive Lattices are nullary w.r.t. the instantiation preorder, yet their exact types are
respectively finitary and unitary (see [CM14] for these and more examples). In the following,
we will denote the instantiation preorder as ≤E and the exactness preorder as vE , where the
set of variables X on which the substitutions are compared is always assumed to be the set of
variables occurring in the unification problem under consideration.

Commutative theories were introduced in [Baa89] in order to generalize approaches and
results for unification in the theories axiomatizing Abelian Monoids (ACU), idempotent Abelian
Monoids (ACUI), and Abelian groups (AG). One important result in [Baa89] is the fact that,
w.r.t. elementary unification, commutative theories are of unification type either unitary or
nullary. Recall that a unification problem is elementary if it does not contain free constant or
function symbols. The three theories mentioned above are all unitary. To provide an example
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for a non-unitary (and thus nullary) equational theory, it is shown in [Baa89] that the theory
ACUIh of idempotent Abelian monoids with a homomorphism is nullary:

ACUIh := {x+ 0 = x, x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ x = x,

h(x+ y) = h(x) + h(y), h(0) = 0}

The mentioned results use the instantiation preorder to compare substitutions. We will show
below that these results also hold if the exactness preorder is used in place of the instantiation
preorder.

2 The Dichotomy Result for Exact Types

The class of commutative theories is defined in [Baa89] using the category of finitely generated
free algebras.1 To be more precise, let E be an equational theory and V a denumerable set (of
variables). Then the category C(E) is defined as follows:

• The objects of C(E) are the algebras FE(X) for finite subsets X of V , where FE(X) is the
free algebra generated by X in the variety defined by E.

• The morphisms of C(E) are the homomorphisms between these objects, where the com-
position of morphisms is the usual composition of mappings.

An equational theory E is commutative if the associated category C(E) is semiadditive. The
exact definition of semiadditive categories can be found in [HS73, Baa89]. For the purpose of
this paper it is sufficient to know that in such a category the coproduct is also a product. In
[Baa89] there is also a more algebraic characterization of commutative theories, which shows
that the theories ACU, ACUI, AG, and ACUIh are commutative.

The following theorem generalizes Theorem 6.3 in [Baa89] from the instantiation preorder
to all preorders extending the instantiation preorder. It thus applies to the exactness preorder,
but also to the preorder on substitutions introduced in [HS06].

Theorem 1. For elementary unification, commutative theories are either unitary or nullary
w.r.t. any preorder � containing the instantiation preorder.

Proof. A theory is either at most finitary or at least infinitary. In the first case, use the first
lemma below to show that it is actually unitary. In the second case, the condition of the second
lemma is satisfied, which shows that the theory is actually nullary.

For the remainder of this section, we assume that � is a preorder that contains the instan-
tiation preorder. To align our proofs of the two lemmata with the corresponding ones given in
[Baa89] for the instantiation preorder, we use the categorical formulation of unification intro-
duced there. To obtain this formulation, a unification problem 〈si = ti | 1 ≤ i ≤ n〉 is translated
into a pair of morphisms 〈σ = τ〉, where

Dom(σ) = Dom(τ) = I = {x1, . . . , xn} and σ(xi) = si ∧ τ(xi) = ti for all i, 1 ≤ i ≤ n.

In this setting, a unifier is a morphism γ such that σγ = τγ.

Lemma 1. Let E be a commutative theory and Γ = 〈σ = τ〉 be an elementary E-unification
problem, and let {γ1, . . . , γn} be a finite complete set of E-unifiers of Γ w.r.t. �. Then there
exists a E-unifier γ of Γ s.t. the singleton set {γ} is a complete set of E-unifiers of Γ w.r.t. �.

1See [Nut90] for an algebraic definition of the closely related class of monoidal theories.
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Proof. Let σ, τ : FE(I)→ FE(X) and γi : FE(X)→ FE(Yi).
Let Y = Y1 ] · · · ] Yn is the disjoint union of the generating sets Yi. Then FE(Y ) is the

coproduct and the product of the objects FE(Yi). Let p1, . . . , pn be the projections for the
product. Then there exists a unique morphism γ : FE(X)→ FE(Y ) such that γpi = γi for all
i, 1 ≤ i ≤ n. Consequently, γ ≤E γi and thus also γ � γi. The morphism γ is an E-unifier of Γ
since σγpi = σγi = τγi = τγpi for i = 1, . . . , n implies σγ = τγ (by the definition of product).

It remains to show that {γ} is complete w.r.t. �. Thus, let δ be an E-unifier of Γ. Since
{γ1, . . . , γn} is complete w.r.t. �, there is an index i such that γi � δ. But now transitivity of
the preorder � yields γ � δ, which shows that {γ} is indeed complete.

Lemma 2. Let E be a commutative theory and Γ = 〈σ = τ〉 be an elementary E-unification
problem, and let {γ1, γ2, γ3, . . . } be an infinite set of E-unifiers of Γ such that there is no E-
unifier α of Γ with α � γi for all i ≥ 1. Then there does not exist a minimal complete set of
E-unifiers of Γ.

Proof. Let σ, τ : FE(I) → FE(X) and γn : FE(X) → FE(Yn), and let UE(Γ) denote the set of
E-unifiers of Γ.

The morphisms δn are inductively defined as follows: δ1 is just γ1. Assuming that δn :
FE(X) → FE(Zn) is already defined, we consider the product FE(Zn+1) with the projections
p1, p2 of FE(Yn+1) and FE(Zn). Then δn+1 : FE(X) → FE(Zn+1) is defined to be the unique
morphism such that δn+1p1 = γn+1 and δn+1p2 = δn.

As in the proof of the previous lemma, it is easy to see that the morphisms δn are E-unifiers
of Γ, and that δn+1 ≤E δn and thus δn+1 � δn. The condition imposed on {γ1, γ2, γ3, . . . }
implies that the decreasing chain δ1 � δ2 � δ3 � . . . has no lower bound in UE(Γ). As a matter
of fact, if such a bound α existed, then we would have for all n ≥ 1 that α � δn � γn, which
contradicts our assumption regarding the set {γ1, γ2, γ3, . . . }.

We now assume that there exists a minimal complete set M of E-unifiers of Γ w.r.t. ≺. Since
M is complete, there is θ ∈M such that θ � δ1. The fact that δ1 � δ2 � δ3 � . . . has no lower
bound in UE(Γ) yields an n ≥ 1 satisfying θ � δn, but θ 6� δn+1. Let θ : FE(X)→ FE(Y ), and
let FE(Z) with the projections q1, q2 be the product of FE(Zn+1) and FE(Y ). The morphism

θ̂ : FE(X) → FE(Z) is defined to be the unique morphism such that θ̂q1 = δn+1 and θ̂q2 = θ.

Again, it is easy to see that θ̂ is an E-unifier of Γ, θ̂ � δn+1, and θ̂ � θ. Since M is complete
there is θ′ ∈ M such that θ′ � θ̂. Now θ′ � θ for θ, θ′ ∈ M yields θ = θ′ by minimality of M .
But then θ = θ′ � θ̂ � δn+1 is a contradiction to our choice of n.

3 A Commutative Theory whose Exact Type is Nullary

The following unification problem was used in [Baa89] to show that the theory ACUIh is nullary
(w.r.t. the instantiation preorder):

Γ = 〈 h(x1) + h(x2) = x2 + h2(x3) 〉

In [BN96] the same problem was used to extend this result to a large subclass of the class of
commutative theories. The proofs use the fact that for all n ≥ 0 the substitution

θn := {x1 7→ y, x2 7→ h(y) + h2(y) + · · ·+ hn+1(y), x3 7→ hn(y)}

is a unifier of Γ. Below, we use the same problem and the same sequence of unifiers to show
that an appropriate variant of Lemma 8.1 in [Baa89] also holds if the instantiation preorder is
replaced by the exactness preorder. However, the proof is a bit more involved.
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Lemma 3. Let γ be an ACUIh-unifier of Γ such that γ vACUIh θn. Then there is a variable z
and a number k ≥ n such that x3γ contains hk(z) as a summand.

Proof. For simplicity, we denote ACUIh as E in this proof.
First, note that x1γ 6=E 0γ = 0 since γ vE θn and x1θn = y 6=E 0 = 0θn. Consequently,

x1γ is of the form x1γ =
∑p

i=1 h
ni(yi) where p ≥ 1 and ni ≥ 0 and yi is a variable (possibly,

but not necessarily, distinct from the variables x1, x2, x3) for all 1 ≤ i ≤ p.
Now, assume that hm(α) is a summand of (h(x1) + h(x2))γ, where α is a variable. Since

(h(x1) + h(x2))γ is finite, there is a nonnegative integer k s.t.

• hm+k(α) is a summand of (h(x1) + h(x2))γ, but

• hm+k+1(α) is not a summand of (h(x1) + h(x2))γ.

Consequently, hm+k(α) must be a summand of h2(x3)γ, which implies that m + k ≥ 2 and
hm+k−2(α) is a summand of x3γ.

Because the terms hni+1(yi) are all summands of (h(x1) + h(x2))γ, we obtain nonnegative
integers k1, . . . , kp s.t. hni+ki−1(yi) is a summand of x3γ for all i, 1 ≤ i ≤ n. Without loss
of generality we can assume that k1 ≥ k2 ≥ · · · ≥ kp. Now, consider t = hk1−1(x1) + x3 +∑p

i=2 h
k1−ki(x3) and u = x3 +

∑p
i=2 h

k1−ki(x3). A simple calculation shows that

(hk1−1(x1))γ = hn1+k1−1(y1) +

p∑
i=2

hni+k1−1(yi)

= hn1+k1−1(y1) +

p∑
i=2

hk1−ki(hni+ki−1(yi)).

Given what we know about the summands of x3γ, this implies tγ =E uγ, which in turn yields
tθn =E uθn, i.e.,

hk1−1(y) + hn(y) +

p∑
i=2

hn+k1−ki(y) =E hn(y) +

p∑
i=2

hn+k1−ki(y).

Thus, k1 − 1 = n or there is an i, 1 ≤ i ≤ n, with k1 − 1 = n + k1 − ki. In the first case,
hn1+n(y1) is a summand of x3γ, and in the second, hn1+n(yi) is a summand of x3γ.

Obviously, this lemma implies that the E-unification problem Γ satisfies the prerequisite
of Lemma 2 for � = vE . Thus, Γ does not have a minimal complete set of E-unifiers for
E = ACUIh.

Theorem 2. For elementary unification, ACUIh is nullary w.r.t. the exactness preorder.

4 Conclusion

The theory ACUIh actually axiomatizes equivalence in the Description Logic FL0 [BN01], and
thus ACUIh-unification corresponds to unification in FL0. As shown in [BN01], deciding solv-
ability of such unification problems is ExpTime-complete (for unification with constants). Since
ACUIh is of exact type nullary, disunification in FL0 (modulo ACUIh) cannot be reduced to uni-
fication using the method outlined in the introduction. Nevertheless, solvability of disunification
problems (with constants) was shown to be decidable (more precisely, ExpTime-complete) in
[BO12] using an extension of the automata-based decision procedure for FL0-unification.
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Another Description Logic for which unification has been investigated in detail is the De-
scription Logic EL. Equivalence in this logic can be axiomatized by the equational theory
SLMO of semilattices with monotone operator, which is not a commutative theory. As shown
in [BM10], deciding solvability of EL-unification problems is NP-complete and the unification
type (w.r.t. the instantiation preorder) is again nullary. Whether EL (and thus SLMO) also has
exact unification type nullary is still an open problem.

References

[Baa89] Franz Baader. Unification in commutative theories. Journal of Symbolic Computation,
8(5):479–497, 1989.

[BB94] Wray L. Buntine and Hans-Jürgen Bürckert. On solving equations and disequations. J. of
the ACM, 41(4):591–629, 1994.

[BM10] Franz Baader and Barbara Morawska. Unification in the description logic EL. Logical Methods
in Computer Science, 6(3), 2010.

[BN96] Franz Baader and Werner Nutt. Combination problems for commutative/monoidal theo-
ries or how algebra can help in equational unification. Applicable Algebra in Engineering,
Communication and Computing, 7(4):309–337, 1996.

[BN01] Franz Baader and Paliath Narendran. Unification of concept terms in description logics.
Journal of Symbolic Computation, 31(3):277–305, 2001.

[BO12] Franz Baader and Alexander Okhotin. Solving language equations and disequations with
applications to disunification in description logics and monadic set constraints. In Nikolaj
Bjørner and Andrei Voronkov, editors, Proceedings of the 18th International Conference on
Logic for Programming, Artifical Intelligence, and Reasoning (LPAR-12), volume 7180 of
Lecture Notes in Computer Science, pages 107–121, Mérida, Venezuela, 2012. Springer-Verlag.

[CM14] Leonardo Cabrer and George Metcalfe. From admissibility to a new hierarchy of unification
types. In Proceedings of the 28th International Workshop on Unification, Vienna, Austria,
2014.

[Com91] Hubert Comon. Disunification: A survey. In J.-L. Lassez and G. Plotkin, editors, Computa-
tional Logic: Essays in Honor of Alan Robinson, pages 322–359. MIT Press, 1991.

[HS73] H. Herrlich and G. E. Strecker. Category Theory. Allyn and Bacon, Boston, 1973.
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