
Temporalizing Rewritable Query Languages over Knowledge Bases

Stefan Borgwardt, Marcel Lippmann, Veronika Thost
Institute of Theoretical Computer Science, Technische Universität Dresden,

01062 Dresden, Germany

Abstract

Ontology-based data access (OBDA) generalizes query answering in relational databases. It allows to query a database
by using the language of an ontology, abstracting from the actual relations of the database. OBDA can sometimes be
realized by compiling the information of the ontology into the query and the database. The resulting query is then
answered using classical database techniques.

In this paper, we consider a temporal version of OBDA. We propose a generic temporal query language that combines
linear temporal logic with queries over ontologies. This language is well-suited for expressing temporal properties of
dynamic systems and is useful in context-aware applications that need to detect specific situations. We show that, if
atemporal queries are rewritable in the sense described above, then the corresponding temporal queries are also rewritable
such that we can answer them over a temporal database. We present three approaches to answering the resulting queries.

Keywords: Ontology-Based Data Access, Linear Temporal Logic, Query Answering, Rewritability, Description Logic

1. Introduction

Context-aware applications try to detect specific situ-
ations within a changing environment (e.g., a computer
system or air traffic observed by radar) to be able to re-
act accordingly. To gain information, the environment is
observed by sensors (for a computer system, data about
its resources is gathered by the operating system), and
the results of sensing are stored in a database. A context-
aware application then detects specific predefined situations
based on this data (e.g., a high system load) and reacts
accordingly (e.g., by increasing the CPU frequency).

In a simple setting, such an application can be realized by
using standard database techniques: the sensor information
is stored in a database, and the situations to be recognized
are specified as database queries [1]. However, we cannot
assume that the sensors provide a complete description
of the current state of the environment. Thus, the closed
world assumption employed by database systems (i.e., facts
not present in the database are assumed to be false) is not
appropriate since there may be facts of which the truth is
not known. For example, a sensor for specific information
might not be available for a moment or not even exist.
In addition, though a complete specification of the en-

vironment usually does not exist, some knowledge about
its behavior is often available. This background knowledge
could be used to formulate constraints on the behavior of
the real environment. These constraints help formulate
queries to detect more complex situations.

Email addresses: stefborg@tcs.inf.tu-dresden.de (Stefan
Borgwardt), lippmann@tcs.inf.tu-dresden.de (Marcel Lippmann),
thost@tcs.inf.tu-dresden.de (Veronika Thost)

This information (i.e., the sensor data and the back-
ground knowledge) is stored in so-called knowledge bases,
which are sometimes called ontologies. A knowledge base
consists of a fact base and a theory, which store the data in
a formally well-understood way. The fact base contains sim-
ple facts (e.g., the concrete values given by sensors), and is
interpreted with the open world assumption, i.e., facts not
present are assumed to be unknown rather than false. The
theory contains the additional background knowledge (e.g.,
general domain knowledge) stored in a symbolic representa-
tion. The situations to be detected are then specified in an
appropriate query language. The resulting queries are then
evaluated w.r.t. the information encoded in the knowledge
base. This general approach is often called ontology-based
data access (OBDA) [2, 3].
However, since the environment is changing, it is often

desirable to specify situations that take into account tem-
poral behavior. In this setting, we model the incoming
information as a sequence of fact bases, one for each mo-
ment in time in which the system has been observed. To
recognize situations, we propose to add a temporal logical
component to atemporal queries over knowledge bases. We
use the operators of the temporal logic LTL, which allows
to reason about a linear and discrete flow of time [4]. Usual
temporal operators include next (#φ), which asserts that
a property φ is true at the next point in time, eventually
(3φ), which requires φ to be satisfied at some point in the
future, and always (2φ), which forces φ to be true at all
time points in the future. We also use the corresponding
past operators #−, 3−, and 2−.

Consider, for example, a distributed video platform pro-
viding several services such as uploading, streaming, and

Preprint submitted to Elsevier December 11, 2014

transcoding (i.e., the conversion of video formats). At any
given time point, a fact base for such a system could con-
tain facts like the following, which describe that there is
a server s with an overutilized CPU c, which executes an
uploading service (ULS) p1 and a transcoding service (TCS)
p2, both of which are active:

CPU(c), Overutilized(c), Server(s), hasCPU(s, c),
ULS(p1), executes(s, p1), Active(p1),
TCS(p2), executes(s, p2), Active(p2)

The background theory could contain an axiom such as

∀x.Server(x) ∧
(
∃y.hasCPU(x, y) ∧ Overutilized(y)

)
→ Overloaded(x),

which states that a server having an overutilized CPU is
overloaded. Given the above fact base, we can conclude
that s is currently overloaded.

Since transcoding is very resource-intensive, it is impor-
tant to transcode popular videos preemptively in phases
of less utilization instead of on demand in phases of high
utilization. However, the situation can clearly change after
a preemptive transcoding service has been started. For
that reason, one may want to detect critical situations in
which a server of the platform has become overloaded while
executing such a service.

The temporal query

TCS(x) ∧ Server(y) ∧ executes(y, x) ∧ ψ0 ∧
(
NLB(y) S #ψt

)
with

ψt :=
{

Active(x) ∧ Overloaded(y) if t = 0
ψ0 ∧#3ψt−1 if t ≥ 1

and t ≥ 0 therefore asks for a transcoding service x and
a server y that executes it, where x is active and y is
overloaded. The second part of the query requires that
NLB(y) has been true for the whole time since (S) the
subquery #ψt was true. In other words, we are looking for
a time point in the past that satisfies ψt such that all time
points since then satisfy NLB(y), which expresses that y
has not been affected by a load balancing operation in the
meantime. The subquery ψt again asks for x to be active
and y to be overloaded, and furthermore that there is a
time point after the current one (#3) satisfying ψt−1. We
are thus asking for a series of t+ 1 critical time points (not
necessarily immediately following each other). We consider
the temporal behavior of this example query in more detail
in Sections 5 and 6.
One might argue that, as we are looking at the time

line from the point of view of the current time point, and
nothing is known about the future, it is sufficient to have
only past operators like S or 2−. We also show that
in our setting it is indeed always possible to construct an
equivalent query using only past operators (see Section 5.3).
However, the resulting query is not very concise and it is not

easy to see the situation that is to be recognized. Indeed,
for propositional LTL eliminating the past operators from
a formula results in a blowup that is at least exponential
and no constructions of size less than triply exponential
are known [5].

1.1. Related Work
In this paper, we consider so-called rewritable query

languages, i.e., query languages for which evaluating a
query over a knowledge base can be reduced to answering
a rewritten query (in a different language) over a database
induced by the knowledge base. Such query languages,
especially in the context of Description Logics (DLs) [6],
are covered extensively in the literature (see Example 2.11).
Investigations of temporal query languages based on

combinations of query languages and temporal logics such
as LTL [4] have started only quite recently. Yet, a number
of very expressive temporal query languages have been
proposed [7–10].

For rewritable query languages, most research focuses on
light-weight languages of the DL-Lite family [11]. However,
instead of temporalizing the query language and evaluating
the queries over a global knowledge base, also temporal
knowledge bases are examined, which allow temporal oper-
ators to occur inside axioms. These approaches are based
on research about temporalized description logics (see [12]
for a survey). For example, in [13], various light-weight
DLs are extended by allowing the temporal operators to in-
terfere with the DL component. Following the ideas of [13],
in [14] a rewritable temporal query language over temporal
knowledge bases in DL-Lite is proposed.
There is also a lot of closely related work in the field

of temporal databases. In [15], for instance, the authors
describe a temporal extension of the SQL query language
that can answer temporal queries over a temporal database.
In [16–18], an approach is described that reduces the
amount of space needed to evaluate temporal queries by
keeping only the relevant data in the database instead of
keeping track of all the information from the past.

1.2. Our Contribution
In this paper, we consider temporal queries over knowl-

edge bases in a very general setting that allows us to extend
many existing atemporal query languages by temporal op-
erators (cf. Section 3). In Section 4, we show that the
reasoning task of temporal OBDA in this setting can be
reduced to answering queries over temporal databases. The
main part of the paper is thus concerned with what we call
the temporal database monitoring problem, where a fixed
temporal query is continuously evaluated over a temporal
sequence of databases.
We present three approaches to solving this problem.

The first one employs existing temporal database systems
using a translation from our temporal query language into
a specialized database query language [15] (cf. Section 5.1).
The second approach again rewrites the query in order to

2

obtain a query without future operators, which then can
be answered using an algorithm from [16] (cf. Section 5.3).
The advantage of this algorithm is that the time required to
answer the temporal query at the current time point does
not depend on the total running time of the system; this is
called a bounded history encoding in [16]. In Section 6, we
propose a new algorithm that extends the one from [16]
in that it also deals with future operators directly while
guaranteeing a bounded history encoding. We also discuss
different advantages and drawbacks of the three approaches.

Sometimes it is desired to state that certain facts do not
change over time, i.e., are rigid. In Section 7, we show how
our proposed algorithm can be extended to deal with a
limited form of rigidity in a specific class of queries.
This paper is an extension of [19], where we have con-

sidered only the special case of answering temporal queries
over DL-Litecore-ontologies. In contrast to [19], we also
show in this paper that our proposed algorithm preserves
the bounded history encoding of [16]. Additionally, this
paper contains the full proofs of our results. To improve
readability, some of them are presented in the appendix.

2. Preliminaries

As mentioned in the introduction, we consider temporal
queries over knowledge bases in a very general setting.
This section describes the logical framework for querying
atemporal knowledge bases and basic properties of this
framework we require for the rest of the paper. We also
give a wealth of examples of concrete query formalisms
from the literature that satisfy our restrictions.

2.1. Logics
Our basic setting is that of function-free first-order lan-

guages. In any such language, we need to assert the truth
of ground facts.

Definition 2.1 (assertion). Let NC be a set of constants,
and let (NnP)n≥0 be a family of sets of n-ary predicate sym-
bols. An assertion is an expression of the form P (c1, . . . , cn)
for P ∈ NnP and c1, . . . , cn ∈ NC.
An interpretation is a pair I = (∆I , ·I), where ∆I is

a non-empty set (called the domain of I) and ·I is an
interpretation function that assigns to every P ∈ Nn

P an
n-ary relation P I ⊆ ∆n, and to every c ∈ NC an element
cI ∈ ∆I . Such an interpretation is called finite if its domain
is finite. Two interpretations are isomorphic if there is a
bijective mapping between their domains that preserves
the interpretations of all constants and predicate symbols.
We say that I is a model of an assertion P (c1, . . . , cn),

written I |= P (c1, . . . , cn), if (cI1 , . . . , cIn) ∈ P I .

To simplify the presentation of our results, we assume
in the following that the sets NC and

⋃
n≥0 NnP are non-

empty and finite, i.e., we restrict to finitely many symbols
that are relevant for some domain of interest. We further

assume that the sets of constants and predicate symbols
are disjoint.
By using axioms that are more expressive than simple

assertions, more elaborate properties of interpretations can
be stated. In a logical formalism, theories are usually finite
sets of axioms. In the following, we consider a generic logic,
which consists of a set of theories expressible in it, together
with a satisfaction relation.

Definition 2.2 (logic). A logic is a pair (L, |=L), where
L is a set of L-theories and |=L is a satisfaction relation
between interpretations and L-theories, i.e., |=L ⊆ I× L,
where I denotes the set of all interpretations. For an
interpretation I and an L-theory T , we write I |=L T if
(I, T) ∈ |=L. In this case, we also say that I is a model
of T .

In many concrete logics, there is a basic satisfaction rela-
tion for axioms that is lifted in a natural way to theories.
However, some logics put further restrictions on the shape
of their theories apart from them being a set of axioms.
This is the reason why we choose to define logics as sets of
theories rather than sets of axioms.

In the following, we often refer to a logic by its first com-
ponent L, which is implicitly associated with an entailment
relation |=L. If the logic is clear from the context, we may
also write |= instead of |=L, and simply speak of theories.

Definition 2.3 (knowledge base). Given a logic L, a
knowledge base over L is a pair K = 〈A, T 〉, where A is
a finite set of assertions, called fact base, and T is an
L-theory.

We write I |= A, and say that I is a model of A, if I is
a model of all assertions in the fact base A. A knowledge
base T = 〈A, T 〉 is consistent if there is an interpretation
that is a model of both A and T .

A basic requirement for the logics considered in this paper
is that consistency should be decidable. The consistency
check is the first step of any reasoning algorithm, as an in-
consistent knowledge base makes most reasoning problems
trivial.

Example 2.4. The main instances of our framework we
will describe in more detail are based on Description Logics
(DLs) [6]. In these formalisms, the language is restricted
to unary and binary predicates, called concept names and
role names, respectively. So-called concept constructors
are used to build more expressive unary predicates, called
concepts, from these basic names. Similarly, more complex
roles, i.e., binary predicates, can be built.

In this setting, theories are made up from axioms like
general concept inclusions (GCIs) of the form C v D,
which restrict all models to interpret C by a subset of
the interpretation of D, and similar axioms between roles.
Sometimes additional conditions are imposed on the left-
hand side or the right-hand side of such inclusions. In
DLs, such theories are usually called TBoxes or ontologies.

3

Often, the axioms of a DL are expressible as sentences of
first-order logic.
The expressivity of DLs ranges from light-weight DLs

such as members of the DL-Lite family [20] and EL [21] to
the very expressive SROIQ, which forms the basis for the
standardized Semantic Web ontology language OWL 2 [22].
However, a major criterion in their design is that consis-
tency of knowledge bases should be decidable.
For the purposes of this paper, we are particularly in-

terested in so-called Horn description logics. They are
distinguished by an inability to express disjunction, which
leads to the interesting property that knowledge bases
can often be characterized in terms of a single canonical
model (see Definition 2.8). To this family belong many
members of the DL-Lite family, extensions of EL, and
syntactically restricted forms of more expressive DLs like
Horn-SHIQ [23, 24].
A different logical formalism is Datalog [1], which is

based on rules of the form Q ← P1 ∧ · · · ∧ Pm, where
each atom is of the form P (z1, . . . , zn) for P ∈ Nn

P and
variables or constants zi, with the restriction that every
variable that occurs in the head Q must also occur in the
body P1 ∧ · · · ∧ Pm. Thus, rules without body are simply
assertions. Theories are finite sets of such rules and are
called Datalog programs. For the satisfaction relation, the
usual first-order reading of the rules is employed, where
all variables are universally quantified. An interesting
property of Datalog is that every program P has a least
Herbrand model, which contains exactly those assertions
that hold in all models of P (similar to the canonical
models of knowledge bases in Horn-DLs). Since we do not
consider function symbols, the Herbrand domain is NC,
and thus this least Herbrand model is finite. There is also
linear Datalog, where the body of any rule may contain
at most one atom that also occurs in the head of a rule.
Theories of logics in the Datalog± family [25] consist of
tuple-generating dependencies that generalize Datalog rules
in that they allow new (existentially quantified) variables
to occur in the head.

2.2. Queries
We stay just as generic in the description of query lan-

guages over L.

Definition 2.5 (query language). Let NV be a set of
variables, disjoint from NC and Nn

P. A variable assign-
ment is a mapping of the form a : {x1, . . . , xn} → NC with
x1, . . . , xn ∈ NV.
A query language is a triple (Q,FVar, |=Q), where Q is

a set of Q-queries, FVar : Q → 2NV maps every Q-query to
the finite set of its free variables, and |=Q is a satisfaction
relation, denoted as I |=Q a(ψ) for an interpretation I, a
Q-query ψ, and a variable assignment a : FVar(ψ)→ NC,1
such that

1We do not consider variable assignments that do not map exactly
the free variables of the query.

(i) for all ψ ∈ Q, a1, a2 : {x1, . . . , xn} → NC, and interpre-
tations I with a1(xi)I = a2(xi)I , 1 ≤ i ≤ n, we have
I |=Q a1(ψ) iff I |=Q a2(ψ); and

(ii) for all ψ ∈ Q, a : {x1, . . . , xn} → NC, and isomor-
phic interpretations I1, I2, we have I1 |=Q a(ψ) iff
I2 |=Q a(ψ).

If I |=Q a(ψ), we say that a is an answer to ψ w.r.t. I.

Conditions (i) and (ii) above are reasonable assumptions
for query languages that express that satisfaction does not
depend on the names of domain elements, only on their
interpretation. We include them in this definition since
they are needed in the proof of Theorems 4.1 and 7.5 to
unify the domains of several interpretations, and at the end
of Section 4 to simplify the presentation of the temporal
database monitoring problem.
We adopt the same conventions as for logics and, e.g.,

refer to query languages only by their first component and
write |= if Q is clear from the context. We further denote
by Ans(ψ, I) ⊆ NFVar(ψ)

C the set of all answers to a query ψ
w.r.t. an interpretation I. For convenience, if there is
an implicit total order x1 < · · · < xn on the elements
of FVar(ψ) = {x1, . . . , xn}, we sometimes denote variable
assignments a : {x1, . . . , xn} → NC by tuples of the form
(a(x1), . . . , a(xn)).

We now lift the semantics of queries to deal with knowl-
edge bases. The main notion is that of certain answers to
a query, which are variable assignments that satisfy the
query in all models of a given knowledge base.

Definition 2.6 (certain answer). Let L be a logic, Q a
query language, K a knowledge base, and ψ a query. A
variable assignment a : FVar(ψ) → NC is called a certain
answer to ψ w.r.t. K, written K |= a(ψ), if for every model I
of K, it holds that a is an answer to ψ w.r.t. I.

Similar to before, we denote by Cert(ψ,K) ⊆ NFVar(ψ)
C the

set of all certain answers to a query ψ w.r.t. a knowledge
base K. The problem of computing Cert(ψ,K) from ψ
and K is called query answering.
A special situation arises when the considered queries

have no free variables. Queries of this form are called
Boolean queries since the set Cert(ψ,K) can only be empty
or contain the empty variable assignment as its only ele-
ment. In the latter case, we say that ψ is entailed by K,
and write K |= ψ, if Cert(ψ,K) is non-empty. Similarly,
we write I |= ψ for an interpretation I if Ans(ψ, I) is
non-empty.

Example 2.7. The simplest query language arises from
considering all assertions as Boolean queries, and taking
|=Q to be |= (ignoring the variable assignments). The
entailment of an assertion by a knowledge base is then
equivalent to the usual definition.
Similarly, we can consider the Boolean query language

Q := L with |=Q given by |=L, i.e., we can ask for the

4

entailment of theories. In the context of Description Logics,
an important such query language is that of subsumptions
which ask for the entailment of single GCIs C v D, i.e.,
whether the concept C is a subconcept of D in all models
of a given knowledge base.

One step up from assertion queries are so-called instance
queries (IQs) of the form P (z1, . . . , zn), where P ∈ NnP
and each zi may be either a constant or a variable. The
free variables of this query are simply the variables among
z1, . . . , zn. To compute Cert(ψ,K), we have to determine
all variable assignments that certainly (in all models of K)
make the assertion true when replacing the free variables
accordingly.

For relational databases, an important class of queries are
conjunctive queries (CQs) (also called select-project-join
queries) of the form ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV
and ψ is a conjunction of instance queries [1]. As usual, the
free variables of this CQ are those occurring in it, except
y1, . . . , ym. In contrast to the free variables, which range
only over the constants, the quantified variables y1, . . . , ym
range over the whole domain of a given interpretation. The
semantics of CQs is thus obtained by viewing them as
first-order sentences in the obvious way.

In the database setting, one is concerned with computing
Ans(ψ, I) for a conjunctive query ψ and a finite interpreta-
tion I, which can be seen as a relational database. This can
be done by asking, e.g., an SQL query over this database.
The more general problem of computing certain answers
to conjunctive queries w.r.t. a knowledge base has been
investigated for many logical formalisms, in particular DLs
[26–29]. To solve it, sometimes the so-called first-order-
rewritability of CQs w.r.t. the logic L is exploited (see
Definition 2.10).

In this approach, so-called first-order queries are used to
capture the answers of a CQ w.r.t. a knowledge base. These
queries allow arbitrary nesting of all usual constructs of first-
order logic, including negation and universal quantification.
The essential part of the reduction is that these first-order
queries only have to be answered over finite interpretations,
i.e., databases. In this setting, first-order-rewritability
is actually equivalent to rewritability into much simpler
unions (disjunctions) of conjunctive queries (UCQs) [30].
Another class of interest between UCQs and arbitrary
first-order queries are positive existential queries (PEQs)
of the form ∃y1, . . . , ym.ψ, where ψ is a positive Boolean
combination of instance queries (i.e., using conjunction and
disjunction, but no negation).

In the context of Description Logics, where the predicates
are restricted to be at most binary, conjunctive regular path
queries (CRPQs) generalize conjunctive queries in a dif-
ferent direction by allowing conjuncts of the form L(x, y),
where L is a regular expression over the binary predicate
symbols [31, 32]. In an interpretation over this signature,
which is essentially a labeled graph, these conjuncts ex-
press the existence of a path from x to y such that the
concatenation of its edge labels belongs to the language
generated by L.

We will also consider Datalog queries (P, P), where P
is a Datalog program and P is the goal predicate to be an-
swered [1]. The free variables are x1, . . . , xn, where n is the
arity of P . The program P uses auxiliary predicates that
are local to the query and used to evaluate it. Only auxil-
iary predicates are allowed to occur in the heads of rules,
and the goal predicate P must be an auxiliary predicate.
A variable assignment a is an answer to such a query w.r.t.
an interpretation I if all extensions of I to the auxiliary
predicates that satisfy P also satisfy P (a(x1), . . . , a(xn)).
This is equivalent to the containment of this assertion in
the least Herbrand model of 〈facts(I),P〉, where facts(I)
denotes the (finite) set of all assertions that I is a model
of.

In particular, every UCQ can be formulated as a Datalog
query in which the goal predicate is the only auxiliary
predicate, which furthermore does not occur in the body
of any rule. Similarly, PEQs correspond to Datalog queries
with nonrecursive programs [1].

In this paper, we assume that every query language contains
a special Boolean query true, which holds in all interpre-
tations. Likewise, we assume the presence of a Boolean
query false that does not hold in any interpretation. It is
straightforward to add these to a query language without
affecting any of the properties or constructions described
in the following.

2.3. Canonical Models and Rewritability
We now come to the first important restriction that we

make on the logics and query languages we consider.

Definition 2.8 (canonical model). A logic L has the
canonical model property w.r.t. a query language Q if every
consistent knowledge base K has a countably infinite canon-
ical model IK, which is a model of K with the property
that for all queries ψ, we have Cert(ψ,K) = Ans(ψ, IK).

Canonical models are sometimes called universal models.
The restriction to countably infinite canonical models

is a technical one, which ensures that all these models
have the same cardinality. This is not a great restriction
since canonical models are often explicitly constructed in a
countable way. However, if the canonical model is finite,
one can usually add countably infinitely many copies of
it without changing the answers. We exploit this to unify
the domains of different interpretations for Theorems 4.1
and 7.5.

Example 2.9. The following table lists several DLs L and
query languages Q that have the canonical model property.
The canonical model is usually obtained by applying the
axioms of the knowledge base K = 〈A, T 〉 as completion
rules to the facts in A in order to obtain a model of K (this
is also called chase in database theory).
In the case of [33, 34], it is constructed from the least

Herbrand model of a Datalog program that depends on A
and T .

5

The result from [34] also holds for Horn-SHIQ w.r.t.
CQs that use only simple roles (i.e., roles without transitive
subroles).

L Q shown in

EL++ subs. [35]
DL-LiteR/F UCQ [26, Theorem 29]
ELH UCQ [36, Lemma 1]
ELIf CQ [37, Lemma 5]
ELHdr

⊥ CQ [28, Proposition 4]
DL-LiteNhorn CQ [38, Theorem 4]
DL-Litehorn PEQ [39, Theorem 3]
ELHI¬ CQ [33, Lemma 10]
Horn-ALCHIQ CQ [34, Theorem 3], [24]
Horn-ALCHOIQDisj

Self CRPQ [40, Theorem 2]

For computing the set of certain answers to a query, an
important approach is to rewrite the query such that it
can be evaluated over a single finite interpretation, i.e., a
database. Generally, the interpretation and the rewritten
query together contain the information of the theory and
the original query, whereas the knowledge from the fact
base only influences the definition of the interpretation.

This is called the combined approach to rewriting [38, 39],
in contrast to the original idea [20, 26], where the finite
interpretation is obtained by simply viewing the fact base
under the closed world assumption. There, all necessary
information of the theory and the original query is encoded
in the rewritten query. With both approaches, the rewritten
query usually belongs to a more expressive query language.

Definition 2.10 (rewritable). Let L be a logic and Q1,
Q2 be query languages. We say that Q1-queries are Q2-
rewritable w.r.t. L if one can compute

• for every theory T , a finite set ∆T that contains NC,

• for every consistent knowledge base K, a finite inter-
pretation DK over the domain ∆T such that cDK = c
holds for all c ∈ NC, and

• for every Q1-query ψ and theory T , a Q2-query ψT
such that FVar(ψ) = FVar(ψT),

such that for all consistent knowledge bases K = 〈A, T 〉
and Q1-queries ψ, we have Cert(ψ,K) = Ans(ψT ,DK).

To summarize, Q2-rewritability means that finding certain
answers to Q1-queries w.r.t. L can be reduced to finding
(ordinary) answers to Q2-queries over finite interpretations,
which can be seen as relational databases. This brings us to
our last requirement, namely that the set of answers to aQ2-
query w.r.t. a finite interpretation should be computable. In
case of Q2-rewritability of Q1-queries w.r.t. L, this implies
that the set of answers to a Q1-query w.r.t. a knowledge
base is also computable.

In [20], where first-order-rewritability was introduced
for conjunctive queries in DL-Lite, the rewritten first-
order query ψT was called the perfect reformulation of ψ
(w.r.t. T). The term perfect refers to the fact that this
query can then be used to answer the original query over
any fact base. Recall that first-order-rewritability is equiv-
alent to UCQ-rewritability, but first-order queries can be
more concise than UCQs.

The above definition is an extension of this original ver-
sion of rewritability that captures more results that have
been shown since then. It contains some technical restric-
tions that are needed to lift this to the temporal setting
(see Theorem 4.1), but which are satisfied by all instances
described in Example 2.11 below. Most importantly, the
construction of DK is independent of a concrete query, and
likewise, ψT does not depend on a fact base.

It is clear that finiteness of DK is not sufficient in practice,
where one would additionally like to have small interpreta-
tions DK over which Q2-queries can be evaluated efficiently.
Indeed, many rewritability results have subsequently been
refined to improve this behavior. However, we are not so
much interested in the theoretical complexity of answering
queries as our approach to temporal queries will anyway
always need to compute the whole set Ans(ψT ,DK), which
is already exponential in the cardinality of FVar(ψ). For
details, see the discussion after Lemma 6.10.

Example 2.11. Below, we list several rewritability results
for different instances of L, Q1, andQ2, where FO= denotes
first-order queries with equality and UCQ+ a combination
of a UCQ with a linear Datalog program.

For the logics of the DL-Lite and EL families, the finite
interpretation DK is usually obtained by viewing the fact
base under the closed world assumption, but sometimes
additional constant symbols are introduced. In the other
cases, DK is based on the least Herbrand model of a suitable
Datalog program constructed from K.

The result of [41] applies only to so-called rooted a-
acyclic CQs; however, the rewriting is more efficient than
that of [26] when measured in combined complexity.

Again, the result from [34] also holds for Horn-SHIQ if
the CQs do not contain non-simple roles.

The constructions for LDL+ and SROEL(u,×) do not
rewrite the query, and therefore these logics also have the
canonical model property.

To ensure termination of the rewriting algorithm in [42],
the theories have to be restricted, e.g., to linear or sticky
sets of tuple-generating dependencies.

6

L Q1 Q2 shown in

EL++ subs. subs. [35]
DL-LiteR CQ UCQ [26, Lemma 39]
ELHdr

⊥ CQ FO= [28, Theorem 5]
DL-LiteNhorn CQ FO= [38, Theorem 10]
DL-LiteR UCQ PEQ [43, Theorem 2]
DL-Lite CQ UCQ [41, Theorem 5]
ELHI¬ CQ Datalog }

[33, Theorem 2
and Lemma 16]DL-LiteR CQ UCQ

DL-Lite+ CQ UCQ+

Horn-ALCHIQ CQ UCQ [34, Theorem 4]
LDL+ IQ IQ [44, Corollary 11]
SROEL(u,×) IQ IQ [45, 46]
Datalog± family CQ UCQ [42, Theorem 1]

It was suggested in [30, 47] that one should consider
rewritability as a decision problem, and ask, for a given
logic L and a Q1-query, whether it is Q2-rewritable. In
case of decidability, one can consider instead of Q1 only
those elements of Q1 that have this property, and thus
obtain another instance of Definition 2.10.

3. Temporal Queries

In the following, let L be a logic and Q a query language.
We now lift the definitions of the previous section to a
temporal setting, where we have a global theory describing
the background knowledge of a domain and a sequence of
fact bases that represent preprocessed sensor data obtained
at successive points in time.

Definition 3.1 (temporal knowledge base). Given a
logic L, a temporal knowledge base (TKB) over L is a pair
K = 〈(Ai)0≤i≤n, T 〉 consisting of a finite sequence of fact
bases Ai and an L-theory T .

Let I = (Ii)0≤i≤n be a finite sequence of interpretations
Ii = (∆, ·Ii) over a fixed non-empty domain ∆. Then, I is
a model of K (written I |= K) if Ii |= Ai and Ii |= T for
all i, 0 ≤ i ≤ n. A TKB is consistent if it has a model.

We consider only sequences of interpretations that satisfy
the constant domain assumption, i.e., they are defined over
a common domain. Thus, we assume that the world does
not change, only the predicates defined in it may evolve.
Although similar to what was done in [9, 10], our tem-

poral query language can in principle be based on any
atemporal query language Q. Another difference to those
approaches is that we do not allow negation as this would
destroy the rewritability properties of Q (see Theorem 4.1).

Definition 3.2 (temporal query). Given a query lan-
guage Q, temporal Q-queries are built from Q-queries as
follows:

• every Q-query ψ is a temporal Q-query; and

• if φ1 and φ2 are temporal Q-queries, then so are:

– φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction),
– #φ1 (strong next), •φ1 (weak next),
– #−φ1 (strong previous), •−φ1 (weak previous),
– 2φ1 (always), 2−φ1 (always in the past),
– 3φ1 (eventually), 3−φ1 (some time in the past),
– φ1 Uφ2 (until), and φ1 Sφ2 (since).

The symbols #−, •−, 2−, 3−, and S are called past
operators, the symbols #, • , 2, 3, and U are future
operators.

As usual, if Q is clear from the context, we use the term
temporal queries (TQs). The set FVar(φ) of free variables
of a TQ φ is defined as the union of the sets FVar(ψ) of
all queries ψ occurring in φ. A TQ φ is called Boolean
if FVar(φ) = ∅. We further denote by Sub(φ) the set of
all TQs occurring as temporal subqueries in φ (including
φ itself). For a subquery φ1 of φ, we denote by aφ1 the
restriction of a variable assignment a : FVar(φ) → NC to
FVar(φ1).

Definition 3.3 (semantics of TQs). Let φ be a TQ,
I = (Ii)0≤i≤n a sequence of interpretations over a common
domain, a : FVar(φ) → NC a variable assignment, and i
be an integer with 0 ≤ i ≤ n. The satisfaction relation
I, i |= a(φ) is defined by induction on the structure of φ as
follows:

φ I, i |= a(φ) iff
Q-query ψ Ii |= a(ψ)
φ1 ∧ φ2 I, i |= aφ1(φ1) and I, i |= aφ2(φ2)
φ1 ∨ φ2 I, i |= aφ1(φ1) or I, i |= aφ2(φ2)
#φ1 i < n and I, i+ 1 |= a(φ1)
•φ1 i < n implies I, i+ 1 |= a(φ1)
#−φ1 i > 0 and I, i− 1 |= a(φ1)
•−φ1 i > 0 implies I, i− 1 |= a(φ1)
2φ1 I, k |= a(φ1) for all k, i ≤ k ≤ n
2−φ1 I, k |= a(φ1) for all k, 0 ≤ k ≤ i
3φ1 I, k |= a(φ1) for some k, i ≤ k ≤ n
3−φ1 I, k |= a(φ1) for some k, 0 ≤ k ≤ i
φ1 Uφ2 there is k, i ≤ k ≤ n, with I, k |= aφ2(φ2)

and I, j |= aφ1(φ1) for all j, i ≤ j < k

φ1 Sφ2 there is k, 0 ≤ k ≤ i, with I, k |= aφ2(φ2)
and I, j |= aφ1(φ1) for all j, k < j ≤ i

If I, i |= a(φ), then a is called an answer to φ w.r.t. I at
time point i. Given a TKB K = 〈(Ai)0≤i≤n, T 〉, we say
that a is a certain answer to φ w.r.t. K at time point i,
written K, i |= a(φ), if for all models I of K, we have
I, i |= a(φ).

The set of all answers to φ w.r.t. I at time point i is
denoted by Ans(φ, I, i), and the set of all certain answers

7

to φ w.r.t. K is denoted by Cert(φ,K, i). Recall that our
main interest lies in finding answers to queries at the last
time point, i.e., computing the sets Ans(φ, I) := Ans(φ, I, n)
or Cert(φ,K) := Cert(φ,K, n). A Boolean TQ φ is entailed
by K (at time point i) if the set Cert(φ,K) (Cert(φ,K, i))
is non-empty. In this case, we write K |= φ (K, i |= φ), and
similarly for I |= φ and I, i |= φ.
Here we assume that there is no time point before 0 or

after n, similar to the temporal semantics used for LTL
in [48] or for temporal query languages for databases [16,
49, 50]. This semantics has the effect that the temporal
query #true is not entailed at the last time point. This may
seem counterintuitive, but it makes sense in our scenario
since we do not know whether the system we observe is
still running at the next point in time.

Alternatively, we could adopt the more common seman-
tics based on infinite sequences of interpretations, the first
n of which must be models of the respective fact bases.
However, this in turn has some unintended consequences.
Since we want to monitor systems based on the available
facts, it is natural to restrict the aggregation operators
to the time points for which sensor data is available. For
example, if we ask for all processes that have always been
running using the query Process(x) ∧2−Running(x), then
time points before the system was started (i < 0) are not
relevant. Likewise, we may want to ask about a property
that always held from a specific time point up to now,
regardless of what happens in the future.

A compromise between our semantics and one based on
infinite sequences of interpretations could be obtained by
“looping” the last interpretation or fact base infinitely often,
which means that the facts of the last time point stay valid
forever. This would make #true equivalent to true, while
retaining the spirit of the finite semantics. However, this
semantics also has counterintuitive side-effects as it makes
severe assumptions on the future behavior of the observed
system.

As in classical LTL, one can show that φ1 Sφ2 is equiva-
lent to φ2 ∨ (φ1 ∧#−(φ1 Sφ2)), and thus, at the first time
point, φ1 Sφ2 is equivalent to φ2 since #−(φ1 Sφ2) does
not have any answers.

Proposition 3.4. For a : FVar(φ) → NC and 0 < i ≤ n,
we have I, i |= a(φ1 Sφ2) iff
• I, i |= aφ2(φ2) or

• I, i |= aφ1(φ1) and I, i− 1 |= a(φ1 Sφ2).
Furthermore, I, 0 |= a(φ1 Sφ2) iff I, 0 |= aφ2(φ2).

Similar equivalences hold for U, 3, and 3−. To be able
to employ analogous reductions for 2 and 2−, we use the
operators • and •− that are tautological at the last and
first time point, respectively.

4. Rewriting Temporal Queries

To answer temporal queries, we lift the rewriting ap-
proach introduced in Section 2.3 to the temporal setting.

We recall the basic assumptions we made on the query
languages Q1,Q2 and the logic L:

• Consistency of knowledge bases in L should be decid-
able. This is a basic prerequisite for any reasoning
procedure, in particular for query answering.

• The logic L should have the canonical model property
w.r.t. Q1 (see Definition 2.8). This property is often
a first step towards a rewritability result. For our
temporal setting, it is an important ingredient to the
proof of Theorem 4.1 below.

• Q1-queries should be Q2-rewritable w.r.t. L. In par-
ticular, we will make heavy use of the objects ∆T , DK,
and ψT introduced in Definition 2.10.

• Last but not least, the set of answers to any Q2-query
w.r.t. a finite interpretation should be computable.

Under all of these assumptions, we can show that tempo-
ral Q1-queries enjoy a similar rewritability property w.r.t.
knowledge bases formulated in L, and thus we can compute
the certain answers to temporal Q1-queries over L.

We first lift the constructions of Definitions 2.8 and 2.10
to the temporal setting. For this, consider a temporal
Q1-query φ and a consistent TKB K = 〈(Ai)0≤i≤n, T 〉.
Obviously, the atemporal knowledge bases Ki := 〈Ai, T 〉,
0 ≤ i ≤ n, are then also consistent, and thus we can define
the sequences IK := (IKi)0≤i≤n of canonical models and
DK := (DKi)0≤i≤n of finite interpretations. Due to our
assumption that each IKi is countably infinite, and Condi-
tion (ii) of Definition 2.5, we can without loss of generality
assume that these canonical models have the same domain.
Similarly, the finite interpretations DKi have the common
domain ∆T . Thus, they are valid sequences of interpreta-
tions according to our semantics (see Definition 3.1).

Finally, the temporal Q2-query φT is obtained by replac-
ing every Q1-query ψ occurring in φ by the Q2-query ψT .
We now obtain the following rewritability result, the proof
of which can be found in Appendix A.

Theorem 4.1. Let Q1, Q2 be query languages and L be
a logic that has the canonical model property w.r.t. Q1
such that Q1-queries are Q2-rewritable w.r.t. L. Then, for
every consistent TKB K = 〈(Ai)0≤i≤n, T 〉, every temporal
Q1-query φ, and every i, 0 ≤ i ≤ n, we have

Cert(φ,K, i) = Ans(φ, IK, i) = Ans(φT ,DK, i).

Our approach to answer temporal queries over data gath-
ered while monitoring a system can thus be summa-
rized as follows. Assume that we have an infinite TKB
K = 〈(Ai)i≥0, T 〉 that represents the sensor data coming
from our system. At each time point n ≥ 0, we only see
the finite prefix K(n) = 〈(Ai)0≤i≤n, T 〉 of K of length n+ 1.
In every step, we gain access to a new fact base An+1 rep-
resenting the sensor data of the current time point. Recall
that T formalizes the fixed domain knowledge that holds at

8

every time point. We now want to answer a fixed query φ,
formulated in a query language Q1, at each time point.

Following the approach detailed above, we rewrite φ into
a Q2-query φT . This can be done offline, i.e., before the
system is started, since it does not depend on any sensor
data. However, in each step, we have to construct the
finite interpretation DKn+1 from An+1 and T in order to
extend the sequence DK(n) . It now remains to show how
to compute Ans(φT ,DK(n)) in each step.
Since from now on we only need to consider the single

query language Q2 and it does not matter how we obtained
the query and the sequence of finite interpretations, we
restate the problem in terms of a generic Q-query and
arbitrary finite interpretations.

Definition 4.2. Let I = (Ii)i≥0 an infinite sequence of in-
terpretations over the finite domain ∆ and φ be a temporal
Q-query. For every n ≥ 0, we denote by I(n) = (Ii)0≤i≤n
the finite prefix of I of length n+ 1. The temporal database
monitoring problem is the problem of computing the se-
quence (Ans(φ, I(n)))n≥0.

For simplicity, we assume that NC = ∆ and cIi = c for all
c ∈ NC, which can always be accomplished by introducing
additional constants. This does not affect the semantics of
the queries due to Conditions (i) and (ii) of Definition 2.5.
Thus, in the following we regard answers to queries φ as
mappings from FVar(φ) to ∆. This is closer to the reading
of the interpretations Ii as databases as, in this setting,
one usually queries over all objects present in the database.

5. Solving the Temporal Database Monitoring
Problem

We now illustrate two approaches to solving the temporal
database monitoring problem on the small instance

φex := ψa ∧ ψb ∧
(
ψc S(#(ψb ∧#3ψb))

)
of the introductory example, using the atemporal queries

ψa := TCS(x) ∧ Server(y) ∧ executes(y, x);
ψb := Active(x) ∧ Overloaded(y);
ψc := NLB(y).

Furthermore, we consider the subqueries φ1 := ψc Sφ2,
φ2 := #(ψb ∧ φ3), and φ3 := #3ψb. Since we have dis-
pensed with knowledge bases in the previous section, we
view φex as a temporal query whose atoms are simple in-
stance queries over database relations.
In the following examples, we consider the first five

time points of a sequence I = (Ii)i≥0 of interpretations
over the common domain ∆ := {s, p1, p2, p3}. We define
TCSIi := {p1, p2, p3}, ServerIi := {s}, NLBIi := {s}, and
executesIi := {(s, p1), (s, p2), (s, p3)} for all time points i,
and thus the sets of answers to ψc and ψa are always {s}
and {(p1, s), (p2, s), (p3, s)}, respectively. We interpret the
remaining predicates as in the following table, which results
in the below listed answers to ψb:

i ActiveIi OverloadedIi Ans(ψb, Ii)
0 {p1, p2} ∅ ∅
1 {p1, p2, p3} {s} {(p1, s), (p2, s), (p3, s)}
2 {p1, p3} ∅ ∅
3 {p2, p3} {s} {(p2, s), (p3, s)}
4 {p3} {s} {(p3, s)}

5.1. Temporal Database Query Languages
A first possibility to solve the temporal database moni-

toring problem is to cast I as a temporal relational database
and rewrite φ into a temporal database query language, in
case this is possible. This works, for example, whenever Q
contains only first-order queries, which can be expressed as
SQL queries [1]. We illustrate this approach on the recur-
sive translation from temporal logic to ATSQL described
in [15]. For details on the syntax of ATSQL and the formal
translation, see [15, 51].

ATSQL was developed for data annotated with time pe-
riods [51], and the approach from [15] works on valid-time
periods that are required to always be coalesced, which
means that they represent maximal, non-overlapping pe-
riods of time in which the data is valid. For example,
the relation Active from our example would be represented
in such a database by the tuples (p1, [0, 2]), (p2, [0, 1]),
(p2, [3, 3]), and (p3, [1, 4]) consisting of transcoding services
and the periods of time in which they are active.
In the following, we denote by Q(φ) the ATSQL trans-

lation of a TQ φ. The atemporal queries are translated
into standard SQL queries, for which the valid-time periods
are automatically aggregated from the individual database
tables by the database system. Likewise, Q(φex) can be
computed as a simple join of Q(ψa), Q(ψb), and Q(φ1), and
similarly for Q(ψb ∧ φ3). We now present the translation
of the temporal formulae, which differs slightly from that
in [15] because we use a different temporal semantics.

The ATSQL query Q(φ3) is quite simple:
NSEQ VT
SET VT PERIOD (0, END(VTIME(b)) -1)
SELECT x, y FROM Q(ψb)(VT) as b
WHERE END(VTIME(b)) >= 1

The keyword NSEQ VT (for non-sequential valid-time) in-
dicates that we want to modify the valid-time periods of
the tuples in Q(ψb) (via SET VT), in contrast to SEQ VT
(sequential valid-time), which tries to compute them auto-
matically from the input tables. Consider now any answer
tuple (x, y) of Q(ψb). The associated valid-time period [i, j]
can be accessed in an ATSQL query via the operator VTIME.
The valid-time period of (x, y) in Q(φ3) is then computed
as [0, j − 1] since φ3 = #3ψ is true iff there is a point in
the future (different from the current time point) where
ψ is true. In contrast to [15], where the temporal dimen-
sion starts with −∞, for us the first time point is 0. The
keyword (VT) in the FROM clause enforces the coalescing of
the tuples from Q(ψb). By likewise coalescing the result of
Q(φ3), we obtain three answer tuples:

9

x y [i, j] [0, j − 1] coalesced
p1 s [1, 1] [0, 0] [0, 0]
p2 s [1, 1] [0, 0] }

[0, 2]
p2 s [3, 3] [0, 2]
p3 s [1, 1] [0, 0] }

[0, 3]
p3 s [3, 4] [0, 3]

The ATSQL translation of φ2 is

NSEQ VT
SET VT PERIOD (LAST (0, BEGIN(VTIME(b)) -1),

END(VTIME(b)) -1)
SELECT x, y FROM Q(ψb ∧ φ3)(VT) as b
WHERE END(VTIME(b)) >= 1

This query shifts the answers to Q(ψb ∧ φ3) by one time
step, except when this would result in negative time
points. We obtain the tuples (p2, s, [0, 0]), (p3, s, [0, 0]),
and (p3, s, [2, 2]).

We next compute the auxiliary query Qaux, which is a join
of Q(ψc) and Q(φ2) that explicitly retains the valid-time
periods of the two subqueries:

NSEQ VT
SELECT b.x, b.y, VTIME(c) as p1 ,

VTIME(b) as p2
FROM Q(ψc)(VT) as c, Q(φ2)(VT) as b
WHERE c.y = b.y

The result of this query is now used in Q(φ1) as follows:

(SET VT PERIOD (END(p2)+1, END(p1))
SELECT x, y FROM Qaux as aux
WHERE END(p2)+1 >= BEGIN(p1)
AND END(p1) >= END(p2)+1)

UNION
(SET VT p2

SELECT x, y FROM Qaux as aux)

Intuitively, the query φ1 collects, for each combination of
the variables x and y, all periods from Q(φ2) (since there
the S-formula is immediately satisfied), together with the
last part of those periods from Q(ψc) that meet or overlap
the end of a matching period from Q(φ2). By matching
we mean that the values of the shared variable coincide
(c.y = b.y). After coalescing, the resulting tuples are
(p2, s, [0, 4]) and (p3, s, [0, 4]). Intersecting these with the
answers for Q(ψa∧ψb), we obtain (p2, s, [1, 1]), (p2, s, [3, 3]),
(p3, s, [1, 1]), and (p3, s, [3, 4]).

Since we are only interested in the answers for the last
time point 4 (until new data arrives), this results in a
warning that p3 is currently active while s is overloaded,
and this situation has happened at least once before since
the last load balancing operation. At the previous time
point 3, a warning was issued for both p2 and p3. In
contrast, at time point 1 only the data from I0 and I1 was
available, and thus no warning was issued.

This translation illustrates the advantage of using valid-
time periods instead of individual time points, as we only
have to simply manipulate the endpoints of the periods.

However, since our goal is to monitor systems that produce
new data in very short time intervals, storing all past data,
even compressed into periods, is not feasible.

5.2. Bounded History Encodings

In the remainder of this paper, we describe two different
approaches that reduce the amount of space necessary
to compute Ans(φ, I(n)). Since we are interested in the
answers at the last time point, the idea is to keep only
the past information necessary to answer the TQ φ. This
is formalized by the notion of a bounded history encoding
in [16, 18].

Definition 5.1 (history encoding). Given a TQ φ, a
history encoding for φ is a tuple (∆E , IE , δE , φE), where
∆E is the set of encodings, IE ∈ ∆E is the initial en-
coding, δE : ∆E × F → ∆E is the transition function
(where F denotes the set of all finite interpretations),
and φE : ∆E → 2∆FVar(φ) is the evaluation function. This
tuple defines an operator E mapping finite sequences
I(n) = (Ii)0≤i≤n of finite interpretations over the same
domain to encodings in ∆E as follows: E(()) := IE , and
E(I(n)) := δE(E(I(n−1)), In) for all n ≥ 0. It is correct if
we have Ans(φ, I(n)) = φE(E(I(n))) for all I(n), n ≥ 0. It
is bounded if the size of E(I(n)) does not depend on the
length n of the history.

Note that history encodings are called expiration opera-
tors in [18]. Whenever new data arrives in the form of a
finite interpretation In, the previously computed encoding
E(I(n−1)) is updated via the function δE . Correctness is an
obvious requirement for any encoding since we still want to
be able to answer the original TQ after encoding the data.
The boundedness condition ensures that the space required
to answer the query does not depend on the number n of
previous time points; only the relevant data from the past
is retained (in aggregated form).
Note that the approach of Section 5.1 constitutes a his-

tory encoding: the encoding of a sequence of interpretations
is the corresponding temporal database with valid-time
periods, and the evaluation function is given by the trans-
lation into ATSQL sketched above. This history encoding
is correct, but obviously not bounded.
In the following, we describe two possible methods to

achieve a bounded history encoding. In the first approach
(Section 5.3), we rewrite φ into a TQ φ′ without future op-
erators by employing a result from [52]. We then compute
Ans(φ′, I(n)) via a bounded history encoding described
in [16, 18]. In Section 6, we generalize the algorithm
from [16, 18] to directly deal with future operators. The
main difference is that we do not consider negation or arbi-
trary first-order temporal queries. This allows us to circum-
vent the non-elementary blowup of the formula resulting
from the reduction in [52], while retaining boundedness.

10

5.3. Eliminating Future Operators

In this section, we show that we can rewrite every tempo-
ral query φ into an equivalent TQ φ′ that does not contain
future operators but may contain negation as in [16]. We
then apply the algorithm described in [16] to iteratively
compute the sets Ans(φ′, I(n)).

The reduction proceeds in the following steps. First, we
transform φ into a (temporally) equivalent propositional
LTL-formula in order to then apply the separation theorem
from [52]. This produces a propositional LTL-formula
in which no future operators occur in the scope of past
operators and vice versa. Since we evaluate the query
at the current (last) time point, this allows us to simply
remove the future operators. Finally, the resulting formula
is translated back into a TQ extended with negation.

For the first translation, note that our temporal seman-
tics differs from that in [52], which considers strict versions
of U and S as the only temporal operators. But it is
well-known that these operators can simulate # and #−.
Moreover, the semantics is defined w.r.t. bounded past and
unbounded future.

Definition 5.2 (Propositional LTL). Let P be a set of
propositional variables. LTL-formulae are built from P
using the constructors φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1, φ1 U< φ2
(strict until), and φ1 S< φ2 (strict since). An LTL-structure
is an infinite sequence J = (wi)i≥0 of worlds wi ⊆ P , i ≥ 0,
and it satisfies an LTL-formula φ at i ≥ 0 if J, i |= φ holds,
which is defined inductively:

φ I, i |= φ iff
p ∈ P p ∈ wi
φ1 ∧ φ2 J, i |= φ1 and J, i |= φ2

φ1 ∨ φ2 J, i |= φ1 or J, i |= φ2

¬φ1 not J, i |= φ1

φ1 U< φ2 there is some k > i with J, k |= φ2 and
J, j |= φ1 for all j, i < j < k

φ1 S< φ2 there is some k, 0 ≤ k < i, with J, k |= φ2
and J, j |= φ1 for all j, k < j < i

As usual, we define the constants true and false by p ∨ ¬p
and p ∧ ¬p, respectively, for an arbitrary p ∈ P . We
also define first := ¬(true S< true) with the semantics that
J, i |= first iff i = 0, i.e., this formula is satisfied exactly at
the first time point.
Let from now on φ be an arbitrary but fixed TQ con-

taining only the Q-queries ψ1, . . . , ψm. Let furthermore
{p1, . . . , pm, p} be the set of propositional variables. For
a finite sequence I = (Ii)0≤i≤n of interpretations and a
variable assignment a : FVar(φ) → NC, the propositional
abstraction is the LTL-structure Ia := (wi)i≥0, where

wi :=
{
{pj | Ii |= a(ψj)} ∪ {p} if 0 ≤ i ≤ n, and

∅ otherwise.

There, the propositional variables pi, 1 ≤ i ≤ m, capture
whether a is an answer to ψi. The additional variable p is
used to distinguish the first n time points. This is necessary
since the semantics of TQs considers only the first n time
points whereas in LTL all time points matter.

The first step of the translation yields an LTL-formula fφ
that behaves similarly to φ w.r.t. the propositional ab-
stractions of sequences of interpretations I and variable
assignments a. The formal construction is shown in Ap-
pendix B; we only illustrate it here on the example of φex.
Assume that the propositional variables pa, pb, pc are used
for ψa, ψb, ψc, respectively. Then, the corresponding for-
mula fφex looks as follows:

fφex := pa ∧ pb ∧
(
fφ2 ∨ (pc ∧ pc S< fφ2)

)
where fφ2 := false U<(pb∧fφ3∧p) and fφ3 := true U<(pb∧p).
The main differences to the temporal structure of φex are
that the non-strict S is simulated using the strict version
and the future operators are simulated via U<.
We now use the separation theorem from [52] to trans-

form fφ into an equivalent LTL-formula f ′φ that is a Boolean
combination of temporal subformulae containing only S<
operators or only U< operators. In the proof of this theo-
rem, subformulae of fφ are copied and rearranged, but no
additional propositional variables are introduced.

In our example, only the subformula pc S< fφ2 is not yet
separated. Its separation according to the transformation
in [52] is the disjunction of the following formulae:

• pb ∧ fφ3 ∧ p ∧ false S< true ∧ pc S< true

• pc S< χ1 ∧ true S< χ1 ∧ true U<(pb ∧ p)

• pb ∧ p ∧ true S< χ1 ∧ pc S< χ1

• pc S<(pb ∧ p ∧ pc ∧ true S< χ1 ∧ pc S< χ1)

where

χ1 := pb ∧ p ∧ pc ∧ false S< true ∧ pc S< true.

This is obtained by a case analysis of the possible relations
between the time intervals covered by the S< operator and
the two U< operators in fφ2 .

We simplify this formula for the subsequent constructions.
Note that χ1 is equivalent to

χ2 := pb ∧ p ∧ pc ∧ ¬first

and the first disjunct is equivalent to fφ3 ∧ χ2. Since
pc S< χ1 implies true S< χ1, we have

f ′φex
:= pa ∧ pb ∧

(
fφ2 ∨ (pc ∧ ζ1)

)
where ζ1 is the disjunction of the following formulae:

• fφ3 ∧ χ2

• pc S< χ2 ∧ true U<(pb ∧ p)

• pb ∧ p ∧ pc S< χ2

11

• pc S<(pb ∧ p ∧ pc ∧ pc S< χ2).

Since we are interested in evaluating φ (and thus fφ and f ′φ)
at time point n, we can now reduce f ′φ as follows. First,
we replace all variables that are in the scope of an U<
by false. The reason for this is that such variables are
only evaluated at time points after n, where all variables
are false in all propositional abstractions. The resulting
formula is then simplified using standard equivalences as
shown in Appendix B. This yields a formula f ′′φ that does
not contain any U< operators and is equivalent to f ′φ at
time point n in every LTL-structure of the form Ia.

In our example, we obtain f ′′φex
:= pa ∧ pb ∧ pc ∧ ζ2 with

ζ2 := (pb ∧ p ∧ pc S< χ2) ∨ (pc S<(pb ∧ p ∧ pc ∧ pc S< χ2)).

We now translate the LTL-formula f ′′φ without U< back
into a TQ φf ′′

φ
. Recall that the goal is to use the algorithm

presented in [16], where negation is allowed in the query
language. Furthermore, in that paper, a slightly different
operator S∗ is used instead of S. The semantics of ¬ and S∗,
as employed in [16], is as follows:

φ I, i |= a(φ) iff
¬φ1 not J, i |= a(φ1)
φ1 S∗ φ2 there is a k, 0 ≤ k < i, with J, k |= aφ2(φ2)

and J, j |= aφ1(φ1) for all j, k < j ≤ i

In the following, we call any TQ built using the operators
∧, ∨, ¬, #−, and S∗ a Past-TQ, which is in particular a
temporal query in the sense of [16]. The formal definition
of this final translation to the Past-TQ φf ′′

φ
is given in

Appendix B.
In our example, we obtain φf ′′

φex
:= ψa ∧ ψb ∧ ψc ∧ ζ3,

where

ζ3 := (ψb ∧ ζ4) ∨#−((ψb ∧ ψc ∧ ζ4) ∨ ψc S∗(ψb ∧ ψc ∧ ζ4))

and

ζ4 := #−((ψb ∧ ψc ∧#−true) ∨ ψc S∗(ψb ∧ ψc ∧#−true)).

Note that ψc occurs 13 times in φf ′′
φex

, but only once in the
original query φex. While some copies where introduced
because of the different semantics of S, S<, and S∗, the
main problem in this translation is the separation theo-
rem [52]. In general, the size of the separated formula may
be non-elementary in the size of the original formula; the
number of stacked exponents is determined by the number
of alternations between nested S< and U< operators.
Taken together, the illustrated translations yield the

following result, which is proven in Appendix B.

Theorem 5.3. For every TQ φ, there is a Past-TQ ψ
with FVar(φ) = FVar(ψ) such that for all I = (Ii)0≤i≤n,
we have Ans(φ, I) = Ans(ψ, I).

This shows that we can solve the temporal database
monitoring problem using the bounded history encoding
from [16], which works as follows on the TQ ψ constructed
in Theorem 5.3.
The encodings consist of a finite interpretation I ′i of

several auxiliary predicates. Intuitively, for each subfor-
mula ψ′ of ψ starting with a past operator, it stores the
answers Ans(ψ′, I(i)) ⊆ ∆FVar(ψ′) for ψ′ at the current time
point i. The set Ans(ψ, I(i)) can then easily be computed
from the current interpretation Ii and I ′i, i.e., the con-
struction yields a correct history encoding. Afterwards, Ii
is disregarded and the information computed in I ′i is the
only one kept. On input Ii+1, the previous encoding I ′i is
updated to a new interpretation I ′i+1, which allows us to
compute Ans(ψ, I(i+1)), and so on.
The size of I ′i is bounded polynomially in the size of ∆

and in the number of past operators occurring in ψ, and
exponentially in the number of free variables occurring
below past operators. However, the memory requirements
of this history encoding do not depend on n, and thus it is
bounded.

Note that a formal requirement for the correctness of the
algorithm in [16] is that ψ is domain-independent, which
means that the answers to ψ at previous time points do not
change if the domain is changed from the current time point
to the next (e.g., by introducing new constants). Otherwise,
the answers to the past formulae at the current time point
could not be compiled into a single interpretation I ′i so
easily, but would have to be recomputed at each time point,
and thus the algorithm would have to store the whole
sequence I(i). However, since we are only dealing with the
constant, finite domain ∆T = NC (see Section 4), we do
not need to assume domain-independence of ψ.
The approach presented in this section has the obvious

drawback that the reduction in [52] is non-elementary in the
size of the formula. As mentioned before, for propositional
LTL, eliminating the past operators from a formula incurs
at least an exponential blowup; the best known construction
works via translation through several logics and automata
models, and is therefore also hardly practical [5]. The main
advantage arises from the fact that the approach described
in [16] can easily be implemented in a standard database
system. No temporal information needs to be stored and
only several auxiliary tables have to be updated after new
sensor information becomes available.

6. Bounded History Encodings for Future Opera-
tors

In this section, we present an algorithm that solves the
temporal database monitoring problem without the need
to eliminate the future operators from the query, thereby
avoiding the non-elementary blowup of the construction
described in the previous section. We further show that
this approach also constitutes a bounded history encoding.

12

As before, let φ be a fixed temporal Q-query over some
query language Q for which answers w.r.t. finite interpre-
tations are computable, and let I = (Ii)i≥0 be a fixed
infinite sequence of interpretations over the same finite
domain ∆. For ease of presentation, we do not consider
the temporal operators 2, 3, 2−, and 3− in this section.
The constructions and arguments for these operators are
similar to those for U and S.
The algorithm uses as data structure so-called answer

terms, which represent TQs in which some parts have
already been evaluated. In particular, they do not con-
tain atemporal queries anymore, but rather sets of already
computed answers to subqueries. Additionally, they may
contain variables (different from those in NV) that serve as
place-holders for subqueries that have to be evaluated at
the next time point.
For simplicity, we assume in the following that NV is

finite and that answers are of the form a : NV → ∆ instead
of a : FVar(φ) → ∆. After computing such a mapping, it
can be restricted to FVar(φ) to get the actual answer. In
an implementation, one would of course already restrict
the intermediate computations of answers for subqueries
ψ ∈ Sub(φ) to FVar(ψ). But then one has to be more
careful when combining answers to different subqueries.
Thus, when we talk about answers, we mean mappings
a : NV → ∆, and in particular Ans(φ, I(n)) refers to a set
of such mappings, i.e., a subset of ∆NV .

The domain of our bounded history encoding essentially
consists of (families of) answer terms, as defined next.

Definition 6.1 (answer term). Let FSub(φ) denote the
set of all subqueries of φ of the form #ψ1, •ψ1, or ψ1 Uψ2.
For j ≥ 0, we denote by Varφj the set of all variables of the
form xψj for ψ ∈ FSub(φ). The set ATiφ of all answer terms
for φ at i ≥ 0 is the smallest set satisfying the following
conditions:

• Every set A ⊆ ∆NV is an answer term for φ at i.

• Every variable xψj ∈ Varφj with j ≤ i is an answer term
for φ at i.

• If α1 and α2 are answer terms for φ at i, then so are
α1 ∩ α2 and α1 ∪ α2.

Note that every answer term at i is also an answer term at
i+ 1, i.e., we have ATiφ ⊆ ATi+1

φ .
We now define an evaluation function, mapping answer

terms to sets of answers. Intuitively, it replaces the vari-
ables xψj in α by appropriate sets of answers and evaluates ∩
and ∪ as set intersection and union, respectively. Formally,
the functions evaln : ATnφ → 2∆NV , n ≥ 0, are defined recur-
sively as follows:

α evaln(α)
A ⊆ ∆NV A

x#ψ1
j with j < n Ans(ψ1, I

(n), j + 1)
x•ψ1
j with j < n Ans(ψ1, I

(n), j + 1)
xψ1 Uψ2
j with j < n Ans(ψ1 Uψ2, I

(n), j + 1)
x#ψ1
n ∅
x•ψ1
n ∆NV

xψ1 Uψ2
n ∅
α1 ∩ α2 evaln(α1) ∩ evaln(α2)
α1 ∪ α2 evaln(α1) ∪ evaln(α2)

As mentioned before, our data structure consists of families
Φ : Sub(φ)→ ATiφ of answer terms, one for each subquery
of φ. This additional information is necessary for the
transition function of our encoding. We would actually
only need to store the answer terms for subqueries that
are referred to by past operators, but for simplicity, we
compute them here for all subqueries.
For our proofs, we also need more fine-grained notions

of correctness and boundedness.

Definition 6.2 (correct, bounded). Consider a func-
tion Φ : Sub(φ)→ ATiφ. This function is correct for i ≥ 0
(w.r.t. I) if for all n ≥ i and for all ψ ∈ Sub(φ), we have
evaln(Φ(ψ)) = Ans(ψ, I(n), i). It is i-bounded if for all
ψ ∈ Sub(φ), the answer term Φ(ψ) contains only variables
from Varψi .

In particular, if Φ : Sub(φ)→ ATiφ is correct for i, then
we can compute the desired set Ans(φ, I(i)) by evaluat-
ing evali(Φ(φ)), and thus our encoding is valid in the
sense of Definition 5.1. Moreover, if Φ is i-bounded, then
evali(Φ(φ)) can easily be computed since all variables sim-
ply have to be replaced with ∅ or ∆NV .

We now define the initial encoding Φ0 and prove that it
is correct for 0. Afterwards, we define the transition func-
tion that computes a new encoding Φi from the previous
encoding Φi−1 and the next interpretation Ii, and then
prove that it preserves correctness.

6.1. Computing the Answer Terms
The answer terms Φ0(ψ), ψ ∈ Sub(φ), are defined by

induction on the structure of TQs as follows:
ψ Φ0(ψ)
atemporal query ψ1 Ans(ψ1, I0)
ψ1 ∧ ψ2 Φ0(ψ1) ∩ Φ0(ψ2)
ψ1 ∨ ψ2 Φ0(ψ1) ∪ Φ0(ψ2)
#ψ1 x#ψ1

0
#−ψ1 ∅

•ψ1 x•ψ1
0

•−ψ1 ∆NV

ψ1 Uψ2 Φ0(ψ2) ∪ (Φ0(ψ1) ∩ xψ1 Uψ2
0)

ψ1 Sψ2 Φ0(ψ2)

13

To answer atemporal queries ψ1, we employ our assumption
that the set Ans(ψ1, I0) is computable since I0 is a finite
interpretation. We can thus use any known algorithm to
compute this set, which is then considered as an atom of
the answer term Φ0(φ) for φ.

To understand the idea behind the variables xψi , consider
for example x#ψ1

0 , which is the answer term for #ψ1 at
time point 0. This variable serves as a place-holder for the
answers to ψ1 at the next time point 1, which are not yet
known. Thus, according to the semantics, the set of answers
to #ψ1 at time point 0 is ∅, which is equal to eval0(x#ψ1

0).
However, once data about time point 1 becomes known,
the variable x#ψ1

0 can be substituted by the actual answers
to ψ1 at time point 1. For more details on this substitution,
see the proof of Lemma 6.5 in Appendix C.
Similarly, xψ1 Uψ2

0 is a place-holder for the answers to
ψ1 Uψ1 at time point 1. This means that we simply evalu-
ate the U operator according to the equivalence of ψ1 Uψ2
and ψ2 ∨ (ψ1 ∧#(ψ1 Uψ2)) (cf. Proposition 3.4).
The following result is proven in Appendix C.

Lemma 6.3. The function Φ0 is correct for 0.

Furthermore, Φ0 is obviously 0-bounded. Assume now that
i > 0 and we are given a function Φi−1 : Sub(φ)→ ATi−1

φ

that is correct for i−1 and (i−1)-bounded. We now describe
the transition function that computes a new function Φi

that is correct for i and i-bounded, using the data from
the next interpretation Ii.
As a first step, we define a function Φ0

i : Sub(φ)→ ATiφ
(similar to Φ0) that is correct for i, but may still contain
variables with index i − 1. Afterwards, we appropriately
replace these variables while ensuring that correctness for i
is preserved.

For i > 0 and given Φi−1 : Sub(φ)→ ATi−1
φ , the mapping

Φ0
i : Sub(φ)→ ATiφ is defined recursively as follows:

ψ Φ0
i (ψ)

atemporal query ψ1 Ans(ψ1, Ii)
ψ1 ∧ ψ2 Φ0

i (ψ1) ∩ Φ0
i (ψ2)

ψ1 ∨ ψ2 Φ0
i (ψ1) ∪ Φ0

i (ψ2)
#ψ1 x#ψ1

i

#−ψ1 Φi−1(ψ1)

•ψ1 x•ψ1
i

•−ψ1 Φi−1(ψ1)
ψ1 Uψ2 Φ0(ψ2) ∪ (Φ0

i (ψ1) ∩ xψ1 Uψ2
i)

ψ1 Sψ2 Φ0
i (ψ2) ∪ (Φ0

i (ψ1) ∩ Φi−1(ψ1 Sψ2))

The difference to the definition of Φ0 is that the answer
terms for past operators are computed using the answer
terms for the previous time point. Correctness of this
mapping is shown in Appendix C.

Lemma 6.4. If Φi−1 is correct for i−1, then Φ0
i is correct

for i.

In order to remove the variables with index i− 1 from Φ0
i ,

we can now substitute them by the values that we have
just computed. For example, since x#ψ

i−1 is a place-holder
for the answers to ψ w.r.t. I(n) at i, we can now replace it
by Φ0

i (ψ). The details of this construction are described in
Appendix C.

Lemma 6.5. If Φi−1 is correct for i−1 and (i−1)-bounded,
then we can construct a function Φi : Sub(φ) → ATiφ that
is correct for i and i-bounded.

To solve the temporal database monitoring problem on
input φ and I, we now iteratively compute the mappings Φi
as described above, and output evali(Φi(φ)) for each i ≥ 0.
By the previous lemmata, this is a correct history encoding.
If the query φ contains no future operators, then the

answer terms contain no variables and can always be fully
evaluated to a subset of ∆NV . In this case, it is easy to
see that the size of Φi(φ) is independent of i, and thus we
have constructed a bounded history encoding, which can
be seen as a variant of the one from [16, 18].

If φ contains future operators, we still have to show that
the space required to store (a representation of) Φi does not
depend on i. Unfortunately, the property of i-boundedness
alone does not suffice since the variables from Varφi may
still occur several times in Φi(φ).

Example 6.6. Consider again the query

φex = ψa ∧ ψb ∧
(
NLB(y) S(#(ψb ∧#3ψb))

)
from Section 5 and recall the abbreviations φ1, φ2, and φ3
for the temporal subqueries of φex. The answer terms for
each time point i can be obtained as

Φi(φex) = Ans(ψa, Ii) ∩ Ans(ψb, Ii) ∩ Φi(φ1).

To compute Φi(φ1), observe first that, for i > 0,

Φ0
i (φ1) = xφ2

i ∪
(
Ans(NLB(y), Ii) ∩ Φi−1(φ1)

)
.

Since we consider all subqueries to have the same variables,
Ans(NLB(y), Ii) evaluates to ∆× {s} for all i ∈ {0, . . . , 4}.
Hence, in our example this set does not affect the compu-
tations, and thus we will omit it and consider Φ0

i (φ1) to
be the union of xφ2

i and the answer term for φ1 from the
previous time point.
We now describe how the algorithm proceeds in more

detail. A summary of the answer terms (equivalent to)
Φi(φ1), i ∈ {0, . . . , 4}, can be found in the following table,
where Bi abbreviates Ans(ψb, Ii):

i Φi(φ1) evali(Φi(φex))

0 xφ2
0 ∅

1 xφ2
1 ∪ (B1 ∩ xφ3

1) ∅
2 xφ2

2 ∪ (B1 ∩ x3ψb
2) ∅

3 xφ2
3 ∪B3 ∪ (B3 ∩ xφ3

3) ∪ (B1 ∩ x3ψb
3) B3

4 xφ2
4 ∪B3 ∪ (B4 ∩ xφ3

4) ∪ (B1 ∩ x3ψb
4) B4

14

To obtain the answer sets evali(Φi(φex)), observe that by
the definition of evali all variables are replaced by ∅ since
3ψb is equivalent to true Uψb. There are no answers to φex
at the first three time points since the combination of S
with the two # operators requires at least three previous
time points to exist. However, at time points 3 and 4, we
obtain the sets B3 = {(p2, s), (p3, s)} and B4 = {(p3, s)},
respectively, as expected.

The computation for i = 0 is straightforward. For i = 1,
we first compute

Φ0
1(φ1) = xφ2

1 ∪ Φ0(φ1) = xφ2
1 ∪ x

φ2
0 .

Afterwards, we replace xφ2
0 by Φ0

1(ψb ∧ φ3) = B1 ∩ xφ3
1

since φ2 = #(ψb ∧ φ3), i.e., φ2 at time point 0 refers
to ψb ∧ φ3 at time point 1 (see the proof of Lemma 6.5
for details). We thus obtain the 1-bounded answer term
Φ1(φ1) = xφ2

1 ∪ (B1 ∩ xφ3
1) listed above.

At i = 2, we get Φ0
2(φ1) = xφ2

2 ∪ x
φ2
1 ∪ (B1 ∩ xφ3

1). By
replacing the variables with index 1, we compute

Φ2(φ1) = xφ2
2 ∪ (B2 ∩ xφ3

2) ∪
(
B1 ∩ (B2 ∪ x3ψb

2)
)
.

Since B2 = ∅, one can obviously simplify this term. For
example, ∅ ∩ xφ3

2 cannot evaluate to a non-empty answer
set, and ∅ ∪ x3ψb

2 yields the same results as x3ψb
2 itself.

Without these simplifications, at i = 3, we would com-
pute Φ3(φ1) as

xφ2
3 ∪(B3∩xφ3

3)∪
(
B2∩(B3∪x3ψb

3)
)
∪
(
B1∩(B2∪B3∪x3ψb

3)
)
,

which contains x3ψb
3 twice. In general, in each step we

would add one copy of x3ψb
i to the answer term, which

would result in a correct history encoding for φ that is,
however, not bounded.
Fortunately, by simplifying all answer terms using the

properties of ∩ and ∪ and the fact that B4 ⊆ B3 ⊆ B1, we
can compute the (i-bounded) answer terms Φi(φ1) given
in the table above.

This demonstrates that it is important that the computed
answer terms are simplified at each step, while preserving
their behavior under evali.

6.2. Simplifying the Answer Terms
We show how to automatically simplify every answer

term by rewriting it into a certain normal form. While
variables from Varφi may still occur several times in this
normal form, the number of their occurrences does not
depend on the number n of previous time points.

Definition 6.7. Two answer terms α1, α2 ∈ ATiφ are
equivalent (at i) if evaln(α1) = evaln(α2) holds for all n ≥ i.
An answer term α ∈ ATiφ is in normal form (for i) if it is
of the form ⋃

X⊆Varφ
i

(
AX ∩

⋂
x∈X

x
)
,

where AX ⊆ ∆NV for each X ⊆ Varφi .

Note that every i-bounded answer term α can be trans-
formed into an equivalent one in normal form. To this end,
we first transform it into disjunctive normal form, which
may cause an exponential blowup. We then combine all
conjunctions containing the same combination X of vari-
ables from Varφi , and merge the already computed sets of
answers into one set AX . If one combination X occurs in
no conjunction, we set AX := ∅. If X has no associated
sets of answers, we set AX := ∆NV . It is easy to see that
the resulting answer term is equivalent to the original one.
Proposition 6.8. For every i-bounded answer term we
can construct an equivalent answer term that is in normal
form for i.
Consider for example the (non-simplified) answer term
Φ3(φ1) from Example 6.6 above. An equivalent term in
disjunctive normal form is

xφ2
3 ∪ (B3 ∩ xφ3

3) ∪ (B2 ∩B3) ∪ (B2 ∩ x3ψb
3) ∪

(B1 ∩B2) ∪ (B1 ∩B3) ∪ (B1 ∩ x3ψb
3)

We can compute
A∅ := (B2 ∩B3) ∪ (B1 ∩B2) ∪ (B1 ∩B3) = B3

as the coefficient of ∅ ⊆ Varφex
3 in the normal form of Φ3(φ1).

Similarly, we obtain A{xφ2
3 }

:= ∆NV , A{xφ3
3 }

:= B3, and
A{x3ψb

3 } := B1 ∪ B2 = B1. All other sets of answers AX
are empty.
However, in general we need to consider all eight sub-

sets of Varφex
3 in such a normal form, which is similar to

the number of auxiliary relations needed in Section 5.3
for the formula φf ′′

φex
(determined by the number of past

operators). In this example, the space requirements of the
two approaches do not differ much since the number of
alternations between past and future operators in φex is
small.
We can now summarize our history encoding for φ as

follows. The set of encodings ∆E consists of all functions of
the form Φ : Sub(φ) → ATiφ that are i-bounded, together
with a distinct element IE that marks the beginning of
the monitoring process. The transition function δE com-
putes, on input Φ and Ii, the function Φi as detailed in
Section 6.1, and then transforms all its answer terms into
normal form. Finally, the evaluation function φE is given
by φE(Φ) := evaln(Φ(φ)), where the time point n is iden-
tified by the (unique) index of the variables in Φ(φ). If
this answer term contains no variables, then n is irrelevant
since evaln amounts to a simple computation of unions and
intersections of sets of answers.
Lemma 6.9. The history encoding (∆E , IE , δE , φE) for φ
is correct and bounded.
Proof. By Lemmata 6.3 and 6.5 and Proposition 6.8, we
obtain

φE(E(I(n))) = evaln
(
E(I(n))(φ)

)
= evaln(Φn(φ)) = Ans(φ, I(n)).

15

Furthermore, since E(I(n)) always contains only answer
terms that are in normal form, its size is bounded by
|Sub(φ)| · 2|FSub(φ)| · |∆NV |, which is independent of n. 2

The factor |∆NV | arises from the fact that we always deal
with fully evaluated sets of answers. This cannot be avoided
since the temporal database monitoring problem anyway
requires to compute the sets Ans(φ, I(n)) ⊆ ∆NV .

We now analyze the overall time and space requirements
of our approach. For this, let s, t : N × N → N be two
functions such that, given a finite interpretation I over
the domain ∆ and an atemporal query ψ, we can com-
pute Ans(ψ, I) in time at most t(|ψ|, |∆|) and space at
most s(|ψ|, |∆|). Note that these functions are at least
exponential in the number of variables in ψ since Ans(ψ, I)
may contain all possible answer tuples. The proof of the
following lemma can be found in Appendix C.

Lemma 6.10. There is a function f : N × N → N that
is exponential in the first component and polynomial in
the second such that we can compute each set Ans(φ, I(n)),
n ≥ 0, in time at most f(|φ|, |∆|)+ |φ| ·t(|φ|, |∆|) and space
at most f(|φ|, |∆|) + s(|φ|, |∆|).

This means that we can solve the temporal database moni-
toring problem in exponential time (and space), in addition
to whatever resources we need to answer atemporal queries.
The size of the data domain ∆, however, contributes only
polynomially to the complexity. Furthermore, the expo-
nential factor of |∆NV | cannot be avoided.
Consider, for example, a temporal CQ over a temporal

DL-LiteR-knowledge base with fact base Ai. By [26], every
atemporal CQ ψ can be rewritten into a UCQ for which it
suffices to evaluate it over Ai viewed under the closed world
assumption, which means that ∆T = NC. The rewritten
query is of size exponential in the size of ψ and polynomial
in the size of T , and thus one can compute Cert(ψ, 〈Ai, T 〉)
in time exponential in the size of ψ and polynomial in the
size of K. Note that this runtime already contains a factor
of |NFVar(ψ)

C | ∼ |∆NV
T |, because all answer tuples have to be

enumerated. Thus, answering the temporal CQ only adds
another exponential factor in the size of the query (the
number of future operators) to the total effort required to
solve the temporal database monitoring problem. Since we
have constructed a bounded history encoding, this effort is
the same regardless of the current time point.
While we can use more efficient rewriting approaches

(e.g., [38]), we still need at least exponential time in the
number of variables to evaluate the atemporal queries.
Furthermore, the additional effort required by the temporal
operators is completely independent of this.

7. Rigid Unary Predicates in UCQs

We now extend our temporal semantics by designating
certain predicates as being rigid, which means that their
interpretation is not allowed to change over time. When

considering only databases, i.e., finite interpretations, such
predicates can be expressed by database tables without
explicit time stamps or periods, with the intention that the
contained information is valid at every time point.
For now, we consider only rigid unary predicates. For

example, the unary predicate Server should be rigid since
an application scenario with a server that stops being a
server at some point in time would make no sense. The
notion of rigidity has been explored for other temporal
formalisms before [10, 53].
We assume in this section that there is a set NRP ⊆ N1

P
of rigid unary predicates. In this setting, a finite sequence
I = (Ii)0≤i≤n can only be a model of a TKB K if it fulfills
the conditions of Definition 3.1 and additionally respects
the rigid predicates, i.e., it satisfies P Ii = P Ij for every
P ∈ NRP and all indices i, j between 0 and n.

In this section, we present an approach to deal with these
predicates under two restrictions. First, we consider only
the source query language Q1 of unions (disjunctions) of
rooted CQs (see Example 2.7). Recall that all but one of the
rewriting results in Example 2.11 considered only UCQs or
sublanguages (CQs or instance queries). Since these UCQs
are embedded in a temporal query that allows disjunction,
we can without loss of generality assume that we are dealing
only with CQs. We call temporal queries over this query
language temporal conjunctive queries (TCQs). The second
restriction is that the logic L must satisfy the additional
property that the class of models of a given knowledge base
is closed under countable disjoint unions.

We now describe these restrictions in more detail.

7.1. Rooted Conjunctive Queries

Recall from Example 2.7 that CQs are of the form
φ = ∃y1, . . . , ym.ψ, where ψ is a finite conjunction of in-
stance queries, which are called the atoms of φ. We denote
the set of all constants occurring in φ by Const(φ), and
similarly the variables by Var(φ) and the free variables by
FVar(φ). Given a variable assignment a : FVar(φ) → NC,
we denote by a(φ) the Boolean CQ resulting from replacing
all free variables in φ according to a.

For the definition of the query language, we also need to
define the satisfaction relation |= (cf. Definition 2.5). As
usual, it is given using the notion of a homomorphism [54].

Definition 7.1 (semantics of CQs). Let φ be a CQ,
I = (∆, ·I) an interpretation, and a : FVar(φ) → NC a
variable assignment. A mapping π : Var(φ) ∪ NC → ∆ is a
homomorphism of φ into I (w.r.t. a) if

• π(a) = aI for all a ∈ NC, and

• (π(z1), . . . , π(zn)) ∈ P I for all atoms P (z1, . . . , zn) in
a(φ).

We define the satisfaction relation |= by setting I |= a(φ)
iff there is a homomorphism of φ into I w.r.t. a.

16

It is a simple matter to check that this query language
satisfies the conditions of Definition 2.5.
Intuitively, rooted CQs [41, 55] are CQs that refer to

at least one constant (either directly or via a free vari-
able); that is, they are rooted in the named part of an
interpretation.

Definition 7.2. A CQ φ is called rooted if

(i) it contains at least one free variable or constant, and

(ii) it is connected, i.e., for all x, y ∈ Var(φ) ∪ Const(φ)
there is a sequence x1, . . . , xn ∈ Var(φ) ∪ Const(φ)
such that x1 = x, xn = y, and for all i, 1 ≤ i ≤ n,
there is an atom of φ that contains both xi and xi+1.

A TCQ is rooted if it contains only rooted CQs.

This makes sense from an application point of view since
one usually does not ask if there is some object with certain
properties, but actually wants to know the names of all
objects with these properties. Note that Condition (ii) on
its own does not impose a restriction since any CQ that
is not connected can simply be replaced by the conjunc-
tion of CQs representing its maximal connected subsets of
atoms [29, 56].

To specify the second restriction, we first need to define
the countable disjoint union of interpretations.

Definition 7.3. Let (Ii)i∈I be a countable family of in-
terpretations Ii = (∆Ii , ·Ii) with disjoint domains. For
some distinguished j ∈ I, the disjoint union of this family
(with core Ij) is the interpretation J over the domain
∆J :=

⋃
i∈I ∆Ii with

• cJ := cIj for all c ∈ NC, and

• PJ :=
⋃
i∈I P

Ii for all n ≥ 0 and P ∈ NnP.

In the following, we assume that the class of models of any
knowledge base in L is closed under taking disjoint unions.
In particular, this means that L-theories are not allowed to
place global restrictions on the number of domain elements
(of a particular type).

7.2. Rewriting with Rigid Unary Predicates
Before we reconsider the temporal database monitoring

problem, we have to verify that Theorem 4.1 remains valid
under the new semantics. The main problem we have to
solve is that the sequence IK of canonical models does not
necessarily respect the rigid predicates. In the following,
we make the same assumptions as in Section 4, but for the
special case that Q1 contains only rooted CQs and models
of knowledge bases in L are closed under disjoint unions.
For technical reasons, we also assume that Q1 contains at
least all unary instance queries; again, this is satisfied by
most results listed in Example 2.11.

Let K = 〈(Ai)i≥0, T 〉 be an infinite TKB that represents
the sensor data from our system. As usual, we assume that

this data is consistent, which in this setting means that
there is an infinite sequence I = (Ii)i≥0 of interpretations
that respect the rigid predicates such that Ii |= Ai and
Ii |= T for all i ≥ 0. The finite prefixes K(n) are then also
consistent. We show how to construct modified sequences
of interpretations (similar to IK(n) from Theorem 4.1) that
respect rigid predicates.

The first step is to find a set of assertions

R ⊆ {P (c) | P ∈ NRP, c ∈ NC}

that specifies the rigid predicates that the constants are
allowed to satisfy. Note that R is always finite since NRP
and NC are finite. We denote by R the set of all sets of
this form. In order to answer TCQs over K(n), it suffices to
consider the TKB K(n)

R := 〈(Ai∪R)0≤i≤n, T 〉 for a suitable
R ∈ R. The proof of the following lemma can be found in
Appendix D.

Lemma 7.4. Let K = 〈(Ai)i≥0, T 〉 be a consistent infinite
TKB. Then there is a set R ∈ R such that K(n)

R is consistent
for all n ≥ 0, and for every TCQ φ and all i and n with
0 ≤ i ≤ n, we have

Cert(φ,K(n), i) = Cert(φ,K(n)
R , i).

Given such a set R, we can now construct a sequence of
interpretations that respects the rigid predicates and allows
us to prove Theorem 4.1 under our new semantics. The
details of this construction can also be found in Appendix
D.

Theorem 7.5. Let Q1, Q2 be query languages such that
Q1 contains only rooted CQs and L be a logic that has the
canonical model property w.r.t. Q1 such that Q1-queries
are Q2-rewritable w.r.t. L. Let further K = 〈(Ai)i≥0, T 〉
be a consistent infinite TKB and R given by Lemma 7.4.

Then for all n ≥ 0 there is a sequence of interpreta-
tions IK(n),R = (Ji)0≤i≤n such that for every temporal
Q1-query φ, and all i, 0 ≤ i ≤ n, we have

Cert(φ,K(n)
R , i) = Ans(φ, IK(n),R, i) = Ans(φT ,DK(n)

R
, i).

Thus, we have again arrived at the temporal database
monitoring problem. In contrast to Theorem 4.1, however,
we also have to find a suitable set R in order to obtain the
finite interpretations D〈Ai∪R,T 〉.

7.3. A Modified History Encoding
Since at the beginning of the monitoring process we have

no information except for that given by the background
theory about the rigid predicates, we have to consider all
sets R ∈ R as candidates to compute D〈A0∪R,T 〉. But
we do not only have to compute 2|NRP|·|NC| many rewritten
interpretations, the effort required to answer the temporal
Q1-query φ is also increased by the same factor.
However, one can clearly eliminate those R ∈ R from

consideration for which we find out that 〈Ai ∪ R, T 〉 is

17

inconsistent at some point. Since we have assumed that
the sensor and background data is consistent, this can only
happen if the set R is the wrong set, i.e., not the one whose
existence is guaranteed by Lemma 7.4.
More formally, let φ be a temporal Q1-query and

(∆E , IE , δE , φE) be a history encoding for φT (without rigid
predicates). We describe an algorithm to deal with rigid
unary predicates that is similar to a history encoding, but
directly reads the fact bases Ai instead of the interpreta-
tions D〈Ai∪R,T 〉. Recall that the latter are finite interpre-
tations over the domain ∆T , which we again assume to be
equal to NC in the following.

Algorithm 7.6. The main data structure is a partial func-
tion f : R→ ∆E that specifies encodings corresponding to
some of the sets R ∈ R. On input T , the algorithm does
the following:

1. ForR ∈ R, the value f(R) is initialized to IE whenever
〈R, T 〉 is consistent, and remains undefined otherwise.

2. Let f contain the current encodings and A be the
next fact base. For every R ∈ R, the new encoding is
obtained as f ′(R) := δE(f(R),D〈A∪R,T 〉) if f(R) is
defined and 〈A ∪ R, T 〉 is consistent. All other values
f ′(R) remain undefined.

3. The current encodings are now given by f := f ′ and
the value ⋂

R∈R
f(R) is defined

φE(f(R))

is returned. Continue with Step 2.

Intuitively, we run several instances of the original history
encoding in parallel, with the only difference between them
being that each instance has a different fixed set R of
assumptions about the rigid names. If we discover one
of these assumptions to be inconsistent w.r.t. one of the
input fact bases, the corresponding instance is stopped.
Each remaining instance computes the certain answers to φ
relative to one set R, and the actual set of certain answers
to φ is then computed as their intersection.

The consistency tests for 〈A ∪R, T 〉 are necessary since
D〈A∪R,T 〉 is only defined if the knowledge base is consis-
tent. Furthermore, this allows us to remove sets R from
consideration, which makes the algorithm more efficient.
The hope is that, over time, more and more sets R are
discarded because of new information until only few of
them remain.
We show that this computation preserves correctness

and boundedness of the given history encoding in a sense
similar to that of Definition 5.1.

Theorem 7.7. Let φ be a temporal Q1-query. Given a
correct history encoding for φT and a consistent infinite
TKB K = 〈(Ai)i≥0, T 〉, Algorithm 7.6 outputs Cert(φ,K(n))
for each n ≥ 0. If the history encoding is bounded, then
the size of f does not depend on n.

Proof. The second claim holds since the size of f is at
most 2|NRP|·|NC| times the size of E(DK(n)

R
), and both values

are independent of n.
For the correctness, observe first that for every R for

which f(R) is defined at time point n ≥ 0, we have

φE(f(R)) = Ans(φT ,DK(n)
R

) = Cert(φ,K(n)
R)

by Definition 5.1 and Theorem 7.5. This set always con-
tains Cert(φ,K(n)) since K(n)

R is more restrictive than K(n).
Furthermore, by Lemma 7.4, we know that there must be at
least one R ∈ R that passes all consistency test such that
Cert(φ,K(n)

R) is even equal to Cert(φ,K(n)). This shows
that the intersection in Step 3 yields Cert(φ,K(n)). 2

Thus, every correct history encoding can be extended to
deal with rigid unary predicates while increasing the time
and space requirements by a factor of 2|NRP|·|NC|. For the
bounded history encoding of Section 6, this means that
its total resource consumption at each time point is pro-
portional to |Sub(φ)| · 2|FSub(φ)| · |∆FVar(φ)

T | · 2|NRP|·|NC| plus
2|NRP|·|NC| times the requirements for answering the rewrit-
ten atemporal Q2-subqueries over finite interpretations
over the domain ∆T (cf. Lemma 6.10).

8. Discussion

In this article, we have introduced a generic temporal
query language that combines the well-known temporal
logic LTL with queries over knowledge bases. Further, we
have shown how the reasoning task of temporal OBDA
over knowledge bases is reduced to answering queries over
temporal databases, similar to what was done for the atem-
poral case (see Example 2.11). We then presented three
approaches that solve the resulting temporal database moni-
toring problem and described an approach to extend any
history encoding to deal with rigid unary predicates for
the special case where only rooted conjunctive queries are
allowed. In what follows, we describe advantages and draw-
backs of the former three approaches.

8.1. Comparison
We focus on the required implementation effort, on as-

pects of the implementation, as well as on the amount of
memory required. We thus point out characteristics that
can guide the choice of a particular approach for a specific
use case.

First approach. The most straightforward option is to eval-
uate TQs in a database system that supports dealing with
temporal information using a suitable translation (see Sec-
tion 5.1). The advantage of this is that one can directly
exploit database optimization techniques. However, it re-
quires storing the whole history of past sensor data (even if
only a small part of it is necessary to answer the query) and
re-evaluating the query at each time point using a temporal

18

database query language like ATSQL [15]. As the length
of the history can get very long, this is not the preferred
option. Nevertheless, this approach may still be feasible if
the amount of data can be limited by other means, such
as adopting a “sliding view” semantics where only a fixed
amount of past time points is used to evaluate temporal
queries.

Second approach. The approach described in Section 5.3
is based on the bounded history encoding from [16, 18].
Any implementation of this approach has to eliminate
the future operators in the query; we described how this
elimination can be done. Although independent of the
length of the history, this step involves a theoretical non-
elementary blowup in the size of the query due to the use
of the separation theorem [52]. Even for propositional LTL,
this translation is at least exponential and no approach less
than triply exponential is known [5]. An advantage of the
history encoding from [16, 18] is that it can be implemented
inside a database system using views and triggers, which
could yield a good performance in spite of the possibly very
large size of the query. Generally, this option is the best of
the three if the TQ contains no future operators or if one
can find a small equivalent representation without future
operators.

Third approach. The most general solution is based on
the answer terms described in Section 6. The presented
algorithm is an adaptation of the one in [16] and works
directly with future operators by introducing place-holder
variables for future answers. We have shown that this also
achieves a bounded history encoding while we can limit
the influence of the future operators on the time and space
requirements to a single exponential factor. However, it
is not straightforward how to implement this approach
inside a database system. For that it remains to be inves-
tigated how the implementation inside a database system
described in [16] can be extended to cover answer terms in
an efficient way, in particular in the presence of the place-
holder variables. Even using the normal form described in
Definition 6.7, we still need to store exponentially many
sets of answer tuples, and it is not clear whether they can
be accessed through views. While theoretically the most
efficient solution, it remains to be seen how it performs in
practice in an optimized implementation.

8.2. Outlook
In future work, we want to implement our proposed algo-

rithm, and compare the performance of all three described
approaches on realistic queries over temporal relational
databases to see which approach best suits context-aware
applications. In particular, it is likely that the approach
from Section 5.3 outperforms the dedicated algorithm from
Section 6 on certain kinds of TQs, e.g., queries with a small
bound on the nesting depth of the temporal operators.
On the theoretical side, we plan to investigate how to

adapt the algorithm to deal also with rigid n-ary predicates

for n > 1. It would also be interesting to find out whether
one can extend the bounded history encoding from Section 6
to deal with negation in the query language if queries
are assumed to be domain-independent, which is already
possible with the approaches in [15, 16].

Acknowledgments

This work was partially supported by the DFG in the
Collaborative Research Center 912 (HAEC) and in the
Research Training Group 1763 (QuantLA). We also thank
Franz Baader for helpful discussions on the topics of tem-
poral logics and monitoring, and the anonymous reviewers
for their suggestions for improving the paper.
[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases,

Addison-Wesley, 1995.
[2] S. Decker, M. Erdmann, D. Fensel, R. Studer, Ontobroker: Ontol-

ogy based access to distributed and semi-structured information,
in: R. Meersman, Z. Tari, S. M. Stevens (Eds.), Proceedings of
the 8th Working Conference on Database Semantics (DS-8), Vol.
138 of IFIP Conference Proceedings, Kluwer, 1999, pp. 351–369.

[3] A. Poggi, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
R. Rosati, Linking data to ontologies, Journal on Data Semantics
X (2008) 133–173.

[4] A. Pnueli, The temporal logic of programs, in: Proc. of the 18th
Annual Symp. on Foundations of Computer Science (FOCS’77),
IEEE Press, 1977, pp. 46–57.

[5] F. Laroussinie, N. Markey, P. Schnoebelen, Temporal logic with
forgettable past, in: Proc. of the 17th Annual IEEE Symp. on
Logic in Computer Science (LICS’02), IEEE Press, 2002, pp.
383–392.

[6] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F.
Patel-Schneider (Eds.), The Description Logic Handbook: The-
ory, Implementation, and Applications, 2nd Edition, Cambridge
University Press, 2007.

[7] A. Artale, E. Franconi, F. Wolter, M. Zakharyaschev, A temporal
description logic for reasoning over conceptual schemas and
queries, in: Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (JELIA 2002), Springer-Verlag,
2002, pp. 98–110.

[8] B. Motik, Representing and querying validity time in RDF and
OWL: A logic-based approach, Journal of Web Semantics 12–13
(2012) 3–21.

[9] V. Gutiérrez-Basulto, S. Klarman, Towards a unifying approach
to representing and querying temporal data in description logics,
in: M. Krötzsch, U. Straccia (Eds.), Proc. of the 6th Int. Conf.
on Web Reasoning and Rule Systems (RR’12), Vol. 7497 of
Lecture Notes in Computer Science, Springer-Verlag, 2012, pp.
90–105.

[10] F. Baader, S. Borgwardt, M. Lippmann, Temporalizing ontology-
based data access, in: M. P. Bonacina (Ed.), Proc. of the 24th
Int. Conf. on Automated Deduction (CADE’13), Vol. 7898 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, 2013,
pp. 330–344.

[11] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro, R. Rosati, Ontologies and databases: The
DL-Lite approach, in: S. Tessaris, E. Franconi, T. Eiter,
C. Gutierrez, S. Handschuh, M.-C. Rousset, R. A. Schmidt
(Eds.), Reasoning Web, 5th Int. Summer School 2009, Tuto-
rial Lectures, Vol. 5689 of Lecture Notes in Computer Science,
Springer-Verlag, 2009, pp. 255–356.

[12] C. Lutz, F. Wolter, M. Zakharyaschev, Temporal description
logics: A survey, in: S. Demri, C. S. Jensen (Eds.), Proceedings of
the 15th International Symposium on Temporal Representation
and Reasoning (TIME 2008), IEEE Press, 2008, pp. 3–14.

[13] A. Artale, R. Kontchakov, C. Lutz, F. Wolter, M. Zakharyaschev,
Temporalising tractable description logics, in: V. Goranko, X. S.

19

Wang (Eds.), Proceedings of the 14th International Symposium
on Temporal Representation and Reasoning (TIME 2007), IEEE
Press, 2007, pp. 11–22.

[14] A. Artale, R. Kontchakov, F. Wolter, M. Zakharyaschev, Tempo-
ral description logic for ontology-based data access, in: F. Rossi
(Ed.), Proceedings of the 23rd Interntational Joint Conference
on Artificial Intelligence (IJCAI 2013), AAAI Press, 2013, pp.
711–717.

[15] J. Chomicki, D. Toman, M. H. Böhlen, Querying ATSQL
databases with temporal logic, ACM Transactions on Database
Systems 26 (2) (2001) 145–178.

[16] J. Chomicki, Efficient checking of temporal integrity constraints
using bounded history encoding, ACM Transactions on Database
Systems 20 (2) (1995) 148–186.

[17] J. Chomicki, D. Toman, Time in database systems, in: M. Fisher,
D. Gabbay, Lluis Vila (Eds.), Handbook of Temporal Reasoning
in Artificial Intelligence, Elsevier, 2005, pp. 429–467.

[18] D. Toman, Logical data expiration, in: J. Chomicki, R. van der
Meyden, G. Saake (Eds.), Logics for Emerging Applications of
Databases, Springer-Verlag, 2004, Ch. 6, pp. 203–238.

[19] S. Borgwardt, M. Lippmann, V. Thost, Temporal query answer-
ing in the description logic DL-Lite, in: P. Fontaine, C. Ringeis-
sen, R. A. Schmidt (Eds.), Proceedings of the 9th International
Symposium on Frontiers of Combining Systems (FroCoS 2013),
Vol. 8152 of Lecture Notes in Computer Science, Springer-Verlag,
2013, pp. 165–180.

[20] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
R. Rosati, DL-Lite: Tractable description logics for ontologies,
in: M. M. Veloso, S. Kambhampati (Eds.), Proc. of the 20th
Nat. Conf. on Artificial Intelligence (AAAI’05), AAAI Press,
2005, pp. 602–607.

[21] F. Baader, Terminological cycles in a description logic with
existential restrictions, in: G. Gottlob, T. Walsh (Eds.), Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI’03),
Morgan Kaufmann, 2003, pp. 325–330.

[22] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible
SROIQ, in: P. Doherty, J. Mylopoulos, C. Welty (Eds.), Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’06), AAAI Press, 2006, pp. 57–67.

[23] U. Hustadt, B. Motik, U. Sattler, Reasoning in description logics
by a reduction to disjunctive datalog, Journal of Automated
Reasoning 39 (3) (2007) 351–384.

[24] Y. Kazakov, Consequence-driven reasoning for horn SHIQ on-
tologies, in: C. Boutilier (Ed.), Proc. of the 21st Int. Joint
Conf. on Artificial Intelligence (IJCAI’09), AAAI Press, 2009,
pp. 2040–2045.

[25] A. Calì, G. Gottlob, T. Lukasiewicz, A general Datalog-based
framework for tractable query answering over ontologies 14 (2012)
57–83.

[26] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
R. Rosati, Tractable reasoning and efficient query answering
in description logics: The DL-Lite family, Journal of Automated
Reasoning 39 (3) (2007) 385–429.

[27] B. Glimm, I. Horrocks, C. Lutz, U. Sattler, Conjunctive query
answering for the description logic SHIQ, Journal of Artificial
Intelligence Research 31 (1) (2008) 157–204.

[28] C. Lutz, D. Toman, F. Wolter, Conjunctive query answering in
the description logic EL using a relational database system, in:
C. Boutilier (Ed.), Proc. of the 21st Int. Joint Conf. on Artificial
Intelligence (IJCAI’09), AAAI Press, 2009, pp. 2070–2075.

[29] S. Rudolph, B. Glimm, Nominals, inverses, counting, and con-
junctive queries or: Why infinity is your friend!, Journal of
Artificial Intelligence Research 39 (1) (2010) 429–481.

[30] M. Bienvenu, B. ten Cate, C. Lutz, F. Wolter, Ontology-based
data access: A study through disjunctive datalog, CSP, and
MMSNP, in: R. Hull, W. Fan (Eds.), Proc. of the 32nd Symp.
on Principles of Database Systems (PODS’13), ACM, 2013, pp.
213–224.

[31] S. Abiteboul, V. Vianu, Regular path queries with constraints,
Journal of Computer and System Sciences 58 (3) (1999) 428–452.

[32] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Y. Vardi, Rewrit-

ing of regular expressions and regular path queries, Journal of
Computer and System Sciences 64 (3) (2002) 443–465.

[33] H. Pérez-Urbina, B. Motik, I. Horrocks, Tractable query answer-
ing and rewriting under description logic constraints, Journal of
Applied Logic 8 (2) (2010) 186–209.

[34] T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, G. Xiao, Query
rewriting for horn-SHIQ plus rules, in: J. Hoffmann, B. Selman
(Eds.), Proc. of the 26th AAAI Conf. on Artificial Intelligence
(AAAI’12), AAAI Press, 2012, pp. 726–733.

[35] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope., in:
L. P. Kaelbling, A. Saffiotti (Eds.), Proc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI’05), Professional Book
Center, 2005, pp. 364–369.

[36] R. Rosati, On conjunctive query answering in EL, in: D. Cal-
vanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, A.-Y.
Turhan, S. Tessaris (Eds.), Proc. of the 2007 Int. Workshop
on Description Logics (DL’07), Vol. 250 of CEUR Workshop
Proceedings, 2007, pp. 451–458.

[37] A. Krisnadhi, C. Lutz, Data complexity in the EL family of
description logics, in: N. Dershowitz, A. Voronkov (Eds.), Proc.
of the 14th Int. Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’07), Vol. 4790 of Lecture
Notes in Computer Science, Springer-Verlag, 2007, pp. 333–347.

[38] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Za-
kharyaschev, The combined approach to query answering in
DL-Lite, in: F. Lin, U. Sattler, M. Truszczynski (Eds.), Proc. of
the 12th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’10), AAAI Press, 2010, pp. 247–257.

[39] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Za-
kharyaschev, The combined approach to ontology-based data
access, in: T. Walsh (Ed.), Proc. of the 22nd Int. Joint Conf.
on Artificial Intelligence (IJCAI’11), AAAI Press, 2011, pp.
2656–2661.

[40] M. Ortiz, S. Rudolph, M. Šimkus, Query answering in the horn
fragments of the description logics SHOIQ and SROIQ, in:
T. Walsh (Ed.), Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’11), AAAI Press, 2011, pp. 1039–1044.

[41] M. Bienvenu, M. Ortiz, M. Šimkus, G. Xiao, Tractable queries
for lightweight description logics, in: F. Rossi (Ed.), Proc. of
the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI’13),
AAAI Press, 2013, pp. 768–774.

[42] G. Gottlob, G. Orsi, A. Pieris, Ontological queries: Rewriting
and optimization, in: Proc. of the 2011 IEEE 27th Int. Conf.
on Data Engineering (ICDE’11), IEEE Computer Society Press,
2011, pp. 2–13.

[43] R. Rosati, A. Almatelli, Improving query answering over DL-Lite
ontologies, in: F. Lin, U. Sattler, M. Truszczynski (Eds.), Proc.
of the 12th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’10), AAAI Press, 2010, pp. 290–300.

[44] S. Heymans, T. Eiter, G. Xiao, Tractable reasoning with
dl-programs over Datalog-rewritable description logics, in:
H. Coelho, R. Studer, M. Wooldridge (Eds.), Proc. of the 19th
Eur. Conf. on Artificial Intelligence (ECAI’10), Vol. 215 of Fron-
tiers in Artificial Intelligence and Applications, IOS Press, 2010,
pp. 35–40.

[45] M. Krötzsch, Efficient rule-based inferencing for OWL EL, in:
T. Walsh (Ed.), Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’11), AAAI Press, 2011, pp. 2668–2773.

[46] T. Eiter, Datalog-based data access over ontology knowledge
bases, in: Semantic Web - Ontology Languages and Their Use.
ICCL Summer School, Tutorial Lectures, 2013.

[47] M. Bienvenu, C. Lutz, F. Wolter, First-order rewritability of
atomic queries in horn description logics, in: F. Rossi (Ed.), Proc.
of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI’13),
AAAI Press, 2013, pp. 754–760.

[48] T. Wilke, Classifying discrete temporal properties, in: Proc. of
the 16th Annual Symp. on Theoretical Aspects of Computer
Science (STACS’99), Vol. 1563 of Lecture Notes in Computer
Science, Springer-Verlag, 1999, pp. 32–46.

[49] K. Hülsmann, G. Saake, Theoretical foundations of handling
large substitution sets in temporal integrity monitoring, Acta

20

Informatica 28 (4) (1991) 365–407.
[50] G. Saake, U. W. Lipeck, Using finite-linear temporal logic for

specifying database dynamics, in: E. Börger, H. K. Büning,
M. M. Richter (Eds.), Proc. of the 2nd Workshop on Computer
Science Logic (CSL’88), Vol. 385 of Lecture Notes in Computer
Science, Springer-Verlag, 1989, pp. 288–300.

[51] M. H. Böhlen, C. S. Jensen, R. T. Snodgrass, Temporal statement
modifiers, ACM Transactions on Database Systems 25 (4) (2000)
407–456.

[52] D. Gabbay, Declarative past and imperative future, in: B. Ban-
ieqbal, H. Barringer, A. Pnueli (Eds.), Proc. of the 1987 Coll.
on Temporal Logic in Specification, Vol. 398 of Lecture Notes in
Computer Science, Springer-Verlag, 1989, pp. 409–448.

[53] F. Baader, S. Ghilardi, C. Lutz, LTL over description logic
axioms, ACM Transactions on Computational Logic 13 (3) (2012)
21:1–21:32.

[54] A. K. Chandra, P. M. Merlin, Optimal implementation of con-
junctive queries in relational data bases, in: J. E. Hopcroft, E. P.
Friedman, M. A. Harrison (Eds.), Proc. of the 9th Annual ACM
Symp. on Theory of Computing (STOC’77), ACM Press, 1977,
pp. 77–90.

[55] C. Lutz, The complexity of conjunctive query answering in
expressive description logics, in: Proc. of the 4th Int. Joint Conf.
on Automated Reasoning (IJCAR’08), Vol. 5195 of Lecture Notes
in Artificial Intelligence, Springer-Verlag, 2008, pp. 179–193.

[56] S. Tessaris, Questions and answers: Reasoning and querying in
description logic, Ph.D. thesis, University of Manchester (2001).

Appendix A. Proof of Theorem 4.1

Let Q1, Q2 be query languages and L be a logic that has the
canonical model property w.r.t. Q1 such that Q1-queries
are Q2-rewritable w.r.t. L. Then for every consistent TKB
K = 〈(Ai)0≤i≤n, T 〉, every temporal Q1-query φ, and every
i, 0 ≤ i ≤ n, we have

Cert(φ,K, i) = Ans(φ, IK, i) = Ans(φT ,DK, i).

Proof. We first prove Cert(φ,K, i) ⊆ Ans(φ, IK, i). Take
a ∈ Cert(φ,K, i). Then for every I = (Ii)0≤i≤n with I |= K,
we have I, i |=Q1 a(φ). In particular, we get IK, i |=Q1 a(φ),
which is equivalent to a ∈ Ans(φ, IK, i).

It is left to prove the following two claims:

(1) Ans(φ, IK, i) ⊆ Ans(φT ,DK, i), and

(2) Ans(φT ,DK, i) ⊆ Cert(φ,K, i).

We show this by induction on the structure of φ.
For the base case, consider an atemporal Q1-query φ.

For (1), take a ∈ Ans(φ, IK, i). Since φ is a Q1-query, the
semantics yields that a ∈ Ans(φ, IKi). By Q2-rewritability,
we obtain a ∈ Ans(φT ,DKi). Finally, the semantics of
temporal Q2-queries yields that a ∈ Ans(φT ,DK, i).
For (2), take a ∈ Ans(φT ,DK, i). Since φT is a Q2-

query, this implies that a ∈ Ans(φT ,DKi). Because of
Q2-rewritability, we have a ∈ Cert(φ,Ki). This means that
for every interpretation I with I |= Ai and I |= T , we have
that I |=Q1 a(φ). Hence, for every sequence I = (Ii)0≤i≤n
with I |= K, we have Ii |=Q1 a(φ). Since φ is a Q1-query,
the latter condition is equivalent to a ∈ Ans(φ, I, i), and
thus we get a ∈ Cert(φ,K, i).

Let now φ be of the form φ1 ∧ φ2. For (1), assume
that IK, i |=Q1 a(φ), and thus we have IK, i |=Q1 aφ1(φ1)
and IK, i |=Q1 aφ2(φ2). By the induction hypothesis,
DK, i |=Q2 aφ1(φT1) and DK, i |=Q2 aφ2(φT2), and thus
by the definition of φT we get DK, i |=Q2 a(φT).
For (2), assume that DK, i |=Q2 a(φT), and thus

DK, i |=Q2 aφ1(φT1) and DK, i |=Q2 aφ2(φT2). Hence, we
have a ∈ Cert(φ1,K, i) and a ∈ Cert(φ2,K, i) by the in-
duction hypothesis. Thus, for every I |= K it holds that
I, i |=Q1 aφ1(φ1) and I, i |=Q1 aφ2(φ2). This is equivalent
to a ∈ Cert(φ1 ∧ φ2,K, i).
Let now φ be of the form #φ1. For claim (1), we take

IK, i |=Q1 a(#φ1). By the temporal semantics, we have
i < n and IK, i+1 |=Q1 a(φ1). By the induction hypothesis,
we get DK, i+ 1 |=Q2 a(φT1). Since i < n, this implies that
DK, i |=Q2 a(φT) by the definition of φT .

For (2), let DK, i |=Q2 a(φT). Hence, we have i < n and
DK, i+ 1 |=Q2 a(φT1), which implies a ∈ Cert(φ1,K, i+ 1)
by the induction hypothesis. Since i < n, this means that
for every I |= K we have I, i |=Q1 a(#φ1), which shows
that a ∈ Cert(φ,K, i).

For the next inductive case, let φ be of the form φ1 Uφ2.
For (1), assume that IK, i |=Q1 a(φ1 Uφ2), and thus there
is a k, i ≤ k ≤ n, such that we have IK, k |=Q1 aφ2(φ2)
and IK, j |=Q1 aφ1(φ1) for all j, i ≤ j < k. By the
induction hypothesis, we obtain DK, k |=Q2 aφ2(φT2) and
DK, j |=Q2 aφ1(φT1) for all j, i ≤ j < k. The definitions
of |=Q2 and φT yield that DK, i |=Q2 a(φT).
For (2), assume that DK, i |=Q2 a(φT). By definition

of φT , there is a k, i ≤ k ≤ n, with DK, k |=Q2 aφ2(φT2)
and DK, j |=Q2 aφ1(φT1) for all j, i ≤ j < k. The induction
hypothesis yields a ∈ Cert(φ2,K, k) and a ∈ Cert(φ1,K, j)
for all j, i ≤ j < k. As a consequence, we have for every
I |= K that I, i |=Q1 a(φ1 Uφ2).

The remaining cases can be proven in a similar way. For
example, the case of •φ1 differs from #φ1 only in the fact
that if i ≥ n, then the expressions IK, i |=Q1 a(φ) and
DK, i |=Q2 a(φT) are trivially satisfied, instead of trivially
false. The arguments for #−φ1 and •−φ1 can be obtained
from those of #φ1 and •φ1 by replacing i < n by i > 0 and
i+ 1 by i− 1, and similarly for φ1 Sφ2 and φ1 Uφ2. The
cases of 2, 2−, 3, and 3− follow by similar arguments. 2

Appendix B. Reduction of Section 5.3

In this part of the appendix, we describe how to rewrite a
TQ φ into an equivalent temporal query φ′ of the language
of [16] in order to apply the algorithm described in [16].
We first transform the TQ φ into an LTL-formula fφ,

which is defined inductively on the structure of φ:

φ fφ

Q-query ψj pj

φ1 ∧ φ2 fφ1 ∧ fφ2

φ1 ∨ φ2 fφ1 ∨ fφ2

#φ1 false U<(fφ1 ∧ p)

21

#−φ1 false S< fφ1

•φ1 false U<(fφ1 ∨ ¬p)
•−φ1 first ∨ false S< fφ1

2φ1 fφ1 ∧ fφ1 U< ¬p
2−φ1 fφ1 ∧ fφ1 S<(first ∧ fφ1)
3φ1 fφ1 ∨ true U<(fφ1 ∧ p)
3−φ1 fφ1 ∨ true S< fφ1

φ1 Uφ2 fφ2 ∨ (fφ1 ∧ fφ1 U<(fφ2 ∧ p))
φ1 Sφ2 fφ2 ∨ (fφ1 ∧ fφ1 S< fφ2)

This yields the following lemma, where Ia is defined as in
Section 5.3.

Lemma Appendix B.1. For all I = (Ii)0≤i≤n, all
a : FVar(φ)→ NC, and all i, 0 ≤ i ≤ n, we have I, i |= a(φ)
iff Ia, i |= fφ.

Proof. We prove this lemma by induction on the structure
of φ. For the base case of a Q-query φ = ψj , we have:

I, i |= a(ψj)
iff Ii |= a(ψj)
iff pj ∈ wi
iff Ia, i |= fψj .

For the case φ = φ1 ∧ φ2, we have:

I, i |= a(φ1 ∧ φ2)
iff I, i |= aφ1(φ1) and I, i |= aφ2(φ2)
iff Iaφ1

, i |= fφ1 and Iaφ2
, i |= fφ2

iff Ia, i |= fφ1 and Ia, i |= fφ2

iff Ia, i |= fφ1 ∧ fφ2 .

For the case φ = #φ1, we have:

I, i |= a(#φ1)
iff i < n and I, i+ 1 |= a(φ1)
iff Ia, i+ 1 |= p and Ia, i+ 1 |= fφ1

iff Ia, i+ 1 |= fφ1 ∧ p
iff Ia, i |= false U<(fφ1 ∧ p).

For the case φ = •−φ1, we have:

I, i |= a(•−φ1)
iff i > 0 implies I, i− 1 |= a(φ1)
iff i = 0 or i > 0 and I, i− 1 |= a(φ1)
iff Ia, i |= first or i > 0 and Ia, i− 1 |= fφ1

iff Ia, i |= first ∨ false S< fφ1 .

For the case φ = φ1 Uφ2, we have:

I, i |= a(φ1 Uφ2)
iff there is some k, i ≤ k ≤ n, such that I, k |= aφ2(φ2)

and I, j |= aφ1(φ1) for all j, i ≤ j < k

iff there is some k, i ≤ k ≤ n, such that Iaφ2
, k |= fφ2

and Iaφ1
, j |= fφ1 for all j, i ≤ j < k

iff there is some k, i ≤ k ≤ n, such that Ia, k |= fφ2 and
Ia, j |= fφ1 for all j, i ≤ j < k

iff there is some k ≥ i such that Ia, k |= p and Ia, k |= fφ2

and Ia, j |= fφ1 for all j, i ≤ j < k

iff Ia, i |= fφ2 or there is some k > i such that Ia, k |= p
and Ia, k |= fφ2 and Ia, j |= fφ1 for all j, i ≤ j < k

iff Ia, i |= fφ2 or there is some k > i such that
Ia, k |= fφ2 ∧ p and Ia, j |= fφ1 for all j, i ≤ j < k

iff Ia, i |= fφ2 or Ia, i |= fφ1 and there is some k > i
such that Ia, k |= fφ2 ∧ p and Ia, j |= fφ1 for all j,
i < j < k

iff Ia, i |= fφ2 ∨ (fφ1 ∧ fφ1 U<(fφ2 ∧ p)).

All the other cases can be shown analogously. 2

After this, fφ is transformed into an equivalent LTL-
formula f ′φ using the separation theorem from [52].

Proposition Appendix B.2 ([52]). There is an LTL-
formula f ′φ in which no S< occurs in the scope of an U<
and no U< occurs in the scope of an S< such that for every
LTL-structure J and every i ≥ 0, we have J, i |= fφ iff
J, i |= f ′φ.

The formula f ′φ is in turn transformed into the LTL-
formula f ′′φ by replacing all variables that are in the scope
an U< by false and simplifying the resulting formula using
the following equivalences:

true ∧ ψ ≡ ψ ¬true ≡ false
true ∨ ψ ≡ true ψU< false ≡ false
false ∧ ψ ≡ false true U< true ≡ true
false ∨ ψ ≡ ψ false U< true ≡ true
¬false ≡ true

This yields the following lemma.

Lemma Appendix B.3. For all I = (Ii)0≤i≤n and
a : FVar(φ)→ NC, we have Ia, n |= f ′φ iff Ia, n |= f ′′φ .

Proof. According to the semantics of U<, every propo-
sitional variable pj occurring in the scope of any number
of nested U< operators in f ′φ is evaluated w.r.t. Ia only at
time points n′ > n. Thus, all of these occurrences can be
replaced by false without affecting the value of f ′φ under
Ia at time point n. Furthermore, the equivalences listed
above are clearly valid at any time point, and thus also do
not affect this value. 2

Finally, we transform f ′′φ back into a TQ φf ′′
φ
. This trans-

formation is defined recursively as follows:

22

f ′′φ φf ′′
φ

pj for j, 1 ≤ j ≤ m ψj

p true
f1 ∧ f2 φf1 ∧ φf2

f1 ∨ f2 φf1 ∨ φf2

¬f1 ¬φf1

f1 S< f2 #−(φf2 ∨ φf1 S∗ φf2)

As before, we can show that the variable assign-
ment a : FVar(φ) → NC is an answer to the Past-TQ φf ′′

φ

w.r.t. I at time point i, 0 ≤ i ≤ n, if and only if f ′′φ is
satisfied by Ia at i.2

Lemma Appendix B.4. For all I = (Ii)0≤i≤n, all
a : FVar(φ)→ NC, and all i, 0 ≤ i ≤ n, we have Ia, i |= f ′′φ
iff I, i |= a(φf ′′

φ
).

Proof. We prove this by induction on the structure of f ′′φ .
For a propositional variable pj , 1 ≤ j ≤ m, we have

Ia, i |= pj iff I, i |= a(ψj) as in the proof of Lemma Ap-
pendix B.1. For p, we have Ia, i |= p iff I, i |= true since
p ∈ wi holds for all i, 0 ≤ i ≤ n.

For the Boolean operators ∧, ∨, and ¬, the claim follows
similarly as in the proof of Lemma Appendix B.1. It thus
remains to show the claim for subformulae of the form
f1 S< f2. We have

Ia, i |= f1 S< f2

iff there is some k, 0 ≤ k < i, such that Ia, k |= f2 and
Ia, j |= f1 for all j, k < j < i

iff there is some k, 0 ≤ k < i, such that Iaφf2
, k |= f2

and Iaφf1
, j |= f1 for all j, k < j < i

iff there is some k, 0 ≤ k < i, such that I, k |= aφf2
(φf2)

and I, j |= aφf1
(φf1) for all j, k < j < i

iff i > 0 and I, i − 1 |= aφf2
(φf2) or there is some k,

0 ≤ k < i− 1 such that we have I, k |= aφf2
(φf2) and

I, j |= aφf1
(φf1) for all j, k < j ≤ i− 1.

iff i > 0 and I, i−1 |= aφf2
(φf2) or I, i−1 |= a(φf1 S∗ φf2)

iff I, i |= a(#−(φf2 ∨ φf1 S∗ φf2)) 2

This finishes the reduction. Theorem 5.3 is now a simple
consequence of the previous lemmata and the separation
theorem.

Appendix C. Proofs for Section 6

Lemma 6.3. The function Φ0 is correct for 0.

2Note that FVar(φf ′′
φ

) = FVar(φ).

Proof. We prove by induction on the structure of the
subqueries ψ ∈ Sub(φ) that evaln(Φ0(ψ)) is equal to
Ans(ψ, I(n), 0) for all n ≥ 0. If ψ is an atemporal query,
then evaln(Φ0(ψ)) = Ans(ψ, I0) = Ans(ψ, I(n), 0).
If ψ = ψ1 ∧ ψ2, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)) ∩ evaln(Φ0(ψ2))
= Ans(ψ1, I

(n), 0) ∩ Ans(ψ2, I
(n), 0)

= Ans(ψ, I(n), 0),

and similarly for ψ = ψ1 ∨ ψ2.
If ψ = #−ψ1, then evaln(Φ0(ψ)) = ∅ = Ans(ψ, I(n), 0);

and evaln(Φ0(•−ψ1)) = ∆NV = Ans(•−ψ1, I
(n), 0).

If ψ = ψ1 Sψ2, then Proposition 3.4 yields that

evaln(Φ0(ψ)) = evaln(Φ0(ψ2))
= Ans(ψ2, I

(n), 0)
= Ans(ψ, I(n), 0).

If ψ = #ψ1, then

evaln(Φ0(ψ)) = evaln(xψ0)

=
{

Ans(ψ1, I
(n), 1) if n > 0

∅ if n = 0

}
= Ans(ψ, I(n), 0).

If ψ = •ψ1, then

evaln(Φ0(ψ)) = evaln(xψ0)

=
{

Ans(ψ1, I
(n), 1) if n > 0

∆NV if n = 0

}
= Ans(ψ, I(n), 0).

If ψ = ψ1 Uψ2, then for n > 0 we have, by Proposition 3.4,

evaln(Φ0(ψ))

= evaln(Φ0(ψ2)) ∪
(
evaln(Φ0(ψ1)) ∩ evaln(xψ0)

)
= Ans(ψ2, I

(n), 0) ∪
(
Ans(ψ1, I

(n), 0) ∩ Ans(ψ, I(n), 1)
)

= Ans(ψ, I(n), 0),

and for n = 0 we get

evaln(Φ0(ψ))

= evaln(Φ0(ψ2)) ∪
(
evaln(Φ0(ψ1)) ∩ evaln(xψ0)

)
= Ans(ψ2, I

(n), 0) ∪
(
Ans(ψ1, I

(n), 0) ∩ ∅
)

= Ans(ψ, I(n), 0). 2

Lemma 6.4. If Φi−1 is correct for i−1, then Φ0
i is correct

for i.

Proof. We prove by induction on the structure of the
subqueries ψ ∈ Sub(φ) that evaln(Φ0

i (ψ)) is equal to
Ans(ψ, I(n), i) for all n ≥ i. The proof for most of the

23

cases can easily be obtained from that of the corresponding
cases in Lemma 6.3 by replacing 0 by i, 1 by i + 1, and
Φ0 by Φ0

i . We need to argue differently only for the past
operators.

If ψ = #−ψ1 or ψ = •−ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φi−1(ψ1))

= Ans(ψ1, I
(n), i− 1)

= Ans(ψ, I(n), i)

since Φi−1 is correct for i− 1 < i ≤ n.
If ψ = ψ1 Sψ2, then Proposition 3.4 yields that

evaln(Φ0
i (ψ))

= evaln(Φ0
i (ψ2)) ∪

(
evaln(Φ0

i (ψ1)) ∩ evaln(Φi−1(ψ))
)

= Ans(ψ2, I
(n), i) ∪

(
Ans(ψ1, I

(n), i) ∩ Ans(ψ, I(n), i− 1)
)

= Ans(ψ, I(n), i). 2

Lemma 6.5. If Φi−1 is correct for i−1 and (i−1)-bounded,
then we can construct a function Φi : Sub(φ) → ATiφ that
is correct for i and i-bounded.

Proof. We substitute all variables from Varφi−1 by already
computed answer terms of the form Φ0

i (ψ). However, since
these may themselves contain other variables from Varφi−1,
we have to be careful about the order in which we do these
substitutions. Since each Φ0

i (ψ) can contain only variables
that refer to subqueries of ψ, by replacing the variables for
smaller subqueries first, we ensure that all variables are
eliminated.

For this, we consider a total order ψ1 ≺ · · · ≺ ψk on the
set FSub(φ) = {ψ1, . . . , ψk} with the property that when-
ever ψj ∈ Sub(ψj′) for j, j′ ∈ {1, . . . , k}, we have j ≤ j′,
i.e., ψj = ψj

′ or ψj ≺ ψj
′ . It is clear that such a total

order exists and we fix one for the following considerations.
For 1 ≤ j ≤ k and ψ ∈ Sub(φ), we obtain the an-

swer term Φji (ψ) by replacing every occurrence of xψ
j

i−1 in
Φj−1
i (ψ) with

update
(
xψ

j

i−1

)
:=
{

Φj−1
i (ψ1) if ψj = #ψ1 or ψj = •ψ1;

Φj−1
i (ψj) if ψj = ψ1 Uψ2.

Finally, we set Φi := Φk
i . It is easy to verify that each

Φj
i is indeed a mapping from Sub(φ) to ATiφ. Figure C.1

summarizes the process by which we obtain the families of
answer terms Φji .

We now prove by induction on j that each Φji is correct
for i. For j = 0, this is shown in Lemma 6.4. Consider now
j > 0. Since evaln is defined inductively on the structure
of answer terms, it suffices to show that for all n ≥ i, we
have evaln(xψ

j

i−1) = evaln(update(xψ
j

i−1)). For this, we make
a case distinction on the form of ψj .
If ψj = #ψ1 or ψj = •ψ1, by definition we have

evaln(xψ
j

i−1) = Ans(ψ1, I
(n), i). Since Φj−1

i is correct for i,
this is the same as evaln(Φj−1

i (ψ1)) = evaln(update(xψ
j

i−1)).

Φ0 Φ1

Φk1

...

Φ2
1

Φ1
1

Φ0
1 Φ0

2

Φ1
2

Φ2
2

...

Φk2

Φ2

Φ0
3

Φ1
3

Φ2
3

...

Φk3

Φ3

. . .

Figure C.1: The order in which the mappings Φj
i are computed

If ψj = ψ1 Uψ2, we have evaln(xψ
j

i−1) = Ans(ψj , I(n), i).
Again, since Φj−1

i is correct for i, this is the same set as
evaln(Φj−1

i (ψj)) = evaln(update(xψ
j

i−1)).
It remains to show i-boundedness of Φi = Φki , which we

do by means of the following claim.
Claim 1. For every ψ ∈ Sub(φ), the answer term Φj

i (ψ)
contains only variables from Varψi−1∩{x

ψj+1

i−1 , . . . , xψ
k

i−1} and
Varψi .

We prove this again by induction on j. For j = 0, we
know from the definition of Φ0

i that for every ψ ∈ Sub(φ)
the answer term Φ0

i (ψ) contains only variables from Varψi
and those occurring in Φi−1(ψ). Since Φi−1 is monotone,
it contains only variables from Varψi−1 ⊆ {x

ψ1

i−1, . . . , x
ψk

i−1},
and thus the claim is satisfied.
Let now 0 < j ≤ k and assume that the claim holds for

j − 1. The function Φji is obtained from Φj−1
i by replacing

every occurrence of xψ
j

i−1 by update(xψ
j

i−1). Since Φj−1
i

satisfies the claim, it suffices to consider what happens to
the variable xψ

j

i−1 in the image of Φj−1
i . By assumption,

this variable can only occur in Φj−1
i (ψ) if ψj ∈ FSub(ψ).

Thus, it is enough to show that update(xψ
j

i−1) contains only
variables from Varψ

j

i . We prove this by a case distinction
on the form of ψj .

• If ψj = #ψ1 or ψj = •ψ1, then update(xψ
j

i−1) is equal
to Φj−1

i (ψ1). By the induction hypothesis, this term
contains only variables from Varψ1

i = Varψ
j

i \ {x
ψj

i }
and Varψ1

i−1 ∩ {x
ψj

i−1, . . . , x
ψk

i−1}. Note that the second
set is empty since every variable xψ

′

i−1 ∈ Varψ1
i−1 must

satisfy ψ′ ∈ FSub(ψ1), i.e., ψ′ ∈ FSub(ψj) \ {ψj}, and
thus ψ′ ≺ ψj .

• If ψj = ψ1 Uψ2, then update(xψ
j

i−1) = Φj−1
i (ψj).

Since Φj−1
i differs from Φ0

i only in the replacement
of some of the variables with index i − 1, we have
Φj−1
i (ψj) = Φj−1

i (ψ2) ∪ (Φj−1
i (ψ1) ∩ xψ

j

i).
By the induction hypothesis, each Φj−1

i (ψm), m = 1, 2,
contains only variables from Varψmi = Varψ

j

i \ {x
ψj

i }

24

and Varψmi−1 ∩ {x
ψj

i−1, . . . , x
ψk

i−1}. By similar arguments
as above, the second set is actually empty.

This finishes the proof of Claim 1 and implies that for every
ψ ∈ Sub(φ), the answer term Φki (ψ) contains only variables
from Varψi and Varψi−1 ∩∅, which concludes the proof of the
lemma. 2

Lemma 6.10. There is a function f : N × N → N that
is exponential in the first component and polynomial in
the second such that we can compute each set Ans(φ, I(n)),
n ≥ 0, in time at most f(|φ|, |∆|)+ |φ| ·t(|φ|, |∆|) and space
at most f(|φ|, |∆|) + s(|φ|, |∆|).

Proof. At each time point, we have to compute the sets
Ans(ψ, In) for all atemporal queries ψ occurring in φ, each
time using t(|φ|, |∆|) time and s(|φ|, |∆|) space (which can
be reused). These exponentially large sets then become
the atoms of the new answer terms in Φ0

n. These terms ad-
ditionally contain answer terms Φn−1(ψ) (in normal form)
for the previous time point, which are already exponential
in |NV| and |FSub(φ)|.
We have to be careful that the substitution process de-

scribed in the proof of Lemma 6.5 does not introduce an
additional exponential blowup in the size of φ. Each re-
placement step from Φj−1

n to Φjn may replace exponentially
many occurrences of the same variable by exponentially
large n-bounded answer terms. However, by normalizing
subterms Φj

n(ψ) that are already n-bounded after every
such step, we can ensure that subsequent replacement steps
again have to deal only with exponentially large replace-
ment terms. This local normalization thus has to be done
only for terms of the form given by the definition of Φ0

n,
where each component Φj

n(ψ) is already in normal form,
and each component Φn−1(ψ) may contain exponentially
many answer terms in normal form. This can be done in
exponential time in 2|FSub(φ)| and |NV|.
Thus, we can compute (a normal form of) Φn with ex-

ponentially bounded resources. To compute Ans(φ, I(n)),
by Lemma 6.9 it now suffices to replace each variable by
either ∅ or ∆NV and evaluate the remaining set intersections
and unions. 2

Appendix D. Proofs for Section 7

Lemma 7.4. Let K = 〈(Ai)i≥0, T 〉 be a consistent infinite
TKB. Then there is a set R ∈ R such that K(n)

R is consistent
for all n ≥ 0, and for every TCQ φ and all i and n with
0 ≤ i ≤ n, we have

Cert(φ,K(n), i) = Cert(φ,K(n)
R , i).

Proof. We construct R iteratively, starting from R0 := ∅,
as follows. In each step, we add to Rj , j ≥ 0, all assertions
P (c) with P ∈ NRP that are entailed by the knowledge
base 〈Ai ∪ Rj , T 〉 for some i ≥ 0, which results in a new
set Rj+1. We iterate this process until no new assertions

are added. Let now R be the final set computed by this
procedure and n ≥ 0. Obviously, every certain answer to φ
w.r.t. K(n) at some i ≥ 0 is also a certain answer to φ
w.r.t. K(n)

R at i. We show that all models of K(n) must also
satisfy R at each time point i, which proves the converse
direction and the fact that K(n)

R is consistent.
Let I = (Ii)0≤i≤n be such that I |= K(n) and assume

that there is an index i, 0 ≤ i ≤ n, with Ii 6|= R. Thus,
there is j > 0 and P (c) ∈ Rj such that Ii 6|= P (c). Since
I respects the rigid predicates, this actually holds for all
i ≥ 0. By construction of R, there must be an i ≥ 0 such
that 〈Ai ∪ Rj−1, T 〉 entails P (c). Since Ii |= Ai, I |= T ,
and Ii 6|= P (c), there must be an assertion Q(d) ∈ Rj−1
such that Ii 6|= Q(d), which again holds for all i ≥ 0. We
can iterate this argument until we arrive at the fact that
there must be an assertion R(e) ∈ R0 such that Ii 6|= R(e).
This contradicts the fact that R0 = ∅. 2

Theorem 7.5. Let Q1, Q2 be query languages such that
Q1 contains only rooted CQs, and L be a logic that has the
canonical model property w.r.t. Q1 such that Q1-queries
are Q2-rewritable w.r.t. L. Let further K = 〈(Ai)i≥0, T 〉
be a consistent infinite TKB and R given by Lemma 7.4.

Then for all n ≥ 0 there is a sequence of interpreta-
tions IK(n),R = (Ji)0≤i≤n such that for every temporal
Q1-query φ, and all i, 0 ≤ i ≤ n, we have

Cert(φ,K(n)
R , i) = Ans(φ, IK(n),R, i) = Ans(φT ,DK(n)

R
, i).

Proof. We start the construction of the sequence IK(n),R
with the canonical models Ii := I〈Ai∪R,T 〉, 1 ≤ i ≤ n, em-
ployed in Theorem 4.1 (but with Ai∪R instead of Ai). By
Definition 2.8, the domains ∆Ii of these canonical models
are all countably infinite. We define the set D ⊆ 2NRP of
subsets of NRP that contains exactly the sets

ρ(Ii, x) := {P ∈ NRP | x ∈ P Ii}

for all i, 0 ≤ i ≤ n, and x ∈ ∆Ii . We will now modify
each Ii into a new interpretation Ji such that for each
Y ∈ D there are countably infinitely many individuals
x ∈ ∆Ji with Y = ρ(Ji, x).
To this end, consider i, n, 0 ≤ i ≤ n, and Y ∈ D. If Ii

does not contain any such individual, then we first have
to add one. Fortunately, from the definition of D we know
that there must be a j, 0 ≤ j ≤ n, and x ∈ ∆Ij such that
Y = ρ(Ij , x). To be on the safe side, we therefore construct
the disjoint union I ′i of all interpretations in IK(n)

R
(with

core Ii).
To ensure that there are even countably infinitely many

such individuals, we now define I ′′i as the countably infinite
disjoint union of I ′i with copies of itself (as core we take any
of the copies). Finally, we ensure that all models have the
same domain ∆ := NI∪(D×N) and interpret the constants
by the same domain elements by applying a simple bijection
between the domain of each I ′′i and ∆. In particular,
each aI

′′
i for a ∈ NI is simply mapped to a, and every

25

other element x ∈ ∆I′′
i is mapped to some (ρ(I ′′i , x), `)

with ` ∈ N. We denote the resulting interpretation by Ji
and define IK(n),R := (Ji)0≤i≤n.

We now show that IK(n),R is still a model of K(n)
R . By our

closure assumption on models in L, the interpretations Ji
are still models of T since they are simply (renamed versions
of) unions of models of T . They are also still models
of Ai ∪ R since the interpretation of predicates on the
constants was never changed. Furthermore, the sequence
IK(n),R respects the rigid predicates since the elements of
D × N always satisfy exactly the rigid predicates given by
their first component, and every c ∈ NC satisfies at least
the rigid predicates P for which P (c) ∈ R. Assume now
that we have cJi ∈ PJi for some P ∈ NRP and c ∈ NC,
but P (c) /∈ R. By construction of Ji, we thus also have
Ii |= P (c). Since Ii is a canonical model of 〈Ai ∪ R, T 〉
w.r.t. unary instance queries, all models of 〈Ai ∪R, T 〉 are
also models of P (c). But then we must have P (c) ∈ R
by construction of R (see the proof of Lemma 7.4), which
contradicts the assumption that P (c) /∈ R. This shows
that every c ∈ NC satisfies exactly the rigid predicates P
with P (c) ∈ R in each Ji.

Thus, IK(n),R is a model of K(n)
R that respects the rigid

predicates on the whole domain NI ∪ (D × N). This is
the crucial property that allows us to show the first inclu-
sion Cert(φ,K(n)

R , i) ⊆ Ans(φ, IK(n),R, i) exactly as in the
proof of Theorem 4.1. Moreover, it directly follows from
Theorem 4.1 that Ans(φT ,DK(n)

R
, i) ⊆ Cert(φ,K(n)

R , i).
For the remaining inclusion, we again employ induction

on the structure of φ. The only difference to the corre-
sponding induction proof for Theorem 4.1 is the base case
of a Q1-query; all the other cases can be shown as before.
But for every Q1-query ψ, Q2-rewritability of Q1-queries
w.r.t. L implies that

Ans(ψ, IK(n)
R
, i) = Ans(ψ, Ii)

= Ans(ψT ,D〈Ai∪R,T 〉)
= Ans(ψT ,DK(n)

R
, i),

and thus it suffices to show that Ans(ψ, IK(n),R, i) is a
subset of Ans(ψ, IK(n)

R
, i).

For this, consider any a ∈ Ans(ψ, IK(n),R, i). Thus, there
exists a homomorphism π of a(ψ) into Ji, which can be
used to define a homomorphism π′ of a(ψ) into I ′′i by
composition with the bijection between ∆I′′

i and ∆ (cf.
Condition (ii) of Definition 2.5). Similarly, we obtain
a homomorphism π′′ of a(ψ) into I ′i by taking for each
z ∈ Var(φ) ∪ NC as π′′(z) the original element of ∆I′

i that
gave rise to the copy π′(z) ∈ ∆I′′

i . Finally, since a(ψ) is
rooted and the components in a disjoint union are not
connected via the interpretation of predicates, the image
of π′′ must be contained in the original domain of Ii. Thus,
π′′ is also a homomorphism of a(ψ) into Ii, i.e., we have
a ∈ Ans(ψ, IK(n)

R
, i). 2

26

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Logics
	Queries
	Canonical Models and Rewritability

	Temporal Queries
	Rewriting Temporal Queries
	Solving the Temporal Database Monitoring Problem
	Temporal Database Query Languages
	Bounded History Encodings
	Eliminating Future Operators

	Bounded History Encodings for Future Operators
	Computing the Answer Terms
	Simplifying the Answer Terms

	Rigid Unary Predicates in UCQs
	Rooted Conjunctive Queries
	Rewriting with Rigid Unary Predicates
	A Modified History Encoding

	Discussion
	Comparison
	Outlook

	Proof of Theorem 4.1
	Reduction of Section 5.3
	Proofs for Section 6
	Proofs for Section 7

